2011年上海市数学中考试题及答案[1]

合集下载

2011上海市中考数学试卷【答案+解析】知识讲解

2011上海市中考数学试卷【答案+解析】知识讲解

2011年上海市中考数学试卷一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.2.(2011•上海)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.3.(2011•上海)下列二次根式中,最简二次根式是()A.B.C.D.4.(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.(2011•上海)下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等6.(2011•上海)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD 为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内二、填空题(本大题共12题,每题4分,共48分)7.(2011•上海)计算:a2•a3=_________.8.(2011•上海)因式分解:x2﹣9y2=_________.9.(2011•上海)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=_________.10.(2011•上海)函数的定义域是_________.11.(2011•上海)如果反比例函数(k是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是_________.12.(2011•上海)一次函数y=3x﹣2的函数值y随自变量x值的增大而_________(填“增大”或“减小”).13.(2011•上海)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是_________.14.(2011•上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.(2011•上海)如图,AM是△ABC的中线,设向量,,那么向量=_________(结果用、表示).16.(2011•上海)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=_________.17.(2011•上海)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC= _________.18.(2011•上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D 逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.三、解答题(本大题共7题,满分78分)19.(2011•上海)计算:.20.(2011•上海)解方程组:.21.(2011•上海)如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=,求弦MN的长.22.(2011•上海)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是_________;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_________;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_________名.23.(2011•上海)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.24.(2011•上海)已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.25.(2011•上海)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.考点:有理数的除法。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。

2011年中考数学试题及答案(Word版)

2011年中考数学试题及答案(Word版)

A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。

2011年初中毕业升学考试(中考)数学试卷及答案

2011年初中毕业升学考试(中考)数学试卷及答案

数学试卷第1页(共10页)准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。

考试时间120分钟,满分150分。

考试结束后,第Ⅱ卷和答题卡按规定装袋上交。

第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。

3.考试结束后,本试卷由考场统一收回,集中管理。

一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠数学试卷第2页(共10页)6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC数学试卷第3页(共10页)绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。

2011年各地中考数学试题精选——1.上海卷

2011年各地中考数学试题精选——1.上海卷

2011年各地中考数学试题精选——1.上海卷
佚名
【期刊名称】《数理天地:初中版》
【年(卷),期】2011(000)008
【总页数】3页(P3-5)
【正文语种】中文
【中图分类】G4
【相关文献】
1.基础选拔并重平稳创新共求——2011年浙江省各地区数学中考压轴题解读
2.2000年各地高考数学模拟试题精选
3.科学命制中考作文题的四个关键词——兼析2011年全国各地中考作文命题的得与失
4.《2004年全国中考数学试题精选与解答》征订通知
5.由美国NAEP(2011)写作评价体系看中考作文题的命制——2020年浙江省各地市中考作文题研析及启示
因版权原因,仅展示原文概要,查看原文内容请购买。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年中考考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分,考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效,每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2sin 30°的值等于( )A .1 BCD .22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个3.若x y ,为实数,且20x +=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 4.边长为a 的正六边形的内切圆的半径为( ) A .2a B .a CD .12a5.右上图是一根钢管的直观图,则它的三视图为( )A .B .C .D . 6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m )为:8,8.5,9,8.5,9.2.这组数据的众H I N A数、中位数依次是( )A .8.5,8.5B .8.5,9C .8.5,8.75D .8.64,97.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( ) A .8,3 B .8,6 C .4,3 D .4,6 8.在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43,B .()34,C .()12--,D .()21--, 9.如图,ABC △内接于O ⊙,若28OAB ∠=°,则C ∠的大小为( )A . 28°B .56°C .60°D .62°10.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++第(9)题2009年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚. 2. 第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _.15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为本,付款金额为y 元,请填写下表:16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性: __________________________________________ _________________________________________ _________________________________________第(17)题黄瓜根数/株第(16)题三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分) 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么? (Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率.如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.P CAO注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD .结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ; AD =____________________________cm ; 矩形ABCD 的面积为_____________cm 2; 列出方程并完成本题解答.图②图①已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围; (Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.1112.213.正方形(对角线互相垂直的四边形均可) 14.()01-,15.56,80,156.816.60;1317.21 18.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E 可以是以BC 为直径的半圆上的任意一点(点B C ,除外).BE CE ,的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分 解:5125431x x x x ->+⎧⎨-<+⎩ ,①②由①得2x >, ························································································································ 2分由②得,52x >-···················································································································· 4分 ∴原不等式组的解集为2x >································································································ 6分 20.本小题满分8分.解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ························································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >. ································································································ 3分(Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,,0014242OAB S x x =∴= △,·,解得02x =(负值舍去).∴点A 的坐标为()24,. ·········································································································· 6分 DCA E 2 31 2 3又 点A 在反比例函数5m y x-=的图象上, 542m -∴=,即58m -=. ∴反比例函数的解析式为8y x=. ··························································································· 8分 21.本小题满分8分.解(Ⅰ)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种. ············································· 4分 (Ⅱ)设两个球号码之和等于5为事件A .摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,.()2163P A ∴==. ··················································································································· 8分 22.本小题满分8分.解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径, PA AB ∴⊥.90BAP ∴∠=°.30BAC ∠= °,9060CAP BAC ∴∠=-∠=°°.················································································· 2分 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=.PAC ∴△为等边三角形. 60P ∴∠=°. ··························································································································· 5分(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △中,230AB BAC =∠=,°,AC AB ∴=·cos 2BAC ∠=cos 30°=PAC △为等边三角形, PA AC ∴=.1 2 32 13 3 1 2 第一个球 第二个球 P C B A O第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 2 3PA ∴=··························································································································· 8分 23.本小题满分8分解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ············································· 1分 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ···················· 2分CD AC ∴=·sin 30CAD ∠=·sin 60=°AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,22270BC BD BC CD == ,-,65BD ∴==. ··························································································· 7分651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m. ················································································ 8分24.本小题满分8分.解(Ⅰ)220630424260600x x x x ---+,,; ·································································· 3分(Ⅱ)根据题意,得2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭. ············································· 5分 整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去). 则552332x x ==,. 答:每个横、竖彩条的宽度分别为53cm ,52cm. ································································· 8分25.本小题满分10分.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ········································································································· 4分图①图②图③(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···················································································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ······················································································· 7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OCOA OB''=,得2OC OB ''=. ···················································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ····················································································· 10分 26.本小题满分10分.解(Ⅰ)212120y x y x bx c y y ==++-= ,,,()210x b x c ∴+-+=. ··································································································· 1分 将1132αβ==,分别代入()210x b x c +-+=,得 ()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,,解得1166b c ==,. ∴函数2y 的解析式为2y 25166x x =-+. ····································································· 3分(Ⅱ)由已知,得AB =,设ABM △的高为h ,311212ABM S AB h h ∴===△·1144=.根据题意,t T -=,由21166T t t =++,得251166144t t -+-=. 当251166144t t -+=-时,解得12512t t ==;当251166144t t -+=时,解得34t t ==.t ∴的值为555121212,,. ······················································································ 6分 (Ⅲ)由已知,得222b c b c T t bt c αααβββ=++=++=++,,.()()T t t b ααα∴-=-++, ()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.01αβ<<< ,得0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,. 又01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ································································································· 10分。

上海市(2006-2011)历年中考数学试题(部分含答案)

上海市(2006-2011)历年中考数学试题(部分含答案)

16.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图 5 所示,为配到与原来大小一样 的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块 B.第②块 C.第③块 D.第④块 三、 (本大题共 5 题,满分 48 分) 17. (本题满分 9 分) 图5 ⎧3 − x > 0, ⎪ 解不等式组: ⎨ 4 x 3 x 并把解集在数轴上表示出来. + > − , ⎪ ⎩3 2 6 − 5 −4 − 3 −2 −1 0 1 2 3 4 5 18. (本题满分 9 分) 解方程:
41 40 30 20 10 0 1 8 绿
0 红 橙 黄 蓝 图4
标识
__________________________________________. 21、 (本题满分 10 分) 本市新建的滴水湖是圆形人工湖。为测量该湖的半径,小杰和小丽沿湖边选取 A 、B、C 三 根木柱,使得 A 、B 之间的距离与 A 、C 之间的距离相等,并测得 BC 长为 240 米,A 到 BC 的距离为 5 米,如图 5 所示。请你帮他们求出滴水湖的半径。
图1
数量(单位:升)
10、 已知在△ABC 中,AB=A1 B1 ,∠A =∠A1,要使△AB C≌△A1 B1 C1 ,还需添加一个 条件,这个条件可以是_______ 11、已知圆 O 的半径为 1 ,点 P 到圆心 O 的距离为 2,过点 P 引圆 O 的切线,那么切线长 是______. 12、 在中国的园林建筑中,很多建筑图形具有对称性。图 2 是一个破损花窗的图形, 请 把它补画成中心对称图形。
2
3
A
E
B 图3
D
C
20、 (本题满分 10 分,第(1)小题满分 3 分,第(2)小题满分 4 分,第(3)小题满 分 3 分) 某市在中心城区范围内, 选取重点示范路口进行交通文明状况满意度调查, 将调查结果的满 意度分为:不满意、一般、较满意、满意和非常满意,依次以红、橙、黄、蓝、绿五色标识。 今年五月发布的调查结果中, 橙色与黄色标识路口数之和占被调查路口总数的 15%。 结合未 画完整的图 4 中所示信息,回答下列问题; (1) 此次被调查的路口总数是___________; (2) 将图 4 中绿色标识部分补画完整,并标上相应的路口数; (3) 此次被调查路口的满意度能否作为该市所有路口交通文明状况满意度的一个随即样 本? 答 : 路口数

2011年上海中考数学试卷及答案

2011年上海中考数学试卷及答案

2011年上海市初中毕业统一学业考试数学卷数学注意事项:1. 本试卷共4页,全卷满分150分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2. 请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上. 3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0.5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共6题,每题4分,共24分)1.下列分数中,能化为有限小数的是( )(A) 13; (B) 15; (C) 17; (D) 19 .2.如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D) a b c c > . 3.下列二次根式中,最简二次根式是( ).(A)(B) ;(C)(D).4.抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) . 5.下列命题中,真命题是( ).(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等. 6.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.二、填空题(本大题共12题,每题4分,共28分)12.一次函数y =3x -2的函数值y 随自变量x 值的增大而_____________(填“增大”或“减小”).13.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是__________.14.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.如图1,AM 是△ABC 的中线,设向量AB a =,BC b =,那么向量AM =____________(结果用a 、b 表示).16. 如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°,那么∠A =_________.17.如图3,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.18.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(图4).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC 的边上,那么m=_________.图1 图2 图3 图4三、解答题(本大题共4题,满分48分)21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD 平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若1tan2C∠=,求弦MN的长.图523.(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE 至F,使EF=DE.联结BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE·CE,求证四边形ABFC是矩形.24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数33 4y x=+的图像与y轴交于点A,点M在正比例函数32y x=的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数334y x=+的图像上,且四边形ABCD是菱形,求点C的坐标.图125.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,12sin13EMP∠=.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.图1 图2 备用图2011年上海市初中毕业统一学业数学卷答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 4 5 6答案 B A C D D C 二、填空题 (本大题共12题,每题4分,满分48分)题号 7 8 9 10 11 12 13 14 15 16 17 18 答案a 5(x +3y )(x -3y )1x ≤3y = -x2 增大85 20%a +21b 54680或120三、解答题 (本题共30分,每小题5分) 19. (本题满分10分)[解] (-3)0-27+|1-2|+231+=1-33+2-1+3-2= -23。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001年上海市数学中考试卷一、填空题(本题共14小题,每小题2分,满分28分)1.计算:2·18= 2.如果分式242--x x 的值为零,那么x = 3.不等式7—2x >1的正整数解是 .4.点A (1,3)关于原点的对称点坐标是 .5.函数1-=x xy 的定义域是 .6.如果正比例函数的图象经过点(2,4),那么这个函数的解析式为 .7.如果x 1、x 2是方程x 2-3x +1=0的两个根,那么代数式(x 1+1)( x 2+1)的值是 .8.方程2+x =-x 的解是 .9.甲、乙两人比赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10.那么成绩较为稳定的是 (填“甲”或“乙”).10.如果梯形的两底之比为2∶5,中位线长14厘米,那么较大底的长为 厘米.11.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米.12.某飞机在离地面1200米的上空测得地面控制点的俯角为60°,此时飞机与该地面控制点之间的距离是 米. 13.在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AB 'E ,那么△AB 'E 与四边形AECD 重叠部分的面积是 .14.如图1,在大小为4×4的正方形方格中,△ABC 的顶点A 、B 、C 在单位正方形的顶点上,请在图中画一个△A 1B 1C 1,使△A 1B 1C 1∽△ABC (相似比不为1),且点A 1、B 1、C 1都在单位正方形的顶点上. 图1二、多项选择题(本题共4小题,每小题3分,满分12分.每小题列出的四个答案中,至少有一个是正确的,把所有正确答案的代号填入括号内,错选或不选得0分,否则每漏选一个扣1分)15.下列计算中,正确的是( ).A .a 3·a 2=a 6 B .(a +b )(a -b )=a 2-b 2C .(a +b )2=a 2+b 2D .(a +b )(a -2b )=a 2-ab -2b 216.下列多项式中,能在实数范围内分解因式的是( ).A .x 2+4B .x 2-2C .x 2-x -1D .x 2+x +117.下列命题中,真命题是( ).A .对角线互相平分的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相平分且垂直的四边形是菱形D .对角线互相垂直且相等的四边形是正方形18.如果⊙O 1、⊙O 2的半径分别为4、5,那么下列叙述中,正确的是( ).A .当O 1 O 2=1时,⊙O 1与⊙O 2相切B .当O 1 O 2=5时,⊙O 1与⊙O 2有两个公共点C .当O 1 O 2>6时,⊙O 1与⊙O 2必有公共点D .当O 1 O 2>1时,⊙O 1与⊙O 2至少有两条公切线三、(本题共4小题,每小题7分,满分28分)1 9.计算12102)13(12)21()2(--⋅--+. 20.解方程:31066=+++x x x x . 21.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图(如图2)和快餐公司盒饭年销量的平均数情况条形图(如图3).利用图2、图3共同提供的信息,解答下列问题:图2 图3 (1)1999年该地区销售盒饭共 万盒.(2)该地区盒饭销量最大的年份是 年,这一年的年销量是 万盒.(3)这三年中该地区每年平均销售盒饭多少万盒?22.如图4,在△ABC 中,∠C =90°,点D 在BC 上,BD =4,AD =BC ,cos ∠ADC =53.求:(1)DC 的长;(2)sin B 的值.图4四、(本题共4小题,每小题10分,满分40分)23.如图5,已知点A (4,m ),B (-1,n )在反比例函数y =x8的图象上,直线AB 与x 轴交于点C .如果点D 在y 轴上,且DA =DC ,求点D 的坐标.图524.如图6,在Rt △ABC 中,∠B =90°,∠A 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D 为圆心,DB 长为半径作⊙D .图6求证:(1)AC 是⊙O 的切线;(2)AB +EB =AC .25.某电脑公司2000年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%.该公司预计2002年经营总收入要达到2160万元,且计划从2000年到2002年,每年经营总收入的年增长率相同,问2001年预计经营总收入为多少万元?26.如图7,已知抛物线y =2x 2-4x +m 与x 轴交于不同的两点A 、B ,其顶点是C ,点D 是抛物线的对称轴与x 轴的交点.图7(1)求实数m 的取值范围;(2)求顶点C 的坐标和线段AB 的长度(用含有m 的式子表示);(3)若直线12+=x y 分别交x 轴、y 轴于点E 、F ,问△BDC 与△EOF 是否有可能全等,如果可能,请证明;如果不可能,请说明理由.五、(本题满分12分)27.已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.(1)如图8,P 为AD 上的一点,满足∠BPC =∠A .图8①求证;△ABP ∽△DPC②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长(不必写出解题过程).试卷答案一、填空题(本题共14小题.每小题2分,满分28分)1.6 2.-2 3.1,2 4.(-1,-3)5.x >1 (题5中定义域的意思即指函数自变量的取值范围.)6.y =2x 7.5 8.x =-19.甲 10.20 11.2.5 12.8003 13.22—2 (题13考查图形的翻折问题,从平面图形来看,往往是一个“虚”的形式,故空间想象力在解题时尤为重要,同时,这类题体现了运动变化的过程,如果图形还不能打开思路之门,不妨动手折折试试.)14.图略(画出一个符合要求的三角形)(题14的考查目标是阅读理解、计算、作图能力,单位正方形是指边长为1的正方形,4×4的正方形方格指边长为4的正方形,被分成16个单位正方形,再应用勾股定理计算出AC ,AB ,BC 的长,依相似三角形性质按比例扩大,画出适中的△A 1B 1C 1.)二、多项选择题(本题共4小题,每小题3分,满分12分)(题二不是平时习以为常的“四选一”型单选题,而是多项选择题,读准原题括号中的提示后,解题时要逐个筛选,逐一排查.)15.B 、D 16.B 、C 17.A 、C 18.A 、B 、D三、(本题共4小题,每小题?分,满分28分)19.解:12102)13(12)21()2(--⋅--+33332133231311212-=--=+⋅-=-⋅-+= (题19中出现了分数指数,2112意义是12.)20.解法一:设xx y 6+=,则原方程为3101=+y y ,整理,得3y 2-10y +3=0,解得y 1=31,y 2=3.当y =31时,316=+x x ,解得x =—9;当y =3时,36=+x x ,解得x =3.经检验,x 1=-9,x 2=3都是原方程的根.则原方程的根是x 1=-9,x 2=3.解法二:方程两边同乘3x (x +6),得3(x +6)2+3x 2=10x (x +6),整理得.x 2+6x -27=0,解得x 1=-9,x 2=3.经检验,x 1=-9,x 2=3都是原方程的根,所以原方程的根是x 1=-9,x 2=3.21.(1)118;(2)2000,1 20:(3)解:3518002590150...⨯+⨯+⨯=x =96(万盒). 答:这三年中,该地区每年平均销售盒饭96万盒.(题21考查统计图表在实际生产、生活中的应用,两个图形既相互独立,又互相联系.单个图表的阅读可考查阅读能力,双图表则更体现了思维间的联系与综合能力.)22.解:∵ 在Rt △ACD 中,cos ∠ADC =53=AD CD ,设CD =3k ,∴ AD =5k . 又∵ BC =AD ,∴ 3k +4=5k ,∴ k =2.∴ CD =3k =6.(2) ∵ BC =3k +4=6+4=10,AC =22CD AD -=4k =8,∴ 4121082222=+=+=BC AC AB .∴ 414144128sin ==AB AC B . (题22考查解直角三角形知识,解题时依三角函数定义设参数,结合代数知识求解,应注意的是AC DC ADC =∠cos ,则设DC =3k ,AC =5k ,但不能把DC =3,AC =5当作已知量直接应用.)四、(本题共4小题,每小题10分,满分40分)23.解:由点A 、B 在y =x8的图象上,得m =2,n =-8,则点A 的坐标为(4,2),点B 的坐标为(-1,-8).设直线AB 的函数解析式为y =kx +b ,则⎩⎨⎧+-=-+=b k b k 842,解得⎩⎨⎧-==.,62b k 则直线AB 的函数解析式为y =2x -6.所以点C 坐标为(3,0).设D (0,y ),由DA =DC ,得(y -2)2+42=y 2+32.解得y =411.则点D 的坐标是(0,411). 24.证明:(1)过D 作DF ⊥AC ,F 为垂足.∵ AD 是∠BAC 的平分线,DB ⊥AB ,∴ DB =DF .∴ 点D 到AC 的距离等于圆D 的半径.∴ AC 是⊙D 的切线.(2) ∵ AB ⊥BD ,⊙D 的半径等于BD ,∴ AB 是⊙O 的切线.∴AB =AF .∵ 在Rt △BED 和Rt △FCD 中,ED =CD ,BD =FD ,∴△BED ≌△FCD .∴ BE =FC .∴ AB +BE =AF +FC =AC .25.解:2000年的经营总收入为600÷40%=1500(万元).设年增长率为x ,则1500(1+x )2=2160,(1+x )2=1.44,1+x =±1.2(舍去1+x =—1.2),1500(1+x )=1500×1.2=1800(万元).答:2001年预计经营总收入为1800万元.26.解:(1) ∵ 抛物线y =2x 2-4x +m 与x 轴交于不同的两个点,∴ 关于x 的方程2x 2—4x +m =0有两个不相等的实数根.∴ △=(—4) 2—4·2m >0,∴ m <2.(2)由y =2x 2-4x +m =2(x —1)2+m -2,得顶点C 的坐标是(1,m -2).由2x 2—4x +m =0,解得,x 1=1+m 2421-或x 2=1—m 2421-. ∴ AB =(1+m 2421-)—(1—m 2421-)=m 24-. (3)可能.证明:由y =2x +1分别交x 轴、y 轴于点E 、F ,得E (-22,0),F (0,1).∴ OE =22,OF =1.而BD =m 2421-,DC =2-m .当OE =BD ,得m 242122-=,解得m =1.此时OF =OC =1. 又∵ ∠EOF =∠CDB =90°,∴ △BDC ≌△EOF .∴ △BDC 与△EOF 有可能全等.(题26是一元二次方程,二次函数与直线形的综合考查题,由图象可知,抛物线与x 轴有两个交点,则△>0;求AB 的长度可用简化公式aAB ∆=;(3)要求判断△BDC 与△EOF 是否有可能全等,即指探索全等的可能性,本题已有∠CDB =∠EOF =90°,BD 与OE 或OF 都可能是对应边,证出其中一种情形成立即可,解题时要注意“有可能”这个关键词.)27.(1)①证明:∵ ∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴ ∠ABP =∠DPC .∵ 在梯形ABCD 中,AD ∥BC ,AB =CD ,∴ ∠A =∠D .∴ △ABP ∽△DPC .②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得DCPD AP AB =,即252x x -=,解得x 1=1,x 2=4,则AP 的长为1或4. (2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴ DQ AP PD AB =.即yx x +=-252,得225212-+-=x x y ,1<x <4.②AP =2或AP =3-5. (题27是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)做后心得:同一课标,考点不同——从2011年上海市中考题所看到的经常做中考题,常发现上海市的考题考点与安徽有很多不同。

相关文档
最新文档