匀变速直线运动规律的综合应用.
匀变速直线运动的规律及其应用(教案及教学反思)

匀变速直线运动的规律及其应用教学目标:1. 了解匀变速直线运动的概念及其特点。
2. 掌握匀变速直线运动的规律及其表达式。
3. 学会应用匀变速直线运动的规律解决实际问题。
教学重点:1. 匀变速直线运动的概念及其特点。
2. 匀变速直线运动的规律及其表达式。
3. 匀变速直线运动规律的应用。
教学难点:1. 匀变速直线运动规律的理解和应用。
2. 实际问题中匀变速直线运动的处理方法。
教学准备:1. 教学课件或黑板。
2. 教学素材(如图片、实例等)。
3. 计算器。
教学过程:一、导入(5分钟)1. 引入匀变速直线运动的概念,引导学生回顾已学的直线运动知识。
2. 提问:什么是匀变速直线运动?它有哪些特点?二、新课讲解(15分钟)1. 讲解匀变速直线运动的定义和特点。
2. 推导匀变速直线运动的规律及其表达式。
3. 通过实例解释匀变速直线运动规律的应用。
三、课堂练习(10分钟)1. 给学生发放练习题,要求学生在纸上完成。
2. 题目包括简单应用题和综合应用题,检验学生对匀变速直线运动规律的理解和应用能力。
四、课堂讲解(10分钟)1. 讲解练习题的解题思路和方法。
五、教学反思(5分钟)2. 鼓励学生提出问题,解答学生的疑问。
3. 针对学生的学习情况,提出改进教学方法和策略的建议。
教学延伸:1. 进一步学习非匀变速直线运动的特点和规律。
2. 探索匀变速直线运动在其他领域的应用。
教学反思:1. 本节课的教学效果如何?学生的参与度和积极性如何?2. 学生对匀变速直线运动规律的理解和应用能力是否有所提高?3. 如何改进教学方法和策略,以提高学生的学习效果?六、实例分析与问题解决(15分钟)1. 通过分析实际运动场景,如运动员百米冲刺、物体自由落体等,引导学生运用匀变速直线运动规律解决问题。
2. 提供一系列实际问题,要求学生独立解决,并解释解题过程和结果。
七、实验与观察(15分钟)1. 安排实验环节,让学生观察并记录匀变速直线运动的过程。
《匀变速直线运动规律的应用》 讲义

《匀变速直线运动规律的应用》讲义匀变速直线运动规律的应用讲义一、匀变速直线运动的基本概念匀变速直线运动是指在直线上运动的物体,其加速度保持不变的运动。
加速度是描述物体速度变化快慢的物理量,如果加速度为正,速度将不断增加;如果加速度为负,速度将不断减小。
在匀变速直线运动中,有几个重要的物理量需要我们了解。
首先是速度,它表示物体运动的快慢。
其次是位移,它描述了物体位置的变化。
还有加速度,如前所述,它决定了速度变化的快慢。
二、匀变速直线运动的基本规律1、速度公式:$v = v_0 + at$其中,$v$ 是末速度,$v_0$ 是初速度,$a$ 是加速度,$t$ 是运动时间。
这个公式告诉我们,在匀变速直线运动中,末速度等于初速度加上加速度与时间的乘积。
2、位移公式:$x = v_0t +\frac{1}{2}at^2$此公式表明,位移等于初速度乘以时间再加上二分之一的加速度乘以时间的平方。
3、速度位移公式:$v^2 v_0^2 = 2ax$通过这个公式,可以由速度和位移的关系直接求出加速度或者位移等物理量。
三、匀变速直线运动规律的应用实例1、汽车刹车问题假设一辆汽车以某一初速度$v_0$ 在平直公路上行驶,发现前方有紧急情况需要刹车,刹车时的加速度为$a$(通常为负值,因为是减速运动)。
我们可以利用匀变速直线运动的规律来计算汽车刹车到停止所需的时间$t$ 和刹车的位移$x$。
首先,当汽车停止时,末速度$v = 0$ 。
使用速度公式$v = v_0 + at$ ,可得:$0 = v_0 + at$$t =\frac{v_0}{a}$然后,再用位移公式$x = v_0t +\frac{1}{2}at^2$ ,可求出刹车位移。
在解决这类问题时,需要注意判断汽车在给定的时间内是否已经停止,避免出现错误的计算结果。
2、自由落体运动自由落体运动是一种特殊的匀变速直线运动,其加速度为重力加速度$g$(约为 98m/s²),方向竖直向下。
匀变速直线运动的规律及应用

③
2
解①~③得:t=5 s,x=12.5 m.
答案:12.5 m
类型二:运动学常用的重要推论及其应用 【例 2】 一列火车做匀变速直线运动驶来,一人在轨 道旁边观察火车运动,发现在相邻的两个 10 s 内,火车 从他跟前分别驶过 8 节车厢和 6 节车厢,每节车厢长 8 m (连接处长度不计),求: (1)火车的加速度的大小; (2)人开始观察时火车速度的大小. 思路点拨:抓住相邻的两个 10 s,利用结论求解.
vt/2=v0-aT,
解得 v0=7.2 m/s.
答案:(1)0.16 m/s2 (2)7.2 m/s
方法技巧:正确分析题目中的条件,选择合适的公式或结
论求解是分析运动学问题的前提,再就是必要时要作出运
动草图帮助分析.
针对训练 2-1:两木块自左向右运动,现用高速摄影 机在同一底片上多次曝光,记录下木块每次曝光时的位 置,如图 1-2-3 所示,连续两次曝光的时间间隔是相等 的,由图可知( )
匀变速直线运动flash
2.匀变速直线运动中几个常用的结论
(1)Δx=aT2,即任意相邻相等时间内的位移之差相 等.可以推广到 xm-xn=(m-n)aT2.判断匀变速直线运动
的实验依据.
(2)vt/2= v0 v = x ,即某段时间中间时刻的瞬时
2 t
速度等于该段时间内的平均速度.
(3)某段位移中点的瞬时速度:v =
v=v gt,上升时间 t 上=v / g
0
0
h=v t 1 gt 2
2 0
v2-v02=
2gh,上升最大高度
Hmax=
v2 0
2g
下降过程:自由落体运动(a=g) v= gt
匀变速直线运动的规律及应用

3、 第一个T内,第二个T内,第三个T内,…, 位移的比为:
S1 : S2 : S3 : : Sn 1: 3 : 5 : : (2n 1)
三、几个重要推论及特殊规律的应用
1、一物体在时间t内做匀加速直线运动,初速度 为v0,末速度为vt.则物体在这段时间内的平 均速度为D ( )
vt A、 v 0 t
3、做匀加速直线运动的列车驶出车站,车头经过站台 上的工作人员面前时,速度大小为1m/s,车尾经过该 工作人员时,速度大小为7m/s。若该工作人员一直站 在原地没有动,则车身的正中部经过他面前时的速度 大小为多少?
4、物体以一定的初速度冲上固定的光滑斜面,到达 斜面最高点C时速度恰好为零,如图所示,已知物体 运动到斜面长度3/4处的B点时,所用时间为t,求物 体从B滑到C所用的时间
v0 B、 vt t
C、
v1 v0 2
D、
v0 vt 2
2、一质点做匀加速直线运动,第三秒内的位移2m, 第四秒内的位移是2.5m,那么以下说法中不正确 的是( C ) A.这两秒内平均速度是2.25m/s B.第三秒末即时速度是2.25m/s C.质点的加速度是0.125m/s2 D.质点的加速度是0.5m/s2
。
5、从斜面上某位置,每隔0.1 s释放一个小球,在连续 释放几个后,对在斜面上的小球拍下照片,如图所示, 测得sAB =15 cm,sBC =20 cm,试求 (1)小球的加速度. (2)拍摄时B球的速度vB=? (3)拍摄时sCD=? (4)A球上面滚动的小球还有几个?
A B C D
匀变速直线运动的规律及 应用
高一3班
知识点回顾: 1、速度、时间关系: Vt=vo+at 2、位移、时间关系 :S v0t 1 at 2
匀变速直线运动的规律及应用

(3)第1s内、第2s内、第3s内、…第ns内的位移之比
SI:SII:SIII:…:SN=1:3:5:…:(2n-1)
注意:(1)如何描述这几个规律 (2)时间间隔可扩展到任意t秒
5、做匀变速直线运动的物体,在任意相邻相等时间间隔
例3、一汽车在水平路面上行驶时以v=20m/s,遇到障碍刹车, 加速度的大小为4m/s2,求汽车在6s内通过的位移为多少? (汽车距刹车点多远)
解: S=v0t+ at2=20×6+ ×(-4)×36=48m
注意,以上解法是错误的。原因是刹车过程的最后状态是停下 来,即:vt=0。这类题在解的过程中,应首先判断在所给时 间内,物体是否停下来。如果物体没有停下来,所求过程为匀 变速直线运动,直接代公式求解;如果已经停下来了,过程应 该分为两部分:匀变速过程(停下来以前)和静止过程(停下 来以后),整个过程不再是匀变速直线运动。这种情况下,直 接代公式就不行了。但是前一个过程还是匀变速,可以代公式 求前一个过程的位移(注意这时所代时间不再是全部时间而是 匀变速过程的时间)。我们又知道,后一个过程的位移为0, 所以前一个过程的位移与整个过程的位移相同
设物体运动的初速度为v0,加速度为a,则由位移公式有:
S1=v0t1+
at12
7.2=3v0+ a×32 ①
对后3s,v2=v0+at=v0+2a
②
S2=v2t2+
at22
16.8=3v2+ a×32 ③
三式联立可求得:v0=0 a=1.6m/s2 ∴由S= at2有S总= ×1.6×52=20(m)
可以求出a=-2.5m/s2
匀变速直线运动规律及其应用总结

一、匀变速直线运动的公式匀变速直线运动的加速度a 是恒定的. 反之也成立. 加速度方向与初速度方向相同的匀变速直线运运称为匀加速直线运动; 加速度的方向与初速度方向相反叫匀减速直线运动.如果以初速度v 0的方向为正方向,则在匀减速直线运动中,加速度应加一负号表示。
1. 基本规律: (公式)(1) 速度公式: v t = v 0 + a t 或:a =tv v t 0-. (图象为一直线,纵轴截距等于初速度大小) 平均速度: 2v v v t +== X/ t (前一式子只适用于匀变速直线运动,它是指平均速度,不是速度的平均值;后一式子对任何变速运动均适用。
(2) 位移公式: x = v 0t +21at 2注:在v -t 图象中,由v - t 直线与两坐标轴所围的面积等于质点在时间t 内运动的位移(3). 速度、加速度和位移的关系式: as v v t 2202=-说明: 以上各矢量均自带符号,与正方向相同时取正,相反取负.在牵涉各量有不同方向时,一定要先规定正方向. 如果物体做匀加速直线运动时加速度取正值的话,则匀减速直线运动时加速度就取负值代入公式运算. 对做匀减速直线运动的情况,一般要先判断物体经历多少时间停止下来,然后才能进行有关计算.否则可能解出的结果不符合题意.【例】一个质点先以加速度a 1从静止开始做匀加速直线运动,经时间t ,突然加速度变为反方向,且大小也发生改变,再经相同时间,质点恰好回到原出发点。
试分析两段时间内的加速度大小关系,以及两段时间的末速度大小关系。
2. 推论公式:(1) 2v v v t += = v t 2 (匀变速直线运动某段过程的平均速度等于这段过程初速度与末速度之和的一半,也等于这段过程中间时刻的瞬时速度) (2) x =v 0+v t 2·t (仅适用匀变速直线运动)(3) v s 2=√v 02+v t22(匀变速直线运动某段过程中间位置的瞬时速度等于这段过程初速度平方与末速度平方之和的一半)(4)v s2>v t2(图像法和公式法两种证明)(5)∆x=aT2 (匀变速运动中,任意连续相等的两段时间T内位移之差为定值)x m-x n=(m-n)aT2 (逐差法)【例1】.一颗子弹水平射入静止在光滑水平面上的木块中. 已知子弹的初速度为v0, 射入木块深度为L后与木块相对静止,以共同速度v 运动,求子弹从进入木块到与木块相对静止的过程中,木块滑行的距离.【例2】. 羚羊从静止开始奔跑,经过50m距离加速到最大速度25m/s,并能维持一段较长时间;猎豹从静止开始奔跑经过60m的距离能加速到最大速度30m/s,以后只能维持这个速度4.0s.设猎豹距离羚羊x m时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹加速阶段分别做匀加速运动,且均沿同一直线索奔跑.求:⑴猎豹要在其最大速度减速前追到羚羊,x值应在什么范围? ⑵猎豹要在其加速阶段追上羚羊, x 值应在什么范围?【例3】. 两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v0.若前车突然以恒定的加速度刹车,在它刚停住后,后车以前车刹车时的加速度开始刹车. 已知前车在刹车过程中行驶的距离为s ,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少为()A. s ;B. 2s ;C. 3s ; D 4s .3.初速度为零的匀加速直线运动的比例规律:(一)从静止开始连续相等时间T分段(1)1T末, 2T末, 3T末, … n T末瞬时速度之比为:v1∶v2∶v3∶…:∶v n = 1∶2 ∶3 ∶…∶n .(2) 1T内, 2T内, 3T内,… n T内位移之比为:s1∶s2∶ s3∶…∶s n = 12∶ 22∶32∶…∶n2 .(3)第一个T 内, 第二个T 内, 第三个T 内, …, 第n 个T 内位移之比为. s Ⅰ∶s Ⅱ∶s Ⅲ∶…s N = 1∶3∶5 ∶… ∶(2n -1).(二)从静止开始连续相等位移S 分段(1)1S 末, 2S 末, 3S 末, … n S 末瞬时速度之比为:v 1 ∶v 2∶ v 3 ∶…:∶v n = √1∶√2 ∶√3 ∶… ∶√n .(2) 1S 内, 2S 内, 3S 内, … n S 内时间之比为:t 1 ∶t 2 ∶ t 3 ∶… t n = √1∶√2 ∶√3 ∶… ∶√n .(3)第一个S 内, 第二个S 内, 第三个S 内, …, 第n 个S 内时间之比为. t Ⅰ ∶t Ⅱ ∶t Ⅲ ∶ … ∶ t N ∶:)23(:)12--… ∶ (1--n n ).【例1】. 三块完全相同的木块固定在地板上. 一初速度为v 0的子弹水平射穿第三块木板后速度恰好为零. 设子弹在三块木板中的加速度相同,求子弹分别通过三块木板的时间之比.【例2】. 一质点由A 点出发沿直线AB 运动,行程的第一部分是加速度为a 1的匀加速运动,接着做加速度为a 2的匀减速运动,到达B 点时恰好速度减为零. 若AB 间总长度为S ,试求质点从A 到B 所用的时间 t. 【例3】.已知O 、A 、B 、C 为同一直线上的四点。
高中物理-匀变速直线运动规律的综合应用练习(含解析)

高中物理-匀变速直线运动规律的综合应用练习(含解析)[要点对点练]要点一:自由落体运动1.关于自由落体运动,以下说法正确的是( )A.质量大的物体自由下落时的加速度大B.从水平飞行着的飞机上释放的物体将做自由落体运动C.雨滴下落的过程是自由落体运动D.从水龙头上滴落的水滴,下落过程可近似看作自由落体运动[解析]所有物体在同一地点的重力加速度相等,与物体质量大小无关,故A错误;从水平飞行着的飞机上释放的物体,由于惯性具有水平初速度,不是自由落体运动,故B错误;雨滴下落过程所受空气阻力与速度大小有关,速度增大时阻力增大,雨滴速度增大到一定值时,阻力与重力相比不可忽略,不能认为是自由落体运动,故C错误;从水龙头上滴落的水滴所受的空气阻力与重力相比可忽略不计,可认为只受重力作用,故D正确.[答案] D2.(多选)关于自由落体运动,下列说法中正确的是( )A.物体竖直向下的运动一定是自由落体运动B.自由落体运动是初速度为零、加速度为g的竖直向下的匀加速直线运动C.物体只在重力作用下从静止开始下落的运动叫自由落体运动D.当空气阻力的作用比较小可以忽略不计时,物体自由下落可视为自由落体运动[解析]自由落体运动是物体只在重力作用下从静止开始下落的运动,它是一种初速度为零、加速度为g的匀加速直线运动,如果空气阻力的作用比较小,可以忽略不计,物体的下落也可以看作自由落体运动,所以B、C、D正确,A错误.[答案]BCD3.四个小球在离地面不同高度处同时由静止释放,不计空气阻力,从开始运动时刻起每隔相等的时间间隔,小球依次碰到地面.下图中,能反映出刚开始运动时各小球相对地面的位置的是( )[解析]据题意,由于四个小球在离地面不同高度处同时由静止释放,不计空气阻力,从开始运动时刻起每隔相等的时间间隔,小球依次碰到地面,则据初速度为0的匀加速直线运动在连续相等的时间内通过的位移之比为1∶3∶5∶…,即第一个t内物体距离地面的高度比为1,第二个物体距离地面高度比为4,第三个物体距离地面高度比为9,第四个物体距地面高度比为16,C正确.[答案] C4.关于自由落体运动,以下说法正确的是( )A.自由落体运动是v0=0的变加速直线运动B.满足xⅠ∶xⅡ∶xⅢ∶…=1∶3∶5∶…的运动一定是自由落体运动C.自由落体运动自开始下落的相等时间的位移一定满足xⅠ∶xⅡ∶xⅢ∶…=1∶3∶5∶…D.质量大的物体自由落体的加速度大[解析]自由落体运动是匀加速直线运动,所以A错误;满足B叙述规律的运动是初速度为零的匀加速直线运动,但并非一定是自由落体运动,所以B错误;在同一地点,自由落体的加速度是恒定的,与物体的质量无关,所以D错误,只有C正确.[答案] C要点二:自由落体加速度5.关于自由落体运动的加速度g,下列说法中正确的是( )A.重的物体g值大B.同一地点,轻、重物体的g值一样大C.g值在地球上任何地方都一样大D.g值在赤道处大于北极处[解析]同一地点的重力加速度一样大,但在不同地点重力加速度不一样,它随纬度的增加而增大,随着高度的增加而减小,故B正确.[答案] B6.(多选)科学研究发现:在月球表面没有空气,重力加速度约为地球表面处重力加速度的16.若宇航员登上月球后,在空中同一高度处同时由静止释放羽毛和铅球,忽略地球和其他星球对它们的影响,以下说法中正确的是( )A.羽毛将加速上升,铅球将加速下降B.羽毛和铅球都将下落,且同时落到月球表面C.羽毛和铅球都将下落,但铅球先落到月球表面D.羽毛和铅球都将下落,且落到月球表面的速度相同[解析]羽毛和铅球在月球表面时都只受到重力作用,故它们均做自由落体运动,它们将同时落地,所以选项A、C错误,选项B、D正确.[答案]BD7.(多选)关于重力加速度的下列说法中,正确的是( )A.重力加速度g是标量,只有大小,没有方向,通常计算中g取9.8m/s2B.在地球上不同的地方,g的大小不同,但它们相差不是很大C.在地球上同一地点,一切物体做自由落体运动的加速度都相同D.在地球上的同一地点,离地面高度越大,重力加速度g越小[解析]自由落体加速度的大小和方向均与物体所处的地球表面的位置有关.重力加速度是矢量,方向竖直向下,与重力的方向相同.在地球表面,不同的地方,g的大小略有不同,但都在9.8m/s2左右,故A错误,B正确;在地球表面同一地点,g的值都相同,但随着高度的增大,g的值逐渐减小,故C、D正确.[答案]BCD要点三:竖直上抛运动8.一个从地面开始做竖直上抛运动的物体,它两次经过一个较低点A的时间间隔是T A,两次经过一个较高点B的时间间隔是T B,则A、B两点之间的距离为( )A.18g (T 2A -T 2B ) B.14g (T 2A -T 2B ) C.12g (T 2A -T 2B ) D.12g (T A -T B ) [解析] 物体做竖直上抛运动回到出发点,上升时间与下落时间相等,则从竖直上抛运动的最高点到点A 的时间t A =T A 2,从竖直上抛运动的最高点到点B 的时间t B =T B2,则A 、B 两点的距离x =12gt 2A -12gt 2B =18g (T 2A -T 2B ).[答案] A9.将甲、乙两小球先后以同样的速度在距地面不同高度处竖直向上抛出,抛出时间相隔2 s ,它们运动的v -t 图像分别如图中直线甲、乙所示.则( )A .t =2 s 时,两球的高度差一定为40mB .t =4 s 时,两球相对于各自的抛出点的位移相等C .两球从抛出至落到地面所用的时间间隔相等D .甲球从抛出至到达最高点的时间间隔与乙球的相等[解析] 根据v -t 图像中图线与时间轴所围的“面积”表示质点的位移,可知t =2 s 时,甲球通过的位移为x 甲=12×(30+10)×2m=40m ,乙球的位移为零,两球的位移之差等于40m ,但两球初始的高度未知,故t =2 s 时两球的高度差不一定为40m ,A 错误.t =4 s 时,甲球相对于抛出点的位移x 甲′=⎝ ⎛⎭⎪⎫12×30×3-12×10×1m =40m ,乙球相对于抛出点的位移x乙′=12×(30+10)×2m=40m ,故此时两球相对于各自的抛出点的位移相等,故B 正确.两球从不同的高度以同样的速度竖直向上抛出,根据竖直上抛运动的规律x=-h=v0t-12gt2,h是抛出点距地面的高度,可知两球从抛出至落到地面所用的时间间隔t不相等,故C错误.由v-t图知,甲球从抛出点至到达最高点的时间间隔与乙球的相等,都是3 s,故D正确.[答案]BD[综合提升练]10.(多选)甲物体的重量比乙物体的大5倍,甲从H高处自由落下,乙从2H高处与甲物体同时自由落下,在它们落地之前,下列说法中正确的是( )A.两物体下落过程中,在同一时刻甲的速度比乙的速度大B.下落1 s时,它们的速度相同C.各自下落1m时,它们的速度相同D.下落过程中甲的加速度比乙的加速度大[解析]要注意它们是同时自由下落的,所以两个物体下落是同步的,并且加速度都是一样的,同一时刻,甲、乙速度相同,故B、C正确.[答案]BC11.某物体从某一高度开始做自由落体运动,第1 s内通过了全程的一半,则物体还要下落多长时间才会落地( )A.1 s B.1.5 sC. 2 s D.(2-1) s[解析]自由落体运动是初速度为零的匀加速直线运动,通过连续相等的位移所用的时间之比为1∶(2-1)∶(3-2)∶…,所以,物体下落后半程所用的时间为(2-1) s,故选项D正确.[答案] D12.某兴趣小组利用自由落体运动测定重力加速度,实验装置如图所示.倾斜的球槽中放有若干个小铁球,闭合开关K,电磁铁吸住第1个小球.手动敲击弹性金属片M,M与触头瞬间分开,第1个小球开始下落,M迅速恢复,电磁铁又吸住第2个小球.当第1个小球撞击M 时,M与触头分开,第2个小球开始下落……这样,就可测出多个小球下落的总时间.(1)实验测得小球下落的高度H =1.980m,10个小球下落的总时间T =6.5 s .可求出重力加速度g =________m/s 2.(结果保留两位有效数字)(2)在不增加实验器材的情况下,请提出减小实验误差的两个办法.(3)某同学考虑到电磁铁在每次断电后需要时间Δt 磁性才消失,因此,每个小球的实际下落时间与它的测量时间相差Δt ,这导致实验误差.为此,他分别取高度H 1和H 2,测量n 个小球下落的总时间T 1和T 2.他是否可以利用这两组数据消除Δt 对实验结果的影响?请推导说明.[解析] (1)H =12gt 2=12g ⎝ ⎛⎭⎪⎫T 102所以g =200HT 2=200×1.980(6.5)2m/s 2≈9.4m/s 2 (2)由g =200HT2可知,误差主要来源于H 和T 的测量,故增加H ,或者对H 、T 多次测量求平均值,均可有效减小误差;另外,作出H -T 2图像,从图线斜率k =g 200求得g ,也可有效减小误差.(3)见答案. [答案] (1)9.4(2)增加小球下落的高度;多次重复实验,结果取平均值.(其他答案只要合理也可) (3)由H 1=12g ⎝ ⎛⎭⎪⎫T 1n -Δt 2和H 2=12g ⎝ ⎛⎭⎪⎫T 2n -Δt 2可得g =2n 2(H 1-H 2)2(T 1-T 2)2,因此可以消去Δt 的影响.13.如图所示,A 、B 两棒长均为L =1m ,A 的下端和B 的上端相距x =20m ,若A 、B 同时运动,A 做自由落体运动,B 做竖直上抛运动,初速度v 0=40m/s.求:(1)A 、B 两棒经过多长时间相遇; (2)从相遇开始到分离所需的时间. [解析] (1)设经过时间t 两棒相遇, 由12gt 2+v 0t -12gt 2=x , 得t =x v 0=2040s =0.5 s. (2)从相遇开始到两棒分离的过程中,A 棒做初速度不为零的匀加速运动,设从相遇开始到分离所需的时间为Δt ,则⎝ ⎛⎭⎪⎫v A Δt +12g Δt 2+⎝ ⎛⎭⎪⎫v B Δt -12g Δt 2=2L ,其中v A =gt ,v B =v 0-gt ,代入后求解得Δt =2Lv 0=240 s =0.05 s.[答案] (1)0.5 s (2)0.05 s14.从离地面500m 的空中自由落下一个小球,取g =10m/s 2,求小球: (1)经过多长时间落到地面?(2)自开始下落计时,在第1 s 内的位移、最后1 s 的位移; (3)下落时间为总时间的一半时的位移.[解析] 由h =500m 和自由落体加速度,根据位移公式可直接算出落地时间,根据运动时间,可算出第1 s 内位移和落下一半时间时的位移.最后1 s 内的位移是下落总位移和前(n-1) s下落位移之差.(1)由h=12gt2,得落地时间t=2hg=2×50010s=10 s.(2)第1 s内的位移h1=12gt21=12×10×12m=5m,因为从开始运动起前9 s内的位移为h 9=12gt29=12×10×92m=405m,所以最后1 s内的位移为h10=h-h9=(500-405)m=95m.(3)落下一半时间即t′=5 s,其位移为h 5=12gt′2=12×10×25m=125m.[答案](1)10 s (2)5m 95m (3)125m。
匀变速直线运动的规律及其应用(教案及教学反思)

匀变速直线运动的规律及其应用教学对象:高中物理教学目标:1. 理解匀变速直线运动的概念。
2. 掌握匀变速直线运动的规律。
3. 学会运用匀变速直线运动的规律解决实际问题。
教学重点:1. 匀变速直线运动的概念。
2. 匀变速直线运动的规律。
3. 匀变速直线运动规律的应用。
教学难点:1. 匀变速直线运动规律的理解和应用。
教学准备:1. 教学PPT。
2. 教学视频或实验器材。
教学过程:一、导入(5分钟)1. 利用实验或视频展示匀变速直线运动的现象,引导学生观察和思考。
2. 提问:什么是匀变速直线运动?它有哪些特点?二、知识讲解(15分钟)1. 讲解匀变速直线运动的概念,解释匀变速直线运动的特点。
2. 推导匀变速直线运动的规律,引导学生理解规律的物理意义。
三、案例分析(10分钟)1. 提供几个实际问题,让学生运用匀变速直线运动的规律进行分析和解答。
四、课堂练习(5分钟)1. 发放练习题,让学生独立完成。
2. 讲解练习题,指出常见错误和解题技巧。
五、教学反思(5分钟)2. 让学生谈谈自己在学习过程中的收获和困惑,鼓励学生提出问题和建议。
教学延伸:1. 进一步学习匀变速直线运动的图形表示方法,如v-t图和s-t图。
2. 探究匀变速直线运动的其他相关问题,如速度与位移的关系等。
教学反思:1. 检查学生对匀变速直线运动概念和规律的理解程度,针对性地进行讲解和辅导。
2. 关注学生在解决问题时的思维过程和方法,引导学生运用规律解决实际问题。
3. 调整教学方法和节奏,确保学生能够跟上教学进度,提高学习效果。
六、实验验证(10分钟)1. 安排学生进行匀变速直线运动的实验,如滑块和轨道实验。
2. 引导学生观察实验现象,记录数据。
3. 分析实验结果,验证匀变速直线运动的规律。
七、拓展学习(10分钟)1. 介绍匀变速直线运动在实际生活中的应用,如汽车行驶、物体自由落体等。
2. 引导学生思考匀变速直线运动在其他领域中的应用,如地球物理学、天体物理学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由A、B 速度关系: v1 at v2
1 2 由A、B位移关系: v1t at v2t x0 (包含时间关系) 2 (v1 v2 ) 2 (20 10) 2 2 2 a ms 0.5ms 2 x0 2 100
则a 0.5m / s
2
广东省肇庆市加美学校高中部物理组
A
v1
B
v此 时两者间有最小距离;
②当v1=v2时,A恰好追上B,则A、B相遇一次, 也是避免相撞刚好追上的临界条件; ③当v1>v2时,A已追上B,则A、B相遇两次,且 之后当两者速度相等时,两者间有最大距离。
广东省肇庆市加美学校高中部物理组
注意(1)若是不同地出发,追击时位置相同
匀变速直线运动规律 的综合应用
求解匀变速直线运动的常用方法
①基本公式法:
1 2 s v 0 t at 2 v 0 vt s vt t 2 2 2
vt v0 at
vt v0 2as
2
②特殊公式法: sm-sn=(m-n)aT2
③比例法(4个比例式:)
s aT
方法二:图象法
解:在同一个V-t图中画出A车和B车的速度图线,如图所示.火车A的位移等于 其图线与时间轴围成的梯形的面积,而火车B的位移则等于其图线与时间轴 围成的矩形的面积。两车位移之差等于图中梯形的面积与矩形面积的差,不 难看出,当t=t0时梯形与矩形的面积之差最大,为图中阴影部分三角形的面积. 根据题意,阴影部分三角形的面积不能超过100.
广东省肇庆市加美学校高中部物理组
3. 三种典型追击问题
题型1(1)同地出发,速度小者(初速度为零的匀加 速)追速度大者(匀速)
A
v1=0
a
B
v2
①能追及,且只能相遇一次 ②当 v1=v2 时,A、B距离最大; v1 v2 o
t0 2t0
v
A B
③当两者位移相等时,速度关系与时 间关系是什么?
思考 若不同地呢?
v/ms-1
6 tan 3 t0 2s t0
当t=2s时两车的距离最大
汽车
6
o
自 行 车
t0
t/s
1 xm 2 6m 6m 2
要动态分析随着时间的推移,矩形 面积(自行车的位移)与三角形面积 (汽车的位移)的差的变化规律
广东省肇庆市加美学校高中部物理组
题型(2)速度大者(匀减速)追速度小者(匀 速) 不一定追上 a v1> v2
1 (20 10)t0 100 2
v/ms-1
20 10
t0 20s
A
B
t0
20 10 a tan 0.5 20
o
t/s
则a 0.5m / s
2
物体的v-t图像的斜率表示加速度,面积表示位移.
v0 vt v vt 2 2
④逆向思维法: ⑤图象法:
广东省肇庆市加美学校高中部物理组
追及问题
专题:追及和相遇问题
1. 相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空 间位置的问题。 2. 画出物体运动的情景图,理清两个关系、一个条件 (1)时间关系 t A t B t0 (2)位移关系 s A sB s0 (3)速度条件 两者速度相等。它往往是物体间能否追上或 (两者)距离最大、最小的临界条件,也是分析判断 的切入点。
汽车经过多少时间能追上自行车?此时汽车的速度是多大?
1 / 2 / 2v自 / 4s v汽 at 12m / s v自t at t a 2
/
广东省肇庆市加美学校高中部物理组
方法二:图象法
解;画出自行车和汽车的速度-时间图线,自行车的位移x自等于其 图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其图 线与时间轴围成的三角形的面积。两车之间的距离则等于图中 矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三角 形的面积之差最大。 V-t图像的斜率表示物体的加速度
注 :s0是开始时两物体间的距离 广东省肇庆市加美学校高中部物理组
[例2]:客车以20m/s的速度行驶,突然发现同
轨前方120m处有一列货车正以6m/s的速度 同向匀速前进,于是客车紧急刹车,刹车引起 的加速度大小为0.8m/s2,问两车是否相撞? 解:若速度相等时,设此时所用时间为t, 此时 v客=vo-at=v货 t=17.5s 1 2 此时x客=vo t- at =227.5m 2
△x 广东省肇庆市加美学校高中部物理组 x自
方法一:公式法
当汽车的速度与自行车的速度相等时,两车之间 的距离最大。设经时间t两车之间的距离最大。则
v汽 at v自
6 t s 2s a 3
v自
1 2 1 2 xm x自 x汽 v自t at 6 2m 3 2 m 6m 2 2
x货=v货t=105m 所以两车相撞 x客> x货+120
广东省肇庆市加美学校高中部物理组
[例3]:A火车以v1=20m/s速度匀速行驶,司机发现前 方同轨道上相距100m处有另一列火车B正以v2=10m/s速 度匀速行驶,A车立即做加速度大小为a的匀减速直线 运动。要使两车不相撞,a应满足什么条件? 方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。
(3)开始追及时,后面物体与前面物体间的距离在减小, 当两物体速度相等时,即t=t0时刻: ①若Δs=s0,则恰能追及,两物体只能相遇一次,这也 是避免相撞的临界条件 ②若Δs<s0,则不能追及,此时两物体最小距离s0-Δs
(2)抓住时间关系和位移关系;以及速度相等条件;
③若Δs>s0,则相遇两次,设t1时刻Δs1=s0,两物体第 一次相遇,则t2时刻两物体第二次相遇
t
当 v1=v2 时,相距最远为s0+Δs
广东省肇庆市加美学校高中部物理组
例2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车 以3m/s2的加速度开始加速行驶,恰在这时一辆自行 车以6m/s的速度匀速驶来,从后边超过汽车。试求: ①汽车从路口开动后,在追上自行车之前经过多长 时间两车相距最远?此时距离是多少? ②汽车经多长时间追上自行车?追上自行车的瞬时 速度多大? x汽