角平分线辅助线专题

合集下载

2024辽宁中考数学二轮专题复习 微专题 遇到角平分线如何添加辅助线(课件)

2024辽宁中考数学二轮专题复习 微专题  遇到角平分线如何添加辅助线(课件)
第1题图
2. 如图,AB∥CD,∠ABC的平分线与∠BCD的平分线相交于点E, AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若 AD=8,则PE的最小值为___4___.
第2题图
3. 如图,∠MON=30°,OP平分∠MON,过点P作PQ∥OM交ON于 点Q.若OQ=4,则点P到OM的距离为___2__.
微专题 遇到角平分线如何添加辅助线
方法一 过角平分线上一点向角两边作垂线
方法解读 如图,已知∠MON,点P是∠MON平分线上一点.
过角平分线上的点向角两边作垂线. 已知PA⊥OM, 添加辅助线,作PB⊥ON于点B.
结论:PA=PB,OA=OB,∠APO=∠BPO等.
1. 如图,在Rt△ABC中,∠C=90°4 ,AD平分∠BAC交BC于点D,若 AC=4,BC=3,则CD的长为____3____.
第7题图
方法四 作角平分线的垂线,构造等腰三角形
方法解读 过角平分线上的点作角平分线的垂线,三线合一试试看. 已知AP⊥OP,延长AP交ON于点B.
结论:__R_t_△__A_O__P_≌__R_t_△__B_O__P_,__O_A__=__O_B_,__A__P_=__B_P__. __
8. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD. 若BD=1,BC=3,则AC的长为__5___.
结论:____△__A__O_P_≌__△__B__O_P_,__A__P_=__B_P______
6. 如图,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,若AC= 16,AD=8,则线段BC的长为__2_4___.
第6题图
7. 如图,四边形ABCD中,AC平分∠BAD,∠B+∠ADC=180°, 若BC=2,则DC的长为__2___.

2 角平分线中作辅助线的四种常用方法

2 角平分线中作辅助线的四种常用方法
∵∠ABC=90°,AE⊥CD, ∴∠FAB+∠F=90°,∠ECF+∠F=90°,∴∠FAB=∠ECF.
∠FAB=∠DCB, 在△ABF 和△CBD 中,AB=CB,
∠ABF=∠CBD=90°,
∴△ABF≌△CBD(ASA).∴AF=CD. ∵AE=12CD,∴AE=12AF=EF.
AE=FE, 在△ACE 和△FCE 中,∠AEC=∠FEC=90°,
解:.能在 AB 上确定一点 E,使△BDE 的周长等于 AB 的
长,即过点 D 作 DE⊥AB 于点 E,则点 E 就是所要 确定的点(如图). 理由:∵AD 平分∠CAB, CD⊥AC,DE⊥AB, ∴DC=DE. 在 Rt△ACD 和 Rt△AED 中,ADDC= =ADDE, ,
∴Rt△ACD≌Rt△AED(HL).
∴AC=AE.
∵AC=BC,
∴△BDE的周长=BD+DE+BE=BD+DC+BE
=BC+BE=AC+BE=AE+BE=AB.
返回
方法 2 作两边的垂线段
2.如图,已知∠AOB=90°,OM是∠AOB的平分 线,将三角尺的直角顶点P在射线OM上滑动, 两直角边分别与OA,OB交于点 C,D.求证:PC=PD.
CE=CE, CE. 又∵DM⊥AC,DB⊥BC, ∴DM=DB=8 cm. ∴点D到AC的距离为8 cm.
返回
方法 4 截取作对称图形法 4.如图,AD为△ABC的中线,DE,DF分别是
△ADB和△ADC的角平分线.求证:BE+ CF>EF.
证明: 如图,在AD上截取DH,使DH=BD, 连接EH,FH. ∵AD是BC边上的中线, ∴BD=CD=HD. ∵DE平分∠ADB, ∴∠BDE=∠HDE. 又∵DE=DE,

专题4 与角平分线有关的辅助线作法(含答案)

专题4 与角平分线有关的辅助线作法(含答案)

专题4 与角平分线有关的辅助线作法知识解读角平分线所在直线是所在角的对称轴,因此角平分线的性质都是以轴对称为基础的,其辅助线作法也应多从轴对称的角度来考虑,其常用的辅助线构造方法有:(1)过角平分线上一点作到角的两边的垂线段,如图1-4-1①.(2)以顶点为圆心,在角两边截取两条相等的线段,构造全等三角形,如图1-4-1②.(3)利用三线合一定理构造等腰三角形,如图1-4-1③.(4)过角平分线上一点作角的一边的平行线,构造等腰三角形,如图1-4-1④.培优学案典例示范一、过角平分线上一点作两边的垂线段.例1如图1-4-2,AB//CD,E为AD上一点,且BE,CE分别平分∠ABC,∠BC D.求证:AE=E D.【提示】由于角平分线上一点到角的两边的距离相等,而点E是两条角平分线的交点,因此我们可以过点E,分别作AB,BC,CD的垂线段,如图1-4-3.【解答】【技巧点评】过一点作角两边的垂线段,构造的是一对全等的直角三角形,可以得到一些相等的线段和相等的角,但利用角平分线的性质,可以省去证明全等这一环节,直接证得线段相等。

同样由“距离”相等,也能直接得到角平分线.让证明来得更简捷。

跟踪训练1.如图1-4-4,在△ABC中,DC⊥AC,∠1=∠2,DA=D B.求证:AB=2A C.二、角平分线+高=全等三角形例2如图1-4-5,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CELBE.求证:CE=12B D.【提示】由于BE平分∠ABC,因而可以考虑过点D作BC的垂线或延长CE从而构造全等三角形。

【解答】【技巧点评】当一根线段同时满足“是角平分线”、“是中线”和“是高”中两个时,可考虑将图形补成一个等腰三角形解决问题。

跟踪训练2.如图1-4-6,BD是∠ABC的平分线,AD⊥BD,垂足为D,求证:∠BAD=∠DAC+∠C.三、借助角平分线的轴对称性构造全等三角形例3如图1-4-7,在△ABC中,AD平分∠BAC,∠C=2∠B.求证:AB=AC+C D.【提示】可考感以AD 为对称轴构造全等三角形,可在AB 边上截取AE =AC ,也可以延长AC 到点E ,使得AE =A B. 【解答】【技巧点评】角平分线所在直线是角的对称轴,可以对称着构造全等三角形。

角平分线四大模型总结+习题+解析(最全版)

角平分线四大模型总结+习题+解析(最全版)

⾓平分线四⼤模型总结+习题+解析(最全版)⾓平分线四⼤辅助线模型⾓平分线的性质为证明线段或⾓相等开辟了新的途径,同时也是全等三⾓形知识的延续,⼜为后⾯⾓平分线的判定定理的学习奠定了基础.涉及到⾓平分线的考点主要是性质、判定以及四⼤辅助线模型,在初⼆上期中、期末考试中都是经常考察的⽅向。

⾓平分线性质:⾓平分线上的点到⾓两边的距离相等.⾓平分线判定:到⾓的两边距离相等的点在⾓的⾓平分线上.四⼤模型1、⾓平分线+平⾏线,等腰三⾓形必出现已知:OC平分∠AOB,CD∥OB交OA于D.则△ODC为等腰三⾓形,OD=CD.2、⾓平分线+两垂线,线等全等必出现已知:OC平分∠AOB.辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.3、⾓平分线+⼀垂线,中点全等必出现已知:OC平分∠AOB,DC垂直OC于点C.辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、⾓平分线+截长补短线,对称全等必出现已知:OC平分∠AOB,截取OE=OD,连接CD、CE.则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.【核⼼考点⼀】⾓平分线的性质与判定1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:163.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB ,另⼀把直尺压住射线OA 并且与第⼀把直尺交于点P ,⼩明说:“射线OP 就是BOA ∠的⾓平分线.”他这样做的依据是( )A .⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B .⾓平分线上的点到这个⾓两边的距离相等C .三⾓形三条⾓平分线的交点到三条边的距离相等D .以上均不正确6.(2019秋?梁平区期末)如图,若BD AE ⊥于B ,DC AF ⊥于C ,且DB DC =,40BAC ∠=?,130ADG ∠=?,则DGF ∠=.7.(2018春?开江县期末)如图,在Rt ABC ?中,90C ∠=?,以顶点A 为圆⼼,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆⼼,⼤于12MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( ) A .CAD BAD ∠=∠B .若2CD =,则点D 到AB 的距离为2C .若30B ∠=?,则CDA CAB ∠=∠D .2ABD ACD S S ??=8.(2014秋?西城区校级期中)如图,点E 是AOB ∠的平分线上⼀点,EC OA ⊥,ED OB ⊥,垂⾜分别是C ,D .下列结论中正确的有( )(1)ED EC =;(2)OD OC =;(3)ECD EDC ∠=∠;(4)EO 平分DEC ∠;(5)OE CD ⊥;(6)直线OE 是线段CD 的垂直平分线.A .3个B .4个C .5个D .6个9.(2019春?杜尔伯特县期末)如图:在ABC ?中,90C ∠=?,AD 是BAC ∠的平分线,DE AB ⊥于E ,F 在AC 上,BD DF =,证明:(1)CF EB =.(2)2AB AF EB =+.10.(2019秋?垦利区期中)如图,ABC⊥⊥且平分BC,DE AB中,AD平分BAC∠,DG BC于E,DF AC⊥于F.(1)判断BE与CF的数量关系,并说明理由;(2)如果8AB=,6AC=,求AE、BE的长.11.(2017秋?遂宁期末)某地区要在区域S内(即COD∠内部)建⼀个超市M,如图所⽰,按照要求,超市M到两个新建的居民⼩区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)【核⼼考点⼆】⾓平分线+⾓两边垂线12.(2019秋?肥城市期末)如图,//AB CD ,BP 和CP 分别平分ABC ∠和DCB ∠,AD 过点P ,且与AB 垂直,垂⾜为A ,交CD 于D ,若8AD =,则点P 到BC 的距离是.13.(2015?湖州)如图,已知在ABC ?中,CD 是AB 边上的⾼线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE ?的⾯积等于( )A .10B .7C .5D .414.(2010秋?涵江区期末)如图所⽰,在Rt ABC ?中,90C ∠=?,BC AC =,AD 平分BAC ∠交BC 于D ,求证:AB AC CD =+.15.(2012秋?蓬江区校级期末)如图,已知90∠=∠=?,M是BC的中点,DM平分B C∠.求证:ADC(1)AM平分DAB∠;(2)DM AM⊥.16.(2016秋?西城区校级期中)已知:如图,12∠=∠,P为BN上的⼀点,PF BC⊥于F,=,PA PC(1)求证:180∠+∠=?;PCB BAP(2)线段BF、线段BC、线段AB之间有何数量关系?写出你的猜想及证明思路.【核⼼考点三】⾓平分线+垂线17.(2017秋?和平区校级⽉考)如图.在ABC ?中,BE 是⾓平分线,AD BE ⊥,垂⾜为D ,求证:21C ∠=∠+∠.18.(2013秋?昌平区期末)已知:如图,在ABC ?中,AD 平分BAC ∠,CD AD ⊥于点D ,DCB B ∠=∠,若10AC =,6AD=,求AB 的长.19.如图所⽰,ABC ?中,ACB ABC ∠>∠,AE 平分BAC ∠,CD AE ⊥于D ,求证:ACD B ∠>∠.20.已知:如图,在ABC ?中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21.(2019秋?下陆区期中)如图,BD 是ABC ∠的⾓平分线,AD BD ⊥,垂⾜为D ,20DAC ∠=?,38C ∠=?,则BAD ∠=.22.(2019秋?曲⾩市校级⽉考)如图,在ABC ?中,AB AC =,90BAC ∠=?,BD 平分ABC ∠交AC 于D ,过C 作CE BD ⊥交BD 延长线于E .求证:12CE BD =.23.(2019?沂源县⼀模)(1)如图(a)所⽰,BD、CE分别是ABC的外⾓平分线,过点A作AD BD⊥,AE CE⊥,垂⾜分别为D、E,连接DE,求证:1() 2DE AB BC AC=++;(2)如图(b)所⽰,BD、CE分别是ABC的内⾓平分线,其他条件不变,DE与ABC三边有怎样的数量关系?并证明这个数量关系;(3)如图(c)所⽰,BD为ABC的内⾓平分线,CE为ABC的外⾓平分线,其他条件不变,DE与ABC三边⼜有怎样的数量关系?并证明这个数量关系.24.(2017秋?夏⾢县期中)如图,在ABC ?中,ABC ∠、ACB ∠的平分线相交于F ,过F 作//DE BC ,交AB 于D ,交AC 于E ,那么下列结论:①BDF ?、CEF ?都是等腰三⾓形;②DE DB CE =+;③AD DE AE AB AC ++=+;④BF CF =.正确的有.25.(2019秋?垦利区期末)如图,平⾏四边形ABCD 中,3AB cm =,5BC cm =;,BE 平分ABC ∠,交AD 于点E ,交CD 延长线于点F ,则DE DF +的长度为.26.(2010秋?海淀区期末)如图,BD 是ABC ?的⾓平分线,//DE BC ,DE 交AB 于E ,若AB BC =,则下列结论中错误的是( )A .BD AC ⊥B .A EDA ∠=∠C .2AD BC =D .BE ED =27.如图,若BD 、CD 分别平分ABC ∠和ACB ∠,过D 作//DE AB 交BC 于E ,作//DF AC 交BC 于F ,求证:BC 的长等于DEF ?的周长.28.(2018秋?邳州市期中)如图,在四边形ABCD中,对⾓线AC平分BAD >,∠,AB AD 下列结论正确的是()A.AB AD CB CD->-B.AB AD CB CD-=-C.AB AD CB CD-<-D.AB AD-与CB CD-的⼤⼩关系不确定29.(2012?⿇城市校级模拟)在ABC∠的外⾓平分线,P是AD上的任意中,AD是BAC⼀点,试⽐较PB PC+与AB AC+的⼤⼩,并说明理由.30.(2018秋?万州区期中)已知:如图,在四边形ABCD中,AC平分BAD ∠,CE AB⊥于=+.E,且180B D∠+∠=?,求证:AE AD BE31.(2017秋?海淀区期中)如图,已知AD是BAC∠=?,C=+,31的⾓平分线,AC AB BD 求B∠的度数.32.(2019秋?平⼭县期中)如图,90∠=?,OM平分AOB∠,将直⾓三⾓板的顶点PAOB在射线OM上移动,两直⾓边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.33.(2016秋?丰宁县期中)如图,在ABC ?中,100A ∠=?,40ABC ∠=?,BD 是ABC ∠的平分线,延长BD ⾄E ,使DE AD =.求证:BC AB CE =+.34.(2018秋?丰城市期中)在ABC ?中,2ACB B ∠=∠,(1)如图1,当90C ∠=?,AD 为BAC ∠的⾓平分线时,在AB 上截取AE AC =,连接DE ,求证:AB AC CD =+;(2)如图2,当90C ∠≠?,AD 为BAC ∠的⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请直接写出你的结论,不需要证明;(3)如图3,当AD 为ABC ?的外⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请写出你的猜想,并说明理由.35.(2019春?利津县期末)如图,在ABC∠平分线,AD的垂直平分线分中,AD是BAC别交AB、BC延长线于F、E.求证:(1)EAD EDA∠=∠;(2)//DF AC;(3)EAC B∠=∠.36.(2014?西城区⼆模)在ABC>,AD平分BAC∠交BC于点∠为锐⾓,AB AC,BACD.(1)如图1,若ABC是等腰直⾓三⾓形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若60∠=?,判断AC,CE,AB之间有怎样的数量关系并加以证明;ABE②如图3,若AC AB+,求BAC∠的度数.⾓平分线四⼤辅助线模型--解析⼀.⾓平分线的性质与判定(共11⼩题)1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .【分析】⾸先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据⾓平分线的性质,即可求得PB 的值,⼜由垂线段最短,可求得PQ 的最⼩值.【解答】解:过点P 作PB OM ⊥于B , OP 平分MON ∠,PA ON ⊥,3PA =,3PB PA ∴==,PQ ∴的最⼩值为3.故选:C .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:16【分析】利⽤⾓平分线的性质,可得出ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼相等,估计三⾓形的⾯积公式,即可得出ABD ?与ACD ?的⾯积之⽐等于对应边之⽐.【解答】解:AD 是ABC ?的⾓平分线,∴设ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼分别为1h ,2h ,12h h ∴=,ABD ∴?与ACD ?的⾯积之⽐:8:64:3AB AC ===,故选:B .3.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm【分析】根据⾓平分线的性质得到ED EC =,计算即可.【解答】解:BE 平分ABC ∠,DE AB ⊥,90ACB ∠=?, ED EC ∴=,3AE DE AE EC AC cm ∴+=+==,故选:B .4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn【分析】过点D 作DE AB ⊥于E ,根据⾓平分线上的点到⾓的两边距离相等可得DE CD =,然后根据三⾓形的⾯积公式即可得到结论.【解答】解:如图,过点D 作DE AB ⊥于E ,BD 是ABC ∠的平分线,90C ∠=?,DE CD m ∴==,ABD ∴?的⾯积122n m mn =??=,故选:A.5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB,另⼀把直尺压住射线OA并且与第⼀把直尺交于点P,⼩明说:“射线OP就是BOA∠的⾓平分线.”他这样做的依据是()A.⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B.⾓平分线上的点到这个⾓两边的距离相等C.三⾓形三条⾓平分线的交点到三条边的距离相等D.以上均不正确【分析】过两把直尺的交点C作CE AO=,再根据⾓⊥,CF BO⊥,根据题意可得CE CF的内部到⾓的两边的距离相等的点在这个⾓的平分线上可得OP平分AOB∠;【解答】解:(1)如图所⽰:过两把直尺的交点P作PE AO⊥,⊥,PF BO两把完全相同的长⽅形直尺,PE PF∴=,∠(⾓的内部到⾓的两边的距离相等的点在这个⾓的平分线上),OP∴平分AOB故选:A.。

角平分线辅助线专题

角平分线辅助线专题

角平分线辅助专题
看见题目有“角平分线” ,常作辅助线: 点到角两边的垂线段,立马收获线段相等、全等。

例: 如图,AD 是∠BAC 的平分线,E ,F 分别为AB ,AC 上的点,且∠DEA+∠DFA=180°.求证:DE=DF .
练习1:...,90AB DC AD ADC DE BC E C B +=∠︒=∠=∠求证:平分的中点,是
归纳:看见题目有“线段和差关系,如:AD=DC+AB ”,常作辅助__________________.
.,,2CF AD AF F BC AF EAF DAE CD ABCD E +=∠=∠求证:于交的中点,的边是正方形:练习
课后练习:
1、AC 是∠BAD 的平分线,CE ⊥AB 于点E ,BC=CD ,求证:AE=AD+BE .
2、△ABC 中, 点P 到三边的距离相等,∠1=20°,∠2=30 °,求∠B AP 的度数.
3、Rt △ABC, ∠B=90° ∠A 、∠C 的角平分线相交于点P ,过P 作三边的垂线段PE 、PF 、PG ,AB=4 , AC=5 , PF=1 , 求BC 的长.
解题高手:
.100,AD CD BC D AB ACB CD A AC AB ABC +=∠︒=∠=∆,求证:边于点的平分线,交是,中,
C
B。

中考数学全等三角形角平分线辅助练习题附解析

中考数学全等三角形角平分线辅助练习题附解析

中考数学全等三角形角平分线辅助练习题附解析一、全等三角形角平分线辅助1.如图1,在ABC 中,AF ,BE 分别是BAC ∠和ABC ∠的角平分线,AF 和BE 相交于D 点.(1)求证:CD 平分ACB ∠;(2)如图2,过F 作FP AC ⊥于点P ,连接PD ,若45ACB ∠=︒,67.5PDF ∠=︒,求证:PD CP =;(3)如图3,若23180BAF ABE ∠+∠=︒,求证:BE BF AB AE -=-.2.已知:如图,//AC BD ,AE ,BE 分别平分CAB ∠和ABD ∠,点E 在CD 上.用等式表示线段AB 、AC 、BD 三者之间的数量关系,并证明.3.直线MN 与直线PQ 垂直相交于点O ,点A 在射线OP 上运动(点A 不与点O 重合),点B 在射线OM 上运动(点B 不与点O 重合).(1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 的角平分线,①当∠ABO =60°时,求∠AEB 的度数;②点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出∠AEB 的大小;(2)如图2,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线所在的直线分别相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,请直接写出∠ABO 的度数.4.如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA=28°,求∠ABE的大小.5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于点D,试说明:BF=2CD.∠和6.如图1,点A是直线MN上一点,点B是直线PQ上一点,且MN//PQ.NAB ABQ∠的平分线交于点C.⊥;(1)求证:BC AC(2)过点C作直线交MN于点D(不与点A重合),交PQ于点E,+=;①若点D在点A的右侧,如图2,求证:AD BE AB②若点D在点A的左侧,则线段AD、BE、AB有何数量关系?直接写出结论,不说理由.7.在平面直角坐标中,等腰Rt△ABC中,AB=AC,∠CAB=90°,A(0,a),B(b,0).-+(a-2)2=0,求△ABO的面积;(1)如图12a b(2)如图2,AC 与x 轴交于D 点,BC 与y 轴交于E 点,连接DE ,AD=CD ,求证:∠ADB=∠CDE ;(3)如图3,在(1)的条件下,若以P (0,-6)为直角顶点,PC 为腰作等腰Rt △PQC ,连接BQ ,求证:AP ∥BQ .8.如图所示,在四边形ABCD 中,AC 平分,DAB CD CB ∠=,求证:180B D ∠+∠=.9.如图,OA=OB ,∠AOB=90°,BD 平分∠ABO 交OA 于点D ,AE ⊥BD 于E ,求证:BD=2AE.10.如图,在ABC ∆中,AB AC >,AD 平分BAC ∠交BC 于D ,求证:AB AC BD CD ->-.【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)过D 点分别作三边的垂线,垂足分别为G 、H 、K ,根据角平分线的定义可证得DG=DH=DK ,从而根据角平分线的判定定理可证得结论;(2)作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠,通过证明SQD TFD △≌△和QDP FDP △≌△得到22.5PDC PCD ∠=∠=︒,从而根据等角对等边判断即可;(3)延长AB 至M ,使BM BF =,连接FM ,通过证明AFC AFM △≌△得到AC AM =,再结合CE EB =即可得出结论.【详解】(1)证明:如图所示,过D 点分别作三边的垂线,垂足分别为G 、H 、K ,∵AF ,BE 分别是BAC ∠和ABC ∠的角平分线,∴DG DH DK ==,∴CD 平分ACB ∠;(2)证明:如图,作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠. ∵CD 平分ACB ∠,∴DS DT =,∵67.5QDP FDP ∠=∠=︒,45ACB ∠=︒,∴13545180QDF ACB ∠+∠=︒+︒=︒,在四边形QDFC 中,180CQD DFC ∠+∠=︒,又∵180DFT DFC ∠+∠=︒,∴CQD DFT ∠=∠,在SQD 和TFD △中,90CQD DFT DS DTDSQ DTF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴SQD TFD △≌△,∴QD FD =,在QDP △和FDP 中QD FD QDP FDP DP DP =⎧⎪∠=∠⎨⎪=⎩∴QDP FDP △≌△,∴45QPD FPD ∠=∠=︒又∵QPD PCD PDC ∠=∠+∠,22.5PCD ∠=︒,∴22.5PDC PCD ∠=∠=︒,∴CP PD =;(3)证明:延长AB 至M ,使BMBF =,连接FM . ∵AF ,BE 分别是BAC ∠和ABC ∠的角平分线, ∴22180BAF ABE C ∠+∠+∠=︒,又∵23180BAF ABE ∠+∠=︒,∴C ABE CBE ∠=∠=∠,∴CE EB =,∵BM BF =,∴BFM BMF ABE CBE C ∠=∠=∠=∠=∠,在AFC △和AFM △中,C BMF CAF BAF AF AF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AFC AFM △≌△,∴AC AM =,∴AE CE AB BM +=+,∴AE BE AB BF +=+,∴BE BF AB AE -=-.【点睛】本题考查角平分线的性质与判断,以及全等三角形的判定与性质,灵活结合角平分线的性质构造辅助线是解题关键.2.AB=AC+BD ,证明见详解.【分析】延长AE ,交BD 的延长线于点F ,先证明AB=BF ,进而证明△ACE ≌△FDE ,得到AC=DF ,问题得证.【详解】解:延长AE ,交BD 的延长线于点F ,∵//AC BD ,∴∠F=∠CAF ,∵AE 平分CAB ∠,∴∠CAF=∠BAF ,∴∠F=∠BAF ,∴AB=BF ,∵BE 平分ABF ∠,∴AE=EF,∵∠F=∠CAF,∠AEC=∠FED,∴△ACE≌△FDE,∴AC=DF,∴AB=BF=BD+DF=BD+AC.【点睛】本题考查了等腰三角形的判断与性质,全等三角形的判定与性质,根据题意添加辅助线构造等腰三角形和全等三角形是解题关键.3.(1)①135°②∠AEB的大小不会发生变化,∠AEB=135°,详见解析(2)∠ABO=60°或45°【分析】(1)①根据三角形内角和定理、角分线定义,即可求解;②方法同①,只是把度数转化为角表示出来,即可解答;(2)根据三角形内角和定理及一个外角等于与它不相邻的两个内角和,利用角的和差计算即可求得结果,要对谁是谁的3倍分类讨论..【详解】(1)如图1,①∵MN⊥PQ,∴∠AOB=90°,∵∠ABO=60°,∴∠BAO=30°,∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠ABE=12∠ABO=30°,∠BAE=12∠BAO=15°,∴∠AEB=180°﹣∠ABE﹣∠BAE=135°.②∠AEB的大小不会发生变化.理由如下:同①,得∠AEB=180°﹣∠ABE﹣∠BAE=180°﹣12∠ABO﹣12∠BAO=180°﹣12(∠ABO+∠BAO)=180°﹣12×90°=135°.(2)∠ABO的度数为60°.理由如下:如图2,∵∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,∴∠OAE+∠OAF=12(∠BAO+∠GAO)=90°,即∠EAF=90°,又∵∠BOA=90°,∴∠GAO>90°,①∵∠E=13∠EAF=30°,∠EOQ=45°,∠OAE+∠E=∠EOQ=45°,∴∠OAE=15°,∠OAE=12∠BAO=12(90﹣∠ABO)∴∠ABO=60°.②∵∠F=3∠E,∠EAF=90°∴∠E+∠F=90°∴∠E=22.5°∴∠EFA=90-22.5°=67.5°∵∠EOQ=∠EOM= ∠AOE= 45°,∴∠BAO=180°-(180°-45°-67.5°)×2=45°∴∠ABO=90°-45°=45°【点睛】本题考查了三角形内角和定理及外角的性质、角分线定义,解决本题的关键是灵活运用三角形内角和外角的关系.4.28°【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,即可求得∠ABE的度数.【详解】如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,∴∠BEC=90°-∠AED=62°,∴Rt△BCE中,∠CBE=28°,∴∠ABE=28°.【点睛】考查了平行线的性质与判定、角平分线上的点到角的两边距离相等的性质、到角的两边距离相等的点在角的平分线上的性质,解题关键是熟记各性质并作出辅助线.5.见解析【分析】作BF的中点E,连接AE、AD,根据直角三角形得到性质就可以得出AE=BE=EF,由BD 平分∠ABC就可以得出∠ABE=∠DBC=22.5°,从而可以得出∠BAE=∠BAE=∠ACD=22.5°,∠AEF=45°,由∠BAC=90°,∠BDC=90°就可以得出A、B、C、D四点共圆,求出AD=DC,证△ADC≌△AEB推出BE=CD,从而得到结论.【详解】解:取BF的中点E,连接AE,AD,∵∠BAC=90°,∴AE=BE=EF,∴∠ABD =∠BAE ,∵CD ⊥BD ,∴A ,B ,C ,D 四点共圆,∴∠DAC =∠DBC ,∵BF 平分∠ABC ,∴∠ABD =∠DBC ,∴∠DAC =∠BAE ,∴∠EAD =90°,∵AB =AC ,∴∠ABC =45°,∴∠ABD =∠DBC =22.5°,∴∠AED =45°,∴AE =AD ,在△ABE 与△ADC 中,ABE DAC BAE ACD AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC ,∴BE =CD ,∴BF =2CD .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,四点共圆,直角三角形的性质,角平分线的性质,正确的作出辅助线是解题的关键.6.(1)见解析;(2)见解析;(3)BE AD AB =+【分析】(1) 由平行线性质可得∠NAB+∠ABQ=180°,再由角平分线定义可得11,22∠=∠∠=∠BAC NAB CBA ABQ ,再利用三角形内角和定理即可得∠C=90°,即可证明BC ⊥AC;(2) ①延长AC 交PQ 点F ,先证明AC=FC,再证明△ACD ≌△FCE,即可得AD+BE=AB; ②方法与①相同.【详解】解:(1)∵MN ∥PQ∴∠NAB+∠ABQ=180°∵AC 平分∠NAB ,BC 平分∠ABQ ∴11,22∠=∠∠=∠BAC NAB CBA ABQ ∴∠BAC+∠ABC=12180⨯︒=90°在△ABC中,∵∠BAC+∠ABC+∠C=180°∴∠C=180°- (∠BAC+∠ABC) =180°-90°=90°∴BC⊥AC;(2)①延长AC交PQ于点F∵BC⊥AC∴∠ACB=∠FCB=90°∵BC平分∠ABF∴∠ABC=∠FBC∴BC=BC∴△ABC≌△FBC∴AC=CF,AB=BF∵MN∥BQ∴∠DAC=∠EFC∵∠ACD=∠FCE∴△ACD≌△FCE∴AD=EF∴AB=BF=BE+EF=BE+AD即:AB=AD+BE②线段AD,BE,AB数量关系是:AD+AB=BE 如图3,延长AC交PQ点F,∵MN//PQ .∴∠AFB=∠FAN,∠DAC=∠EFC∵AC平分∠NAB∴∠BAF=∠FAN∴∠BAF=∠AFB∴AB=FB∵BC ⊥AC∴C 是AF 的中点∴AC=FC在△ACD 与△FCE 中DAC EFC AC FCACD FCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ACD FCE ASA ≅∴AD=EF∵AB=FB=BE-EF∴AD+AB=BE【点睛】本题考查了平行线性质,全等三角形性质判定,等腰三角形性质等,解题关键正确添加辅助线构造全等三角形.7.(1)△ABO 的面积=4;(2)证明见解析;(3)证明见解析.【分析】(1)根据绝对值和偶次方的非负性求出a ,b ,根据三角形的面积公式计算;(2)作AF 平分∠BAC 交BD 于F 点,分别证明△ACE ≌△BAF ,△CED ≌△AFD ,根据全等三角形的性质证明;(3)过C 点作CM ⊥y 轴于M 点,过D 点作DN ⊥y 轴于N 点,证明△ACM ≌△BAO ,根据全等三角形的性质得到CM=AO=2,AM=BO=4,证明四边形ONQB 为平行四边形,得到答案.【详解】解:(1)∵+(a-2)2=0,∴2a-b=0,a-2=0,解得,a=2,b=4,∴A (0,2),B (4,0),∴OA=2,OB=4,∴△ABO 的面积=12×2×4=4;(2)作AF 平分∠BAC 交BD 于F 点,∵AB=AC ,∠CAB=90°,∴∠C=∠ABC=∠DAF=∠BAF=45°,∵∠CAE+∠BAO=∠ABF+∠BAO=90°,∴∠CAE=∠ABF ,在△ACE 和△BAF 中,CAE ABF AC AB ACE BAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACE ≌△BAF (ASA ),∴CE=AF ,在△CED 和△AFD 中,CD AD C DAF CE AF =⎧⎪∠=∠⎨⎪=⎩,∴△CED ≌△AFD (SAS )∴∠CDE=∠ADB ;(3)过C 点作CM ⊥y 轴于M 点,过D 点作DN ⊥y 轴于N 点,则∠AMC=∠BOA=90°,∵∠CAM+∠BAO=∠ABO+∠BAO=90°,∴∠CAM=∠ABO ,在△ACM 和△BAO 中,CAM ABO CMA AOB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACM ≌△BAO (AAS ),∴CM=AO=2,AM=BO=4,∵A (0,2),P (0,-6),∴AP=8,∴PM=AP-AM=4,在△PCM 和△QPN 中,CPM PQN PMC QNP PC PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,△PCM ≌△QPN (AAS ),∴NQ=PM=4,∴四边形ONQB 为平行四边形,∴AP ∥BQ .【点睛】本题考查的是全等三角形的判定和性质,非负数的性质,掌握全等三角形的判定定理和性质定理是解题的关键.8.详见解析【解析】【分析】过点C 分别作CE AB ⊥于E ,CF AD ⊥于F ,由条件可得出△CDF ≌△CEB ,可得∠B=∠FDC ,进而可证明∠B+∠ADC=180°.【详解】证明:过点C 分别作CE AB ⊥于E ,CF AD ⊥于F ,∵AC 平分∠BAD ,CE ⊥AB 于E ,CF AD ⊥于F ,∴CF=CE ,在Rt △CDF 与Rt △CEB 中,CF=CE CD=CB⎧⎨⎩ ∴CBE CDF ∆∆≌, CBE CDF ∴∠=∠,180ADC CDF ∠+∠=︒,A C 180B D ∴∠+∠=︒ .【点睛】本题考查全等三角形的判定和性质,关键是根据HL 证明△CDF ≌△CEB 进而得出∠B=∠FDC .9.详见解析【分析】延长BO ,AE 并交于F ,证△ABE ≌△FBE ,推出AE=EF ,证△BOD ≌△AOF 推出BD=AF 即可.【详解】延长BO ,AE 并交于F ,∵BD 平分∠ABO ,AF ⊥BD ,∴∠1=∠2,∠AEB=∠FEB=90°,在△ABE 和△FBE 中1=2BE BEAEB FEB ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△FBE ,∴AE=EF ,∵∠AOB=90゜,∠AED=90°,∠ADE=∠BDO ,∴∠2=∠OAF ,∵∠AOB=90°,∴∠DOB=∠FOA=90°,∴在△OBD 和△OAF 中2=FAO BO AOBOD AOF ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△OBD ≌△OAF ,∴BD=AF ,∵AE=EF ,∴BD=2AE .【点睛】本题考查了全等三角形的性质和判定的应用,正确添加辅助线构建全等三角形是解题的关键.10.详见解析【解析】【分析】可以在AB 上截取AE=AC ,构造三角形全等,再结合三角形三边关系可证得结论.【详解】在AB 上截取AE=AC ,则BE=AB-AC ,在△AED 和△ACD 中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△ACD(SAS),∴DE=DC ,在△BDE 中,BD-DE <BE(三角形两边之差小于第三边),∴BE>BD-CD ,即AB-AC>BD-CD.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,构造三角形全等是解题的关键.。

专题05 三角形中的角平分线模型--2024年中考数学核心几何模型重点突破(解析版)

专题05 三角形中的角平分线模型--2024年中考数学核心几何模型重点突破(解析版)

专题05三角形中的角平分线模型【模型1】如图,已知OP 平分AOB ∠,过点P 作OA PD ⊥,OB PE ⊥;可根据角平分线性质证得ODP ∆≌OEP ∆,从而可得OPE OPD ∠=∠,PE PD OE OD ==;。

【模型拓展】与角平分线有关的辅助线作法【辅助线作法一】如图,已知OP 平分AOB ∠,点C 是OA 上的一点,通常情况下,在OB 上取一点D,使得OC OD =,连接PD,结合OP OP =,POD POC ∠=∠,可证得OPC ∆≌OPD ∆。

从而可得PD PC =,PDO PCO ∠=∠,DPO CPO ∠=∠。

【辅助线作法二】如图,已知OP 平分AOB ∠,OP CP ⊥,通常情况下,延长CP 交OB 于点D,结合OP OP =,POD POC ∠=∠,︒=∠=∠90OPD OPC ,可证得OPC ∆≌OPD ∆。

从而可得PD PC =,PDO PCO ∠=∠,OD OC =。

【辅助线作法三】如图,已知OP 平分AOB ∠,通常情况下,过点P 作PC//OB,根据平行线性质:两直线平行内错角相等;结合POD POC ∠=∠,从而可得PC OC =,CPO COP ∠=∠。

【例1】如图,OC 为∠AOB 的角平分线,点P 是OC 上的一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 为OC 上另一点,连接DF ,EF ,则下列结论:①OD =OE ;②DF =FE ;③∠DFO =∠EFO ;④S △DFP =S △EFP ,正确的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】证明△ODP ≌△OEP (AAS ),由全等三角形的性质可推出OD =OE ,证明△DPF ≌△EPF (SAS ),由全等三角形的性质可推出DF =EF .∠DFP =∠EFP ,S △DFP =S △EFP ,则可得出答案.【解析】解:①∵OC 平分∠AOB ,∴∠DOP =∠EOP ,∵PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠ODP =∠OEP =90°,∵OP =OP ,∴△ODP ≌△OEP (AAS ),∴OD =OE .故①正确;②∵△ODP ≌△OEP ,∴PD =PE ,∠OPD =∠OPE ,∴∠DPF =∠EPF ,∵PF =PF ,∴△DPF ≌△EPF (SAS ),∴DF =EF .故②正确;③∵△DPF ≌△EPF ,∴∠DFO =∠EFO ,故③正确;④∵△DPF ≌△EPF ,∴S △DFP =S △EFP ,故④正确.故选:D .【例2】如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB .求证:△AOC ≌△BOC.【答案】见解析【分析】根据角平分线的性质和全等三角形的判定方法可以证明结论成立.【解析】证明:∵OC 平分∠MON ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOC (SAS ).【例3】请阅读以下材料,并完成相应的问题:角平分线分线段成比例定理:如图1,在△ABC 中,AD 平分∠BAC ,则AB BD AC CD=,下面是这个定理的部分证明过程:证明:如图2,过C 作CE ∥DA ,交BA 的延长线于E .…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图3,已知Rt △ABC 中,AB =3,BC =4,∠ABC =90°,AD 平分∠BAC ,求BD 的长.(请按照本题题干的定理进行解决)【答案】(1)见解析;(2).【分析】(1)如图2:过C 作CE ∥DA .交BA 的延长线于E ,利用平行线分线段成比例定理得到BD CD =BA EA,利用平行线的性质得∠2=∠ACE ,∠1=∠E ,由∠1=∠2得∠ACE =∠E ,所以AE =AC 即可证明结论;(2)先利用勾股定理计算出AC =5,再利用(1)中的结论得到AC AB =CD BD ,即53=CD BD ,则可计算出BD =32,然后利用勾股定理计算出AD =2,从而可得到△ABD 的周长.【解析】(1)解:如图2:过C 作CE ∥DA .交BA 的延长线于E ,∵CE //AD ,∴BD CD =BA EA,∠2=∠ACE ,∠1=∠E ,∵AD 平分∠BAC∴∠1=∠2,∴∠ACE =∠E ,∴AE =AC ,∴AB AC =BD CD;(2)∵AB =3,BC =4,∠ABC =90°,∴AC =5,∵AD 平分∠BAC ,∴AC AB =CD BD ,即53=4BD BD -,∴BD =32,∴AD∴△ABD 的周长=32+3+2=92+.一、单选题1.如图,ABC 中,5AB =,6BC =,10CA =,点D ,E 分别在BC ,CA 上,DE AB ∥,F 为DE 中点,AF 平分BAC ∠,则BD 的长为()A .32B .65C .85D .2【答案】B【分析】根据角平分线和平行可得EA EF =,从而可得2DE AE =,然后证明EDC ABC △△∽,利用相似三角形的性质即可求出AE ,DE ,进而求出CD ,最后进行计算求出BD 即可解答.【解析】解:∵F 为DE 中点,∴2ED EF =,∵AF 平分BAC ∠,∴EAF FAB ∠=∠,∵DE AB ∥,∴FAB AFE ∠=∠,∴EAF AFE ∠=∠,∴EA EF =,∴2DE AE =,设AE x =,则2DE x =,∵DE AB ∥,∴EDC B ∠=∠,∵C C ∠=∠,∴EDC ABC △△∽,∴ED EC DC AB AC BC==,∵5AB =,6BC =,10CA =,∴210510x x -=,∴2x =,∴24DE x ==,∴456CD =,∴245CD =,∴246655BD BC CD =-=-=.故选:B .2.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,若AB =5,BC =3,则EC 的长为()A .1B .2C .2.5D .4【答案】B 【分析】根据平行四边形的性质可得AB =CD =5,AD =BC =3,AB ∥CD ,然后根据平行线的性质可得∠EAB =∠AED ,然后根据角平分线的定义可得∠EAB =∠EAD ,从而得出∠EAD =∠AED ,根据等角对等边可得DA =DE =3,即可求出EC 的长.【解析】解:∵四边形ABCD 是平行四边形,AB =5,BC =3,∴AB =CD =5,AD =BC =3,AB ∥CD∴∠EAB =∠AED∵AE 平分∠DAB∴∠EAB =∠EAD∴∠EAD =∠AED∴DA =DE =3∴EC =CD -DE =2故选B .3.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上的一个动点,则下列结论正确的是()A .PA PQ=B .PA PQ <C .PA PQ >D .PA PQ≤【答案】D 【分析】连接PQ ,当PQ ⊥OM 时,根据角平分线的性质得出PQ =PA ,利用直线外一点到直线的垂线段最短即可得出结论.【解析】解:连接PQ ,当PQ ⊥OM 时,∵OP 平分∠MON ,PQ ⊥OM ,PA ⊥ON ,∴PQ =PA ,此时点P 到OM 的距离PQ 最小,∴PA ≤PQ ,故选:D .4.如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是()A.2AB BF=B.12ACE ACB∠=∠C.AE BE=D.CD BE⊥【答案】C【分析】从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解析】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥AB,∠ACE=12∠ACB,AB=2BF,无法确定AE=BE.故选:C.5.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【解析】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE =60°,∴③DE 平分∠ADB 错误;∵BE +AE =AB ,AE =AC ,∴BE +AC =AB ,∴④BE +AC =AB 正确;∵∠BDE =90°-∠B ,∠BAC =90°-∠B ,∴∠BDE =∠BAC ,∴②∠BAC =∠BDE 正确.综上,正确的个数的3个,故选:C .6.如图,∠BAC =30°,AD 平分∠BAC ,DF ⊥AB 交AB 于F ,DE ⊥DF 交AC 于E ,若AE =8,则DF 等于()A .5B .4C .3D .2【答案】B 【分析】过点D 作DG AC ⊥,根据角平分线的性质可得DF DG =,根据角平分线的定义,平行线的性质以及等腰三角形的判定,可得AE ED =,进而根据含30度角的直角三角形的性质即可求解.【解析】如图,过点D 作DG AC ⊥ AD 平分∠BAC ,DF ⊥AB ,DG AC⊥∴DF DG =,CAD BAD∠=∠DE DF ⊥ ,DF ⊥AB ,AB DE∴∥BAD EDA∴∠=∠EAD EDA∴∠=∠EA ED∴=8AE = 8DE AE ∴== ∠BAC =30°,30DEG ∴∠=︒142DG DE ∴==4DF ∴=故选B二、填空题7.如图,已知AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,请你添加一个条件________,使四边形AEDF 是菱形.【答案】DF ∥AB【分析】添加DF ∥AB ,根据DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,可以判断四边形AEDF 是平行四边形,再根据角平分线的性质和平行线的性质即可证明结论成立.【解析】解:DF ∥AB ,理由如下:∵DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,∴四边形AEDF 是平行四边形,∠EAD =∠ADF ,∵AD 是△ABC 的角平分线,∴∠EAD =∠FAD ,∴∠ADF =∠FAD ,∴FA =FD ,∴平行四边形AEDF 是菱形(有一组邻边相等的平行四边形是菱形).8.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD =8,BE =3,则AB 的长为________.【答案】5【分析】首先由在平行四边形ABCD 中,AD =8,BE =3,求得CE 的长,然后由DE 平分∠ADC ,可证CD =CE =5,即可求解.【解析】∵在平行四边ABCD 中,AD =8,∴BC =AD =8,AD //BC ,∴CE =BC -BE =8-3=5,∠ADE =∠CED ,∴DE 平分∠ADC ,∴∠ADE =∠CDE ,∴∠CDE =∠CED ,∴CD =CE =5=AB ,故答案为:5.9.如图,在ABC 中,ACB ∠的平分线交AB 于点D ,DE AC ⊥于点E .F 为BC 上一点,若DF AD =,6ACD CDF S S -=△△,则AED 的面积为______.【答案】3【分析】在CA 上截取CG =CF ,连接DG .根据题意易证()CDG CDF SAS ≅ ,得出DG DF =,CDG CDF S S = .即可求出AD DG =,6ADG S = .最后根据等腰三角形“三线合一”的性质即可求出ADE S .【解析】如图,在CA 上截取CG =CF ,连接DG,∵CD 平分ACB ∠,∴ACD BCD ∠=∠.在CDG 和CDF 中,CG CF GCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴()CDG CDF SAS ≅ ,∴DG DF =,CDG CDF S S = .∵6ACD CDF S S -=△△,∴6ACD CDG S S -= ,即6ADG S = .∵AD DF =,∴AD DG=.∴AE=EG,∴132ADE GDE ADGS S S===.故答案为:3.10.如图,AB=BE,∠DBC=12∠ABE,BD⊥AC,则下列结论正确的是:_____.(填序号)①BC平分∠DCE;②∠ABE+∠ECD=180°;③AC=2BE+CE;④AC=2CD﹣CE.【答案】①②④【分析】根据已知∠DBC=12∠ABE,BD⊥AC,想到构造一个等腰三角形,所以延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,就得到∠FBC=2∠DBC,然后再证明△FAB≌△CBE,就可以判断出BC平分∠DCE,再由角平分线的性质想到过点B作BG⊥CE,交CE的延长线于点G,从而证明△ABD≌△EBG,即可判断.【解析】解:延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,过点B作BG⊥CE,交CE的延长线于点G,∵FB=BC,BD⊥AC,∴DF=DC,∠DBC=∠DBF=12∠FBC,∵∠DBC=12∠ABE,∴∠FBC=∠ABE,∴∠FBA=∠CBE,∵AB=AE,∴△FAB≌△CBE(SAS),∴∠F=∠BCE,∵BF=BC,∴∠F=∠BCD,∴∠BCD=∠BCE,∴BC平分∠DCE,故①正确;∵∠FBC+∠F+∠BCD=180°,∴∠ABE+∠BCE+∠BCD=180°,∴∠ABE+∠DCE=180°,故②正确;∵∠BDC=∠BGC=90°,BC=BC,∴△BDC≌△BGC(AAS),∴AD=GE,CD=CG,∵AC=AD+DC,∴AC=AD+CG=AD+GE+CE=2GE+CE,∵GE≠BE,∴AC≠2BE+CE,故③错误;∵AC=CF﹣AF,∴AC=2CD﹣CE,故④正确;故答案为:①②④.11.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,BE=2,则DE的长是___.【答案】2【分析】根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ABD=∠BDE,等量代换得到∠DBE=∠BDE,得到DE=BE,于是得到结论.【解析】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴DE=BE,∵BE=2,∴DE=2.故答案为:2.12.如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠CAE、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有____________.(填序号)【答案】①②④【分析】根据角平分线的定义得到∠EAD=∠CAD,根据平行线的性质得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正确;根据角平分线的定义得到∠ADC=90°12-∠ABC,求得∠ADC+∠ABD=90°故②正确;根据全等三角形的性质得到AB=CB,与题目条件矛盾,故③错误,根据角平分线的定义和三角形外角的性质即可得到2∠BDC=∠BAC,故④正确.【解析】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正确;∵AD,CD分别平分∠EAC,∠ACF,∴可得∠ADC=90°12-∠ABC,∴∠ADC+12∠ABC=90°,∴∠ADC+∠ABD=90°,故②正确;∵∠ABD =∠DBC ,BD =BD ,∠ADB =∠BDC ,∴△ABD ≌△BCD (ASA ),∴AB =CB ,与题目条件矛盾,故③错误,∵∠DCF =∠DBC +∠BDC ,∠ACF =∠ABC +∠BAC ,∴2∠DCF =2∠DBC +2∠BDC ,2∠DCF =2∠DBC +∠BAC ,∴2∠BDC =∠BAC ,故④正确,故答案为:①②④.三、解答题13.如图,AC =BC ,∠1=∠2,求证:OD 平分∠AOB .【答案】见详解【分析】证明△ACO ≌△BCO 即可求证.【解析】证明:∵∠1=∠2,∠1+∠ACO =180°,∠2+∠BCO =180°,∴∠ACO =∠BCO ,∵AC =BC ,CO =CO ,∴△ACO ≌△BCO ,∴∠AOC =∠BOC ,∴OD 平分∠AOB .14.如图,在ABC 中,AE 平分BAC BE AE ∠⊥,于点E ,延长BE 交AC 于点D ,点F 是BC 的中点.若35AB AC ==,,求EF 的长.【答案】1【分析】根据角平分线的定义结合题意,即可利用“ASA”证明BAE DAE ≅ ,即得出3AD AB ==,BE DE =,从而可得出2CD =,点E 为BD 中点,从而可判定EF 为BCD △的中位线,进而可求出EF 的长.【解析】∵AE 平分BAC BE AE∠⊥,∴BAE DAE ∠=∠,90AEB AED ∠=∠=︒.又∵AE =AE ,∴BAE DAE ≅ (ASA),∴3AD AB ==,BE DE =,∴2CD AC AD =-=,点E 为BD 中点.∵F 是BC 的中点,∴EF 为BCD △的中位线,∴112EF CD ==.15.已知:如图,在△ABC 中,AB =AC ,∠A =100°,BD 是∠ABC 的平分线,BD =BE .求证:(1)△CED 是等腰三角形;(2)BD +AD =BC .【答案】(1)见解析;(2)见解析【分析】(1)由AB =AC ,∠A =100°求出∠ABC =∠C =40°,再由BD 是∠ABC 的平分线求出∠DBC =12∠ABC =20°,根据BD =BE 求出∠BED =∠BDE =80°,再根据三角形的外角等于与它不相邻的两个内角的和求得∠EDC =40°,则∠EDC =∠C ,从而证明ED =EC ,即△CED 是等腰三角形;(2)在BE 上截取BF =BA ,连结DF ,先证明△FBD ≌△ABD ,则FD =AD ,∠BFD =∠A =100°,可证明∠EFD =∠FED =80°,则AD =FD =ED =EC ,即可证明BD +AD =BE +EC =BC .【解析】(1)∵AB =AC ,∠A =100°,∴∠ABC =∠C =12×(180°-100°)=40°,∵BD 是∠ABC 的平分线,∴∠DBC =12∠ABC =20°,∵BD =BE ,∴∠BED =∠BDE =12×(180°-20°)=80°,∴∠EDC =∠BED -∠C =80°-40°=40°,∴∠EDC =∠C ,∴ED =EC ,∴△CED 是等腰三角形.(2)如图,在边BC 上取点F ,使BF BA =,在ABD △和FBD 中∵AB FB ABD FBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴ABD FBD≌△△∴AD DF =,100BFD A ∠=∠=︒,∴18010080DFE ∠=︒-︒=︒,∴DFE DEF∠=∠∴DF DE=∴AD EC=∴BD AD BE EC BC +=+=.16.如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =_______.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3;(2)CD =a -b ;(3)ABC S =14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得AE =AC =5,得出答案;(2)利用ASA 证明△ADE ≌△ADC ,得∠C =∠AED ,DC =DE ,再证明∠B =∠BDE ,得出BE =DE ,即可得到结论;(3)利用ASA 证明△AGB ≌△AGH ,得出BG =HG ,即可得出△ABC 的面积.【解析】(1)∵AD 是△ABC 的平分线,∴∠BAD =∠CAD ,∵CE ⊥AD ,∴∠CFA =∠EFA ,∵在△AEF 和△ACF 中EAF CAF AF AF AFE AFC ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AEF ≌△ACF (ASA ),∴AE =AC =5,∵AB =8,∴BE =AB −AC =8−5=3,故答案为:3;(2)∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ADE 和△ADC 中AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC∴∠C =∠AED ,DC =DE又∵∠C =2∠B ,∠AED =∠B +∠BDE∴∠B =∠BDE∴DE =BE ,∴DC =DE =BE =AB -AE =AB -AC=a -b ;(3)如图,分别延长AC ,BG 交于点H ,∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∵AG ⊥BH ,∴∠AGB =∠AGH =90°,∵在△AGB 和△AGH 中BAD CAD AG AG AGB AGH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGB ≌△AGH ,∴BG =HG ,∴22BCH BCG HCG S S S == ,又∵2ABC BCH ACG CGH S S S S +=+ ()∴ABC S =14.17.已知:如图1,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,AD ,CE 是角平分线,AD 与CE 相交于点F ,FM AB ⊥,FN BC ⊥,垂足分别为M ,N .【思考说理】(1)求证:FE FD =.【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“90ACB ∠=︒”去掉,其他条件不变,观察发现(1)中结论(即FE FD =)仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.【答案】(1)证明见详解;(2)正确,证明见详解;【分析】(1)由角平分线的性质、三角形内角和定理证()Rt FDN Rt FEM AAS ∆≅∆∠即可求解;(2)在AB 上截取CP =CD ,分别证()CDF CPF SAS ∆≅∆、()AFE AFP ASA ∆≅∆即可求证;【解析】证明:(1)∵AD 平分∠BAC ,CE 平分∠ACB ,∴点F 是ABC ∆的内心,∵FM AB ⊥,FN BC ⊥,∴FM FN =,∵90ACB ∠=︒,60ABC ∠=︒,∴30CAB ∠=︒∴15CAD ∠=︒∴75ADC ∠=︒∵45ACE ∠=︒∴75CEB ∠=︒∴ADC CEB∠=∠∴()Rt FDN Rt FEM AAS ∆≅∆∠∴FE FD=(2)如图,在AB 上截取CP =CD ,在CDF ∆和CPF ∆中,∵CD CP DCF PCF CF CF =⎧⎪∠=∠⎨⎪=⎩∴()CDF CPF SAS ∆≅∆∴FD FP =,∠CFD =∠CFP ,∵AD 平分∠BAC ,CE 平分∠ACB ,∴∠CAD =∠BAD ,∠ACE =∠BCE ,∵∠B =60°,∴∠ACB +∠BAC =120°,∴∠CAD +∠ACE =60°,∴∠AFC =120°,∵∠CFD =∠AFE =180°-∠AFC =60°,∵∠CFD =∠CFP ,∴∠AFP =∠CFP =∠CFD =∠AFE =60°,在AFE ∆和AFP ∆中,∵AFE AFP AF AF PAF EAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AFE AFP ASA ∆≅∆∴FP =EF∴FD =EF .18.如图,∠MAN 是一个钝角,AB 平分∠MAN ,点C 在射线AN 上,且AB =BC ,BD ⊥AC ,垂足为D.(1)求证:BAM BCA ∠=∠;(2)动点P ,Q 同时从A 点出发,其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5,设动点P ,Q 的运动时间为t 秒.①如图②,当点P 在射线AM 上运动时,若点Q 在线段AC 上,且52ABP BQC S S =△△,求此时t 的值;②如图③,当点P 在直线AM 上运动时,点Q 在射线AN 上运动的过程中,是否存在某个时刻,使得 APB 与 BQC 全等?若存在,请求出t 的值;若不存在,请说出理由.【答案】(1)见解析(2)①2517t =;②存在,54t =或52t =【分析】(1)①先证Rt △BDA ≌Rt △BDC (HL ),推出∠BAC =∠BCA .再由角平分线的定义得∠BAM =∠BAC ,等量代换即可证明BAM BCA ∠=∠;(2)①作BH ⊥AM ,垂足为M .先证△AHB ≌△ADB (AAS ),推出BH =BD ,再由S △ABP =52S △BQC ,推出52AP CQ =,结合P ,Q 运动方向及速度即可求解;②分“点P 沿射线AM 方向运动,点Q 在线段AC 上”,以及“点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上”两种情况讨论,利用三角形全等得出AP 与CQ 的关系即可求解.【解析】(1)证明:∵BD ⊥AC ,∴90BDA BDC ∠=∠=︒,在Rt △BDA 和Rt △BDC 中,BD BD AB CB=⎧⎨=⎩,∴Rt △BDA ≌Rt △BDC (HL ),∴∠BAC =∠BCA .∵AB 平分∠MAN ,∴∠BAM =∠BAC ,∴∠BAM =∠BCA .(2)解:①如下图所示,作BH ⊥AM ,垂足为M .∵BH ⊥AM ,BD ⊥AC ,∴∠AHB =∠ADB =90°,在△AHB 和△ADB 中,AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS ),∴BH =BD ,∵S △ABP =52S △BQC ,∴151222AP BH CQ BD =⨯ ,∴52AP CQ =,∴5(53)2t t =-,∴2517t =.②存在,理由如下:当点P 沿射线AM 方向运动,点Q 在线段AC上时,如下图所示,∵AB =BC ,又由(1)得∠BAM =∠BCA ,∴当AP =CQ 时,△APB ≌△CQB ,∴53t t =-,∴54t =;当点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上时,如下图所示,由(1)得∠BAM=∠BCA,∴∠BAP=∠BCQ,又∵AB=BC,∴当AP=CQ时,△APB≌△CQB,∴35t t=-,∴52 t=.综上所述,当54t=或52t=时,△APB和△CQB全等.。

人教八上:专题三--角平分线的性质与判定(含解析)

人教八上:专题三--角平分线的性质与判定(含解析)

专题三角平分线的性质与判定一、单选题1.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=15,且BD:CD=3:2,则点D到AB的距离为()2345.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,AB+BC+CA=18,过O作OD⊥BC于点D,且OD=3,则△ABC的面积是.6.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE7得8910.如图,△ABC中,∠ABC,∠ACB的角平分线交于点O,过O点作MN∥BC分别交AB,AC于M,N 两点,AB=6,ΔAMN的周长是15.则AC的长为.三、解答题11.如图1,△ABC的两条外角平分线AO,BO相交于点O,∠ACB=50°.(1)直接写出∠AOB的大小;(2)如图2,连接OC交AB于K.①求∠BCK的大小;②如图3,作AF⊥OC于F,若∠BAC=105°,求证:AB=2CF.12.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,若∠ABC=60°,FD=10,求DC的长.13.如图,四边形ABCD中,∠B=90°,AB∥CD,M是BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)BM=MC;(2)AM⊥MD.14.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.15.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA,设∠ABC=α.(1)α=50°时,求∠DFC的度数;(2)证明:BE∥DF.16.在△ABC中,AO、BO分别平分∠BAC、∠ABC.(1)如图1,若∠C=32°,则∠AOB=________;(2)如图2,连结OC,求证:OC平分∠ACB;(3)如图3,若∠ABC=2∠ACB,AB=4,AC=7,求OB的长.17.如图,在△ABC中,D在BC边的延长线上,∠ACD的平分线CE交BA的延长线于点E,已知∠B=30°,∠E=40°,求证:AE=CE.18.如图,在四边形ABCD中,AB∥CD,∠C=90°,点E为BC的中点,DE平分∠CDA.(1)求证:AD=AB+CD;(2)若S△CDE=3,S△ABE=4,则四边形ABCD的面积为______.(直接写出结果)19.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O与AB,AC分别相交于点M,N,且MN∥BC.(2)已知AB=7,AC=6,求△AMN的周长.参考答案题号12答案B B1.B【分析】本题考查的是角平分线的性质,作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据题意求出CD的长即可.∵∴∵∴2∴3【详解】试题分析:本题需要分两种情况进行讨论:如图1所示:根据∠B=40°,∠C=70°可得:∠BAC=70°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=35°,则∠DAE=35°-20°=15°;如图2所示:根据∠B=40°,∠ACD=70°可得:∠BAC=30°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=15°,则∠DAE=15°+20°=35°.点睛:对于这种在三角形中求角度问题的时候,如果题目中没有给出图形,我们首先一定要根据题意画出图形,然后根据图形求出角的度数.特别要注意分类讨论的思想,在画图时一定要注意锐角三角形和钝角三角形两种情况.在画垂线的时候要注意高线在三角形内部和三角形外部两种情况.4.3:2【分析】过点D作DE⊥AB于点E,由角平分线的性质得到DE=CD,再根据三角形面积公式解答即可.【详解】解:过点D作DE⊥AB于点E,∵AD是Rt△ABC的角平分线,CD⊥AC,DE⊥AB∴DE=CDS△ABD S△ACD =12AB⋅DE12AC⋅CD=ABAC=128=32故答案为:3:2.【点睛】本题考查角平分线的性质、三角形面积公式等知识,是基础考点,掌握相关知识是解题关键.5.27【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=3和OF=OD=3,根据三角形面积公式计算即可.【详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=3,同理OF=OD=3,∵AB+BC+CA=18.∴△ABC的面积=12×AB×3+12×AC×3+12×BC×3=27.故答案为:27.【点睛】本题主要考查角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.4【分析】根据角平分线的性质以及平行线的性质即可得出PM =PE =2,PE =PN =2,即可得出答案.【详解】解:过点P 作MN ⊥AD ,∵AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,PE ⊥AB 于点E ,∴AP ⊥BP ,PN ⊥BC ,∴PM =PE =2,PE =PN =2,∴MN =2+2=4.故答案为:4.7.2【分析】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,根据三角形的面积公式计算即可.【详解】连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,由题意得,PE=PD=PF , S △APC +S △APB +S △BPC =S △ACB ,∴12AC·PE+12AB·PD+12BC·PF=12AC·BC ,即12×12·PD+12×13•PD+12×5•PD=12×5×12,解得,PD=2,故答案为:2.【点睛】本题考查的是三角形的面积计算,掌握三角形的面积公式是解题的关键.8.60【分析】根据五边形的内角和求出∠BCD和∠CDE的和,再根据角平分线及三角形内角和求出∠CPD.【详解】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,(∠BCD+∠CDE)=120°,∴∠PDC+∠PCD=12∴∠CPD=180°﹣120°=60°.故答案是:60.【点睛】本题解题的关键是知道多边形内角和定理以及角平分线的性质.9.5【分析】本题考查角平分线的性质定理,过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,利用角平分线的性质可得PF=PG=PE,然后根据三角形的面积求出PF=PE=PG=2,再利用△OMP的面积+△ONP的面积−△PMN的面积=4,进行计算即可解答.根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【详解】解:过点P作PE⊥OB,垂足为E,过点P作PF⊥MN,垂足为F,过点P作PG⊥OA,垂足为G,连接OP,∵MP平分∠AMN,NP平分∠MNB,∴PF=PG=PE,∵MN=1,△PMN的面积是1,∴ 12MN ⋅PF =1,∴PF =2,∴PG =PE =2,∵△OMN 的面积是4,∴△OMP 的面积+△ONP 的面积−△PMN 的面积=4,∴ 12OM ⋅PG +12ON ⋅PE−1=4,∴OM +ON =5.故答案为:5.10.9【分析】本题考查了等腰三角形的判定与性质,平行线的性质,根据角平分线的定义和平行线的性质可得△MOB 和△NOC 是等腰三角形,从而可得MO =MB ,NO =NC ,然后利用等量代换可得ΔAMN 的周长=AB +AC ,从而进行计算即可解答.【详解】解:∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠ABO =∠OBC ,∠ACO =∠OCB ,∵MN ∥BC ,∴∠MON =∠OBC ,∠NOC =∠OCB ,∴∠ABO =∠MON ,∠ACO =∠NOC ,∴MO =MB ,NO =NC ,∵△AMN 的周长是15,∴AM +MN +AN =15,∴AM +MO +ON +AN =15∴AM +MB +NC +AN =15,∴AB +AC =15,∵AB =6,∴AC =15−6=9,故答案为:9.11.(1)65°;(2)①25°;②证明见解析.【分析】(1)根据三角形内角和定理求得∠CBA +∠CAB =130°,则∠EBA +∠BAD =230°,再由角平分线的定义求出∠OBA +∠OAB =115°,根据四边形内角和求出∠AOB 即可;(2)①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,根据角平分线的性质求解即可;②先求出KB=KC,过点A作AH∥BC交CO于点H,再求出KA=KH,则AB=CH,分别求出AH=AC,HF=CF,即可得出结论.【详解】(1)解:∵AO平分∠BAD,∴∠DAO=∠OAB,∵BO平分∠EOA,∴∠EBO=∠OBA,∵∠ACB=50°,∴∠CBA+∠CAB=130°,∴∠EBA+∠BAD=360°−130°=230°,∴∠OBA+∠OAB=115°,∴∠AOB=360°−50°−115°−130°=65°;(2)解:如图2,①过点O作OM⊥AD于点M,ON⊥BE于点N,OP⊥AB于点P,∵AO、BO分别平分∠DAB、∠EBA,∴OM=OP,OP=ON,∴OM=ON,∴CO平分∠ACB,∵∠ACB=50°,∴∠BCK=∠ACK=25°;②证明:∵∠BAC=105°,∠ACB=50°,∴∠ABC=25°,∵∠KCB=25°,∴∠KBC=∠KCE,∴KB=KC,如图3,过点A作AH∥BC交CO于点H,∴∠AHK=∠KCB,∠HAK=∠KBC,∴∠AHK=∠HAK,∴KA=KH,∴AB=CH,∵∠AHK=∠ACH,∴AH=AC,∵AF⊥CO,∴HF=CF,∴CH=2CF,∴AB=CH=2CF.12∴∵∴∴∵∴∴故DC=5.【点睛】此题主要考查了角平分线的定义,四边形内角和定理,含30°角的直角三角形的性质等知识,解题关键是熟练掌握各性质与定理.13.(1)见详解(2)见详解【分析】(1)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.(2)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;【详解】(1)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM;(2)证明:∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;【点睛】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.14.(1)见解析(2)△ADC和△ABC是倍角三角形,见解析【分析】(1)利用等边对等角及三角形的内角和求出∠B=∠C=72°,得到2∠A=∠C即可;(2)根据SAS证明△ABD≌△AED,得到∠ADE=∠ADB,BD=DE,证明CE=DE,得出∠C=∠BDE=2∠ADC,可得出∠ABC=2∠C.则结论得证.【详解】(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴2∠A=∠C,即△ABC是倍角三角形;(2)解:△ADC和△ABC是倍角三角形,证明如下:∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴∴又∴∴∴∴∵15(2)∠EBC=∠DFC即可得出结论.【详解】(1)解:在四边形ABCD中,∠A=∠C=90°,∠ABC=α,α=50°,∴∠ADC=360°−∠A−∠C−∠ABC=130°,∵DF平分∠CDA,∠ADC=65°,∴∠FDC=12∴∠DFC =90°−65°=25°;(2)证明:在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,∴∠ADC =360°−∠A−∠C−∠ABC =180°−α,∵DF 平分∠CDA ,∴∠FDC =12∠ADC =12(180°−α),∴∠DFC =90°−12(180°−α)=12α,∵BE 平分∠ABC ,∴∠EBC =12α,∴∠EBC =∠DFC ,∴BE ∥DF .16.(1)106°;(2)见解析;(3)3;【分析】(1)本题考查与角平分线有关的三角形内角和关系,根据∠C =32°得到∠CAB +∠CBA ,再结合角平分线求出∠CAO +∠CBO ,即可得到答案;(2)本题考查角平分线判定与性质,过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,根据角平分线性质得到OD =OF =OE ,结合角平分线的判定即可证明;(3)本题主要考查三角形全等的性质与判定,解题的关键是根据截长补短作出辅助线,在AC 上截取一点D ,使AD =AB ,连OD ,证明△ABO≌△ADO ,即可得到答案;【详解】(1)解:∵∠C =32°,∴∠CAB +∠CBA =180°−32°=148°,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴∠CAO +∠CBO =148°2=74°,∴∠AOB =180°−74°=106°;(2)证明:过O 作OD ⊥AC ,OE ⊥AB ,OF ⊥BC ,∵AO 、BO 分别平分∠BAC 、∠ABC ,∴OD =OF ,OD =OE ,∴OC 平分∠ACB ;(3)解:在AC 上截取一点D ,使AD =AB ,连OD ,设∠ACO =∠BCO =α,∵∠ABC =2∠ACB ,∴∠ABC =4α,∵BO 平分∠ABC ,∴∠ABO =∠CBO =2α,∵AO 平分∠BAC ,∴∠BAO =∠DAO ,在△ABO 与△ADO 中,AO =AO ∠BAO =∠DAO AB =AD,∴△ABO≌△ADO(SAS),∴∠ABO =∠ADO =2α,OB =OD,AB =AD =4,又∵∠ACO =α,∴∠ACO =∠DCO =α,∴OD =OC =AC−AD =7−4=3,∴OB =3.17.证明见解析【分析】本题主要考查了角平分线的定义,三角形外角的性质以及等腰三角形的判定和三角形内角和定理的应用,根据外角的性质求出∠ECD=702,由角平分线的定义得∠ACE=∠ECD=70°,根据三角形内角和定理求出∠CAE=70°,可得∠ACE=∠CAE,从而可得结论.【详解】证明:∠B=30°,∠E=40°,∴∠ECD=∠B+∠E=70°,∵CE平分∠ACD,∴∠ACE=∠ECD=70°,在△ABE中,∠ACE+∠E+∠CAE=180°,∴∠CAE=180°−∠ACE−∠E=180°−70°−40°=70°,∴∠ACE=∠CAE,∴AE=CE.18.(1)见解析(2)14【分析】本题考查角平分线的性质,全等三角形的判定与性质.(1)过点E作EF⊥AD于F,根据角平分线的性质得出CE=EF,再证明△ABE≌△AFE,△CED≌△FED,根据全等三角形的性质得出AB=AF,DC=DF,进而得出结论;(2)由△ABE≌△AFE,△CED≌△FED,推出S△CED=S△FED,S△ABE=S△AFE,据此求解即可.【详解】(1)证明:如图,过点E作EF⊥AD于F,∵∠C=90°,AB∥CD,∴∠B=90°,∵DE平分∠CDA,∴CE=EF,∴Rt△CED≌Rt△FED(HL),∴DC=DF,∵E是BC的中点,∴BE=CE,∴BE=EF,∵AE=AE,∴Rt△ABE≌Rt△AFE(HL),∴AD=AF+FD=AB+CD;(2)解:∵△CED≌△FED,△ABE≌△AFE,∴S△CED=S△FED,S△ABE=S△AFE,∵S∴19(2)((∴∴∴(∴∵∴∴∠BOM=∠ABO,∴BM=OM,同理可得:CN=ON,∴MN=OM+ON=BM+CN,∵AB=7,AC=6,∴△AMN的周长是AM+MN+AN=AM+BM+CN+AN=AB+AC=13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档