九年级数学几何模型压轴题综合测试卷(word含答案)

九年级数学几何模型压轴题综合测试卷(word含答案)
九年级数学几何模型压轴题综合测试卷(word含答案)

九年级数学几何模型压轴题综合测试卷(word 含答案)

一、初三数学 旋转易错题压轴题(难)

1.如图,在平面直角坐标系中,点O 为坐标原点,抛物线2

y ax bx c =++的顶点是A(1,3),将OA 绕点O 顺时针旋转90?后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C .

(1)求抛物线的解析式;

(2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与

OAB ?的边分别交于M ,N 两点,将AMN ?以直线MN 为对称轴翻折,得到A MN '?. 设点P 的纵坐标为m .

①当A MN '?在OAB ?内部时,求m 的取值范围;

②是否存在点P ,使'

5

6

A MN OA

B S S ?'?=,若存在,求出满足m 的值;若不存在,请说明理

由.

【答案】()2

1y x 22x =-++;(2)①433

m <<;②存在,满足m 的值为619-或

639

-. 【解析】 【分析】

(1)作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,然后证明△AOD ≌△BOE ,则AD=BE ,OD=OE ,即可得到点B 的坐标,然后利用待定系数法,即可求出解析式;

(2)①由点P 为线段AC 上的动点,则讨论动点的位置是解题的突破口,有点P 与点A 重合时;点P 与点C 重合时,两种情况进行分析计算,即可得到答案;

②根据题意,可分为两种情况进行分析:当点M 在线段OA 上,点N 在AB 上时;当点M 在线段OB 上,点N 在AB 上时;先求出直线OA 和直线AB 的解析式,然后利用m 的式子表示出两个三角形的面积,根据等量关系列出方程,解方程即可求出m 的值. 【详解】

解:(1)如图:作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,

∴∠ADO=∠BEO=90°,

∵将OA 绕点O 逆时针旋转90?后得到OB , ∴OA=OB ,∠AOB=90°,

∴∠AOD+∠AOE=∠BOE+∠AOE=90°, ∴∠AOD=∠BOE , ∴△AOD ≌△BOE , ∴AD=BE ,OD=OE , ∵顶点A 为(1,3), ∴AD=BE=1,OD=OE=3, ∴点B 的坐标为(3,1-), 设抛物线的解析式为2

(1)3=-+y a x , 把点B 代入,得

2(31)31a -+=-,

∴1a =-,

∴抛物线的解析式为2

(1)3y x =--+, 即222y x x =-++;

(2)①∵P 是线段AC 上一动点, ∴3m <,

∵当A MN '?在OAB ?内部时, 当点'A 恰好与点C 重合时,如图:

∵点B 为(3,1-), ∴直线OB 的解析式为1

3

y x =-, 令1x =,则13

y =-

, ∴点C 的坐标为(1,13

-),

∴AC=1103()3

3

--=, ∵P 为AC 的中点,

∴AP=1105

233

?

=, ∴54333

m =-

=, ∴m 的取值范围是

4

33

m <<; ②当点M 在线段OA 上,点N 在AB 上时,如图:

∵点P 在线段AC 上,则点P 为(1,m ),

∵点'A 与点A 关于MN 对称,则点'A 的坐标为(1,2m -3), ∴'3A P m =-,18'(23)233

A C m m =-+

=-, 设直接OA 为y ax =,直线AB 为y kx b =+, 分别把点A ,点B 代入计算,得

直接OA 为3y x =;直线AB 为25y x =-+, 令y m =, 则点M 的横坐标为3m

,点N 的横坐标为52

m --, ∴555

2326

m m MN m -=

-=--; ∵2'11555515'()(3)22261224

A MN S MN A P m m m m ?=

?=?-?-=-+; '138

'3(2)34223

OA B S A C m m ?=

??=?-=-; 又∵'5

6A MN OA B

S S ?'?=, ∴

255155

(34)12246

m m m -+=?-, 解得:619m =-或619m =+(舍去); 当点M 在边OB 上,点N 在边AB 上时,如图:

把y m =代入1

3

y x =-,则3x m ,

∴5553222m MN m m -=

+=+-,18

'(23)233A C m m =---=-, ∴2'11555515'()(3)2222424

A MN S MN A P m m m m ?=

?=?+?-=-++, '138

'3(2)43223OA B S A C m m ?=

??=?-=-, ∵'5

6

A MN OA

B S S ?'?=

∴255155

(43)4246

m m m -

++=?-, 解得:6393m -=

或639

3

m +=(舍去); 综合上述,m 的值为:619m =-或639

3

m -=. 【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转、解一元二次方程、全等三角形的判定和性质、三角形的面积公式等,解题的关键是熟练掌握所学的性质,正确得到点P 的位置.注意运用数形结合的思想和分类讨论的思想进行解题.

2.综合与探究:

如图1,Rt AOB 的直角顶点O 在坐标原点,点A 在y 轴正半轴上,点B 在x 轴正半轴上,4OA =,2OB =,将线段AB 绕点B 顺时针旋转90?得到线段BC ,过点C 作

CD x ⊥轴于点D ,抛物线23y ax x c =++经过点C ,与y 轴交于点(0,2)E ,直线AC 与x 轴交于点H .

(1)求点C 的坐标及抛物线的表达式;

(2)如图2,已知点G 是线段AH 上的一个动点,过点G 作AH 的垂线交抛物线于点F (点F 在第一象限),设点G 的横坐标为m . ①点G 的纵坐标用含m 的代数式表示为________;

②如图3,当直线FG 经过点B 时,求点F 的坐标,判断四边形ABCF 的形状并证明结论;

③在②的前提下,连接FH ,点N 是坐标平面内的点,若以F ,H ,N 为顶点的三角形与FHC 全等,请直接写出点N 的坐标.

【答案】(1)点C 的坐标为(6,2),21322y x x =-

++;(2)①1

43

m -+;②点F 的坐标为(4,6),四边形ABCF 为正方形,证明见解析;③点N 的坐标为(10,4)或

4226,55?? ???或384,55?? ???

. 【解析】 【分析】

(1)根据已知条件与旋转的性质证明ABO BCD ≌,根据全等三角形的性质得出点C 的坐标,结合点E 的坐标,根据待定系数法求出抛物线的表达式;

(2)①设直线AC 的表达式为y kx b =+,由点A 、C 的坐标求出直线AC 的表达式,进而得解;

②过点G 作GM x ⊥轴于点M ,过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与

DC 的延长线交于点Q ,根据等腰三角形三线合一得出AG CG =,结合①由平行线分线

段成比例得出点G 的坐标,根据待定系数法求出直线BG 的表达式,结合抛物线的表达式求出点F ;利用勾股定理求出AB BC CF FA ===,结合90ABC ?∠=可得出结论; ③根据直线AC 的表达式求出点H 的坐标,设点N 坐标为(,)s t ,根据勾股定理分别求出

2FC ,2CH ,2FN ,2NH ,然后分两种情况考虑:若△FHC ≌△FHN ,则FN =FC ,NH

=CH ,若△FHC ≌△HFN ,则FN =CH ,NH =FC ,分别列式求解即可. 【详解】 解:(1)

4=OA ,2OB =,

∴点A 的坐标为(0,4),点B 的坐标为(2,0),

线段AB 绕点B 顺时针旋转90?得到线段BC , AB BC ∴=,90ABC ?∠=,

90ABO DBC ?∴∠+∠=,

在Rt AOB 中,90ABO OAB ?∴∠+∠=,

=OAB DBC ∴∠∠,

CD x ⊥轴于点D ,

90BDC ?∴∠=, 90AOB BDC ?∴∠=∠=.

AB BC =,

ABO BCD ∴△≌△,

2CD OB ∴==,4BD OA ==, 6OB BD ∴+=,

∴点C 的坐标为(6,2),

∵抛物线2

3y ax x c =++的图象经过点C ,与y 轴交于点(0,2)E ,

236182c a c =?∴?++=?, 解得,122

a c ?=-?

??=?,

∴抛物线的表达式为2

1322

y x x =-

++;

(2)①设直线AC 的表达式为y kx b =+, ∵直线AC 经过点()6,2C ,(0,4)A , ∴62

4

k b b +=??

=?,

解得,134

k b ?

=-

???=?,即143y x =-+,

∴点G 的纵坐标用含m 的代数式表示为:1

43

m -+,

故答案为:143

m -+.

②过点G 作GM x ⊥轴于点M ,

OM m ∴=,1

43

GM m =-+,

AB BC =,BG AC ⊥, AG CG ∴=,

90AOB GMH CDH ?∠=∠=∠=,

OA GM CD ∴,

1OM AG

MD GC

==, 1

32OM MD OD ∴===,

3m ∴=,1433

m -+=,

∴点G 为(3,3),

设直线BG 的表达式为y kx b =+,将(3,3)G 和(2,0)B 代入表达式得,20

33k b k b +=??

+=?

3

6

k b =?∴?=-?,即表达式为36y x =-, 点F 为直线BG 和抛物线的交点,

∴得2

132362

x x x -

++=-, 14x ∴=,24x =-(舍去), ∴点F 的坐标为(4,6),

过点F 作FP y ⊥轴,垂足为点P ,PF 的延长线与DC 的延长线交于点Q ,

4PF ∴=,2AP =,2FQ =,4CQ =,

Rt AFP △中和Rt FCQ △中,根据勾股定理,得25AF FC ==, 同理可得25AB BC ==,

AB BC CF FA ∴===, ∴四边形ABCF 为菱形,

90ABC ?∠=, ∴菱形ABCF 为正方形;

③∵直线AC :1

43

y x =-

+与x 轴交于点H , ∴1

403

x -

+=, 解得,x =12, ∴(12,0)H ,

∴2

2

2

(64)(26)20FC =-+-=,2

2

2

(126)(02)40CH =-+-=, 设点N 坐标为(,)s t ,

∴2

2

2

(4)(6)FN s t =-+-,2

2

2

(12)(0)NH s t =-+-, 第一种情况:若△FHC ≌△FHN ,则FN =FC ,NH =CH ,

∴2222

(4)(6)20(12)40

s t s t ?-+-=?-+=?, 解得,11425265s t ?=????=??,226

2s t =??=?(即点C ),

∴4226,55N ??

???

; 第二种情况:若△FHC ≌△HFN ,则FN =CH ,NH =FC ,

∴2222

(4)(6)40(12)20

s t s t ?-+-=?-+=?, 解得,11385

45s t ?=????=??

,22104s t =??=?,

384

,

55

N

??

?

??

或(10,4)

N,

综上所述,以F,H,N为顶点的三角形与△FHC全等时,点N坐标为(10,4)或

4226

,

55?? ???

384

,

55

?? ???

【点睛】

本题是函数与几何的综合题,考查了待定系数法求函数的表达式,全等三角形的判定与性质,菱形与正方形的判定,旋转的性质,勾股定理等知识,其中对全等三角形存在性的分析,因有一条公共边,可对另外两边进行分类讨论,本题有一定的难度,是中考压轴题.

3.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.

(1)求证:AC垂直平分EF;

(2)试判断△PDQ的形状,并加以证明;

(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.

【解析】

试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,

∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明

∠DPQ=90°,即可得出结论;

(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.

试题解析:(1)证明:∵四边形ABCD是正方形,

∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,

∵BE=DF,

∴CE=CF,

∴AC垂直平分EF;

(2)解:△PDQ是等腰直角三角形;理由如下:

∵点P是AF的中点,∠ADF=90°,

∴PD=AF=PA,

∴∠DAP=∠ADP,

∵AC垂直平分EF,

∴∠AQF=90°,

∴PQ=AF=PA,

∴∠PAQ=∠AQP,PD=PQ,

∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,

∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,

∴△PDQ是等腰直角三角形;

(3)成立;理由如下:

∵点P是AF的中点,∠ADF=90°,

∴PD=AF=PA,

∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,

∴CE=CF,∠FCQ=∠ECQ,

∴CQ⊥EF,∠AQF=90°,

∴PQ=AF=AP=PF,

∴PD=PQ=AP=PF,

∴点A、F、Q、P四点共圆,

∴∠DPQ=2∠DAQ=90°,

∴△PDQ是等腰直角三角形.

考点:四边形综合题.

4.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.

(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;

(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;

(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.

【答案】(1)证明见解析;(2)45°或135°;(3).

【解析】

试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出

∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.

(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.

(3)根据和求解即可.

试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.

∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.

∴∠BAE=∠DAG..

∴△ABE≌△ADG(SAS).

∴BE=DG..

(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.

(3)如图3,连接GB、GE.

由已知α=45°,可知∠BAE=45°.

又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.

∵,∴GE =8.

∴.

过点B作BH⊥AE于点H.

∵AB=2,∴. ∴..

设点G到BE的距离为h.

∴.

∴.

∴点G到BE的距离为.

考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.

5.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.

(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;

(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;

(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.

【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.

【解析】

试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知

△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出

CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出

EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;

(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到

△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.

试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,

∴AF=AG,∠FAG=90°,

∵∠EAF=45°,

∴∠GAE=45°,

在△AGE与△AFE中,

∴△AGE≌△AFE(SAS);

(2)设正方形ABCD的边长为a.

将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.

则△ADF≌△ABG,DF=BG.

由(1)知△AEG≌△AEF,

∴EG=EF.

∵∠CEF=45°,

∴△BME、△DNF、△CEF均为等腰直角三角形,

∴CE=CF,BE=BM,NF=DF,

∴a﹣BE=a﹣DF,

∴BE=DF,

∴BE=BM=DF=BG,

∴∠BMG=45°,

∴∠GME=45°+45°=90°,

∴EG2=ME2+MG2,

∵EG=EF,MG=BM=DF=NF,

∴EF2=ME2+NF2;

(3)EF2=2BE2+2DF2.

如图所示,延长EF交AB延长线于M点,交AD延长线于N点,

将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.

由(1)知△AEH≌△AEF,

则由勾股定理有(GH+BE)2+BG2=EH2,

即(GH+BE)2+(BM﹣GM)2=EH2

又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,

即2(DF2+BE2)=EF2

考点:四边形综合题

6.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE,

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =1

2 m°.

【解析】

分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;

(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;

(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=

1

2

m°.

详(1)证明:如图1中,

∵∠BAC=∠DAE,

∴∠DAB=∠EAC,

在△DAB和△EAC中,

AD AE

DAB EAC

AB AC

?

?

∠∠

?

?

?

∴△DAB≌△EAC,

∴BD=EC.

(2)证明:如图2中,延长DC到E,使得DB=DE.

∵DB=DE,∠BDC=60°,

∴△BDE是等边三角形,

∴∠BD=BE,∠DBE=∠ABC=60°,

∴∠ABD=∠CBE,

∵AB=BC,

∴△ABD≌△CBE,

∴AD=EC,

∴BD=DE=DC+CE=DC+AD.

∴AD+CD=BD.

(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到

M,使得DM=DE,连接FM、CM.

由(1)可知△EAB≌△GAC,

∴∠1=∠2,BE=CG,

∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,

∴EM=CM=CG,∠EBC=∠MCD,

∵∠EBC=∠ACF,

∴∠MCD=∠ACF,

∴∠FCM=∠ACB=∠ABC,

∴∠1=3=∠2,

∴∠FCG=∠ACB=∠MCF,

∵CF=CF,CG=CM,

∴△CFG≌△CFM,

∴FG=FM,

∵ED=DM,DF⊥EM,

∴FE=FM=FG,

∵AE=AG,AF=AF,

∴△AFE≌△AFG,

∴∠EAF=∠FAG=1

2 m°.

点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.

7.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.

(1)连接AE,求证:△AEF是等腰三角形;

猜想与发现:

(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.

结论1:DM、MN的数量关系是;

结论2:DM、MN的位置关系是;

拓展与探究:

(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.

【解析】

试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出

MN∥AE,MN=1

2

AE,利用三角形全等证出AE=AF,而DM=

1

2

AF,从而得到DM,MN数量

相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.

试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,

∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,

AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,

∴MN∥AE,MN=1

2

AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又

∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的

中点,∴DM=1

2

AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,

同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,

∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.

考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.

8.(操作发现)

(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接

AF,EF.

①求∠EAF的度数;

②DE与EF相等吗?请说明理由;

(类比探究)

(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:

①∠EAF的度数;

②线段AE,ED,DB之间的数量关系.

【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2

【解析】

试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出

∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;

②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;

(2)①由等腰直角三角形的性质得出AC =BC ,∠BAC =∠B =45°,证出∠ACF =∠BCD ,由SAS 证明△ACF ≌△BCD ,得出∠CAF =∠B =45°,AF =DB ,求出∠EAF =∠BAC +∠CAF =90°; ②证出∠DCE =∠FCE ,由SAS 证明△DCE ≌△FCE ,得出DE =EF ;在Rt △AEF 中,由勾股定理得出AE 2+AF 2=EF 2,即可得出结论.

试题解析:解:(1)①∵△ABC 是等边三角形,

∴AC =BC ,∠BAC =∠B =60°.∵∠DCF =60°,∴∠ACF =∠BCD . 在△ACF 和△BCD 中,

∵AC =BC ,∠ACF =∠BCD ,CF =CD ,∴△ACF ≌△BCD (SAS ),∴∠CAF =∠B =60°,∴∠EAF =∠BAC +∠CAF =120°; ②DE =EF .理由如下:

∵∠DCF =60°,∠DCE =30°,∴∠FCE =60°﹣30°=30°,∴∠DCE =∠FCE .在△DCE 和△FCE 中,∵CD =CF ,∠DCE =∠FCE ,CE =CE ,∴△DCE ≌△FCE (SAS ),∴DE =EF ; (2)①∵△ABC 是等腰直角三角形,

∠ACB =90°,∴AC =BC ,∠BAC =∠B =45°.∵∠DCF =90°,∴∠ACF =∠BCD .在△ACF 和△BCD 中,

∵AC =BC ,∠ACF =∠BCD ,CF =CD ,∴△ACF ≌△BCD (SAS ),∴∠CAF =∠B =45°,AF =DB ,∴∠EAF =∠BAC +∠CAF =90°; ②AE 2+DB 2=DE 2,理由如下:

∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°﹣45°=45°,∴∠DCE =∠FCE .在△DCE 和△FCE 中,∵CD =CF ,∠DCE =∠FCE ,CE =CE ,∴△DCE ≌△FCE (SAS ),∴DE =EF .在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.

二、初三数学 圆易错题压轴题(难)

9.已知:

图1 图2 图3 (1)初步思考:

如图1, 在PCB ?中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:

1

2

PN PC =

(2)问题提出:

如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求

1

2

PD PC +的最小值.

(3)推广运用:

如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求1

2

PD PC -的最大值.

【答案】(1)详见解析;(2)5;(3)最大值37DG = 【解析】 【分析】

(1)利用两边成比例,夹角相等,证明BPN ?∽BCP ?,得到PN BN

PC BP

=,即可得到结论成立;

(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到1

2

PG PC =,当D 、P 、G 共线时,1

2

PD PC +

的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到1

2

PG PC =,当点P 在DG 的延长线上时,1

2

PD PC -的值最大,即可得到答案. 【详解】

(1)证明:∵2,1,4PB BN BC ===, ∴2

4,4PB BN BC =?=, ∴2PB BN BC =?, ∴

BN BP

BP BC

=, ∵B B ∠=∠, ∴BPN BCP ??∽, ∴

1

2

PN BN PC BP ==, ∴1

2

PN PC =

; (2)解:如图,在BC 上取一点G ,使得BG=1,

24

2,212

PB BC BG PB ====,

九年级数学几何模型压轴题专题练习(解析版)

九年级数学几何模型压轴题专题练习(解析版) 一、初三数学 旋转易错题压轴题(难) 1.已知:如图①,在矩形ABCD 中,3,4,AB AD AE BD ==⊥,垂足是E .点F 是点 E 关于AB 的对称点,连接A F 、BF . (1)求AF 和BE 的长; (2)若将ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB AD 、上时,直接写出相应的m 的值. (3)如图②,将ABF 绕点B 顺时针旋转一个角1(080)a a ?<

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

九年级数学上册 旋转几何综合综合测试卷(word含答案)

九年级数学上册旋转几何综合综合测试卷(word含答案) 一、初三数学旋转易错题压轴题(难) 1.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上, AP=1 3 AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E, 连接PC,且ABE为等边三角形. (1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP 与EC的数量关系是. (2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由. (3)如图②,当点P在A的左侧时,若△PBC的面积为 93,求线段AC的长. 【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3) 7 7 【解析】 【分析】 (1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论; (2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论; (3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论. 【详解】 解:(1)∵△ABE是等边三角形, ∴∠ABE=60°,AB=BE, ∵将线段BP绕点B顺时针旋转60°得到BC, ∴∠CBP=60°,BC=BP, ∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE, 即∠ABP=∠EBC, ∴△ABP≌△EBC(SAS),

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

初三数学几何综合练习题

初三数学几何综合练习题 1.在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE. (1)如图1,点D在BC边上. ①依题意补全图1; ②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长; (2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系 (直接写出结论). 图1图2

B A C 2. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD . (1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明; (3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由. 3.如图1,已知线段BC =2,点B 关于直线AC 的对称点是点D ,点E 为射线CA 上一点,且ED =BD ,连接DE ,BE .

(1) 依题意补全图1,并证明:△BDE 为等边三角形; (2) 若∠ACB =45°,点C 关于直线BD 的对称点为点F ,连接FD 、FB .将△CDE 绕点D 顺时针旋转α度(0°<α<360°)得到△''C DE ,点E 的对应点为E ′,点C 的对应点为点C ′. ①如图2,当α=30°时,连接'BC .证明:EF ='BC ; ②如图3,点M 为DC 中点,点P 为线段'' C E 上的任意一点,试探究:在此旋转过程中,线段PM 长度的取值范围? 4.(1)如图1 ,在四边形ABCD 中,AB=BC ,∠ABC =80°,∠A +∠C =180°,点M 是AD 边上一点,把射线BM 绕点B 顺时针旋转40°,与CD 边交于点N ,请你补全图形,求MN ,AM ,CN 的数量关系; 图1 图2 图3

中考数学几何压轴题

中考数学几何压轴题(2) 1.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α. (1)问题发现 ①当α=0°时,= ;②当α=180°时,= . (2)拓展探究 试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明. (3)问题解决 当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长. 2.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点. (1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:. (2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA 与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.

(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA?PB=k?AB. 3.【问题提出】 如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF 试证明:AB=DB+AF 【类比探究】 (1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由 (2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版) 几何综合 参考答案与试题解析 一.选择题(共6小题) 1.(2020?贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为() A.24 B.18 C.12 D.9 解:∵E是AC中点, ∵EF∥BC,交AB于点F, ∴EF是△ABC的中位线, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周长是4×6=24. 故选:A. 2.(2020?遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为() A.10 B.12 C.16 D.18 解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN , ∴S △DFP =S△PBE=×2×8=8, ∴S 阴=8+ 8=16, 故选:C. 3.(2020?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为() A.B.1 C.D. 解:连接BC, 由网格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 4.(2020?遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

九年级数学旋转几何综合专题练习(解析版)

九年级数学旋转几何综合专题练习(解析版) 一、初三数学旋转易错题压轴题(难) 1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°. (1)如图①,若∠B、∠ADC都是直角,把ABE △绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程; (2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有 EF=BE+DF; (3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长. 【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3 【解析】 【分析】 (1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案; (2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即 180 ADG ADF ∠+∠=?,即180 B D ∠+∠=?; (3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长. 【详解】 (1)解:如图, ∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合, ∴AE=AG,∠BAE=∠DAG,BE=DG, ∵∠BAD=90°,∠EAF=45°,

∴∠BAE+∠DAF=45°, ∴∠DAG+∠DAF=45°, 即∠EAF=∠GAF=45°, 在△EAF和△GAF中 AF AF EAF GAF AE AG = ? ? ∠=∠ ? ?= ? ∴△EAF≌△GAF(SAS), ∴EF=GF, ∵BE=DG, ∴EF=GF=BE+DF; (2)解:∠B+∠D=180°, 理由是: 如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG, ∵∠B+∠ADC=180°, ∴∠ADC+∠ADG=180°, ∴F、D、G在一条直线上, 和(1)类似,∠EAF=∠GAF=45°, 在△EAF和△GAF中 AF AF EAF GAF AE AG = ? ? ∠=∠ ? ?= ? ∴△EAF≌△GAF(SAS), ∴EF=GF, ∵BE=DG, ∴EF=GF=BE+DF; 故答案为:∠B+∠D=180°; (3)解:∵△ABC中,2BAC=90°, ∴∠ABC=∠C=45°,由勾股定理得:22 AB AC +,

几何图形变换中考数学压轴题整顿

几何图形变换压轴题中考整理 1(黑龙江省哈尔滨市)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图l,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD; (2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是____________________________________; (3)在(2)的条件下,若AG=2 5,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别 3,求线段PQ的长. 与线段BM、线段BN相交于P、Q两点,若NG= 2 (湖北省随州市)如图①,已知△ABC是等腰三直角角形,∠BAC=90°,点D是BC 的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论. (2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由. (3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.

3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 3.在△ABC 中,点P 为BC 的中点. (1)如图1,求证:AP < 2 1 (AB +BC ); (2)延长AB 到D ,使得BD =AC ,延长AC 到E ,使得CE =AB ,连结DE . ①如图2,连结BE ,若∠BAC =60°,请你探究线段BE 与线段AP 之间的数量关系.写出你的结论,并加以证明; ②请在图3中证明:BC ≥ 2 1 DE . 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13- 1 A ( G ) B ( E ) C O D ( F )

初二数学几何压轴题选编.doc

1. 如图,在△ABC中,∠ABC=45°,C D⊥AB,BE⊥AC,垂足分别为D、E,F 为BC的中点.BE 与D F、DC分别交于点G、H, 连接AG. (1)求证:BH=AC; (2)若AB=BC,求证:AG=BG. 2 将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB= ∠DEB=90 °,∠ A= ∠D=30 °,点 E 落在AB 上,DE 所在直线交AC 所在直线于点 F. (1)求证:AF+EF=DE ; (2)若将图①中的△DBE 绕点 B 按顺时针方向旋转角α,且0°<α<60°,其它条件不变,如图②,请直接写出你在(1)中猜想的结论是否仍然成立; (3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③. 你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.

3 已知:如图,点E在△ABC的边AC上,且∠AEB=∠ABC. (1) 求证:∠ABE=∠C; (2) 若∠BAE的平分线AF交BE于F,F D∥BC交AC于D,设AB=6,AC=10,求DC的长; (3) 若BE平分∠ABC,AF平分∠BAC,且F D∥B C交AC于点D,连接 F C,则△DFC是什么三 角形?为什么? 4.如图①,在△ABC 中,∠BAC= 90°,AB = AC ,∠ABC= 45°.MN 是经过点 A 的直线,BD MN 于D,CE MN 于E. (1)求证:BD = AE. (2)若将MN 绕点A 旋转,使MN 与BC 相交于点G (如图②),其他条件不变,求证:BD = AE. (3)在(2)的情况下,若CE 的延长线过AB 的中点 F (如图③),连接GF, 求证:1= 2. N A N A F 1 N E 2E A D E B C G D M B C B C G D M M 26 题图①26 题图②26 题图③

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

九年级圆 几何综合单元测试题(Word版 含解析)

九年级圆 几何综合单元测试题(Word 版 含解析) 一、初三数学 圆易错题压轴题(难) 1.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在 射线BA 上,以BP 为半径的 P 交边BC 于点E (点E 与点C 不重合),联结PE 、 PC ,设x BP =,PC y =. (1)求证:PE //DC ; (2)求y 关于x 的函数解析式,并写出定义域; (3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取 值范围. 【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605 R << 【解析】 【分析】 ()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据 平行线的判定定理即可得到结论; ()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形, //PH AF ,求得2BF FG GC ===,根据勾股定理得到 22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到 223PH x = ,13BH x =,求得1 63 CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218 655 PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】 () 1证明:梯形ABCD ,AB CD =, B DCB ∠∠∴=, PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=,

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

七年级(下册)数学几何压轴题集锦

在矩形ABCD中,点E为BC边上的一动点,沿AE翻折,△ABE与△AFE重合,射线AF与直线CD交于点G。 1、当BE:EC=3:1时,连结EG,若AB=6,BC=12,求锐角AEG的正弦值。 2、以B为原点,直线BC和直线AB分别为X轴、Y轴建立平面直角坐标系,AB=5,BC=8,当点E从原点出发沿X正半轴运动时,是否存在某一时刻使△AEG成等腰三角形,若存在,求出点E的坐标。 1、2 a b m b a-+b+3=0=14. ABC A S 如图,已知(0,),B(0,),C(,)且(4), o y= DC FD ADO ⊥∠∠ ∠ (1)求C点坐标 (2)作DE,交轴于E点,EF为AED的平分线,且DFE90。 求证:平分; (3)E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分∠AEC,且PM⊥EM,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中,

MPQ ECA ∠∠的大小是否发生变化,若不变,求出其值。 2、如图1,AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE; (2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。 图1 图2 3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。 B C B C

B C (2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠ A 的度数。 A C 4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为? F A B 5、已知∠A=∠C=90°. (1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

中考数学超好几何证明压轴题大全

中考数学超好几何证明压 轴题大全 This manuscript was revised by the office on December 10, 2020.

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延 长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什 么特殊四边形并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋 转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或 测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留 )。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=31∠OAC . E B F C D A 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13-1 A ( E ) C O D F C A B D O E

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

九年级旋转几何综合单元测试题(Word版 含解析)

九年级旋转几何综合单元测试题(Word版含解析) 一、初三数学旋转易错题压轴题(难) 1.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED. (1)如图①,E在AB上,直接写出ED,GD的数量关系. (2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由. (3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长. 【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32.【解析】 【分析】 (1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题; (2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似; (3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可. 【详解】 解:(1)结论:DE=2DG. 理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM. ∵四边形ABCD是正方形, ∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°, ∵∠AEF=∠B=90°,

∴EF∥CM, ∴∠CMG=∠FEG, ∵∠CGM=∠EGF,GC=GF, ∴△CMG≌△FEG(AAS), ∴EF=CM,GM=GE, ∵AE=EF, ∴AE=CM, ∴△DCM≌△DAE(SAS), ∴DE=DM,∠ADE=∠CDM, ∴∠EDM=∠ADC=90°, ∴DG⊥EM,DG=GE=GM, ∴△EGD是等腰直角三角形, ∴DE=2DG. (2)如图2中,结论成立. 理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R. ∵EG=GM,FG=GC,∠EGF=∠CGM, ∴△CGM≌△FGE(SAS), ∴CM=EF,∠CMG=∠GEF, ∴CM∥ER, ∴∠DCM=∠ERC, ∵∠AER+∠ADR=180°, ∴∠EAD+∠ERD=180°, ∵∠ERD+∠ERC=180°, ∴∠DCM=∠EAD, ∵AE=EF, ∴AE=CM, ∴△DAE≌△DCM(SAS), ∴DE=DM,∠ADE=∠CDM, ∴∠EDM=∠ADC=90°, ∵EG=GM, ∴DG=EG=GM, ∴△EDG是等腰直角三角形,

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

中考数学几何压轴题及答案及答案

中考数学几何压轴题及答案 一、解答题(共30小题) 1.观察猜想 (1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=; 探究证明 (2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程; 拓展延伸 (3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论 2.在△ABC的边BC上取B′、C′两点,使∠AB′B=∠AC′C=∠BAC (1)如图1中∠BAC为直角,∠BAC=∠AB′B=∠AC′C=90°(点B′与点C′重合),则△ABC∽△B'BA∽△C'AC,,,进而可得AB2+AC2=; (2)如图2中当∠BAC为锐角,图3中∠BAC为钝角时(1)中的结论还成立吗?若不成立,则AB2+AC2等于什么(用含用BC和B′C′的式子表示)?并说明理由 (3)若在△ABC中,AB=5,AC=6,BC=9,请你先判断出△ABC的类型,再求出B′C′的长

3.(1)问题发现 如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D是线段AB上一动点,连接BE 填空: ①的值为;②∠DBE的度数为. (2)类比探究 如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由; (3)拓展延伸 如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE 的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案. 4.(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以 点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE 和AF数量关系. (2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.

相关文档
最新文档