19.1.1变量与函数1
人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)

子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?
19.1.1-变量与函数-教案

19.1.1 变量与函数八年级科目:数学主备人:范德彪时间:年月日课时安排与说明:1课时一、教学设计1、教学目标(1)理解变量与常量、自变量与函数的含义,能指出具体问题中的常量、变量,并会用含一个变量的代数式表示另一个变量;(2)理解两个变量间的特殊对应关系,能指出由哪一个变量唯一确定另一变量,会判断两个变量是否具有函数关系,并会求自变量的取值范围;(3)通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.引导学生探索实际问题中的数量关系,让学生体会“变化与对应”的数学思想,培养学生提高分析问题和解决问题的能力。
2、内容分析(1)函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”。
方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系。
本节课是函数入门课,要从数学的角度研究变化现象,把握变化规律,首先必须准确认识变量与常量的特征,关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础.本课从四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,而且问题中变量的单值对应关系也为学习函数的定义作了铺垫.(2)基于以上分析,确定本节课的教学重点是能找出一个变化过程中的变量与常量,教学难点是能判断两个变量是否具有函数关系。
3、学情分析(1)学生的认知基础:变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系。
类似于一元一次方程,学生直知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,并没有用运动与变化的观点去体会两个变量之间相互依赖的关系。
另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.(2)学生是年龄心理特点:八年级学生具有很强的感性认知基础,活泼好动,思维敏捷,表现欲强,对一些具体的实践活动十分感兴趣,但思考问题单一,不会延伸运用。
2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版

第十九章一次函数19.1函数19.1.1变量与函数【教学目标】知识与技能:1.掌握常量和变量、自变量和函数的基本概念.2.了解函数值的概念,能用解析式表示函数关系.会确定函数自变量的取值范围.过程与方法:结合实例,了解常量、变量的意义,体会“变化与对应”的思想.通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.情感态度与价值观:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【重点难点】重点:了解常量与变量的含义.理解函数的有关概念,能用解析式表示函数关系.确定自变量的取值范围.难点:理解函数的有关概念,能用解析式表示函数关系.会确定自变量的取值范围.【教学过程】一、创设情境,导入新课:1.在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?2.五一假期,李想和朋友从学校门口出发,骑自行车去沙河游玩,假设他们匀速行驶,每分钟骑200米,骑车的总路程为s米,骑车的时间为t分钟.填一填:问题:(1)在这个行程问题中,我们所研究的对象有几个量?(2)几个所研究的对象中,哪些是变化的量,哪些是固定不变的量?它们之间存在什么样的关系?这一节我们就来探究这一问题.二、探究归纳活动1:变量与常量1.出示问题,师生探究有如下几个变化过程,请找出各变化过程中的量,并填表:(教材P71四个问题)(师生活动:教师引导学生填表,并分析问题中出现的量,发现其中有些量的数值是变化的,分析问题中的量并分类,领会“变量”、“常量”的含义.发现在同一个变化过程中,始终保持不变的量为常量,而数值发生变化的量为变量.并根据发现自己试着下定义.)2.形成概念(1)(2)定义:在一个变化过程中,数值发生变化的量,称为变量,数值始终不变的量称为常量.活动2:函数的概念1.问题:在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有唯一确定的值.2.思考:分组讨论教科书“思考”中的两个问题.注:使学生加深对各种表示函数关系的表达方式的印象.3.归纳:一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口数统计表中,年份x是自变量,人口数y 是x的函数.当x=1999时,函数值y=12.52.活动3:例题讲解【例1】读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500 m赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20 m/min的速度跑了10 min时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10 m/min的速度匀速爬向终点.40 min后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30 m/min的速度跑向终点时,它比乌龟足足晚了10 min.分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.解:500 m、乌龟的速度10 m/min等在整个变化过程中是常量,兔子的速度是变量.总结:“常量”与“变量”:“常量”是数值始终不变的量,一般是用具体数表示的量;“变量”是数值发生变化的量,变量是可以变化的:(1)可以取不同的数值,(2)一般用字母表示.【例2】我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x km 处的温度为y℃.(1)写出y与x之间的函数解析式.(2)已知益阳碧云峰高出地面约500 m,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?分析:(1)根据题意,按照等量关系:高出地面x km处的温度=地面温度-6 ℃×高出地面的距离;列出函数解析式.(2)把给出的自变量高出地面的距离0.5 km代入函数解析式求得.(3)把给出的函数值高出地面x km处的温度-34 ℃代入函数解析式求得x.解:(1)由题意得,y与x之间的函数解析式y=20-6x(x≥0).(2)由题意得x=0.5 km, y=20-6×0.5=17(℃)答:这时山顶的温度大约是17 ℃.(3)由题意得y=-34 ℃时,-34=20-6x,解得x=9 km.答:飞机离地面的高度为9 km.总结:求函数值的方法:就是将自变量x的值代入解析式,求代数式的值.【例3】函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3分析:求自变量取值范围时,要考虑两个方面:一是被开方数非负;二是分式的分母不为零,通过建立不等式组解决问题.解:选A.根据题意可知:x-1≥0且x-3≠0,解得x≥1且x≠3.总结:确定自变量取值范围的方法(1)整式:其自变量的取值范围是全体实数.(2)分式:其自变量的取值范围是使得分母不为0的实数.(3)二次根式:其自变量的取值范围是使得被开方数为非负的实数.(4)实际问题:其自变量的取值必须使实际问题有意义.三、交流反思这节课我们学习了变量与常量、函数的概念,函数自变量的取值范围的确定方法.四、检测反馈1.在三角形面积公式S=ah,a=2 cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量2.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠13.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数4.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R2是自变量C.R是自变量D.πR2是自变量5.函数y=中的自变量x的取值范围是()A.x≥0B.x≠-1C.x>0D.x≥0且x≠-16.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.一支演唱队第一排有20人,后面每排比前排多1人,则第n排的人数s与n的函数解析式为________.8.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离s(m)与时间t(s)的数据如下表:(1)这一变化过程中的自变量是________.(2)写出用t表示s的关系是________.(3)求第6秒时,小球滚动的距离为________m.(4)小球滚动200 m用的时间为________.五、布置作业教科书第81页习题19.1第1,2,3,4,5题六、板书设计七、教学反思本节课学习了常量与变量,函数的概念及函数自变量的取值范围的确定,关于变量与常量概念:要通过实例引导学生分析运动变化过程中出现的数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,值得注意的是出现了一些数值会发生变化的量,有些是数值始终不变的量,总结得出并通过实例练习巩固.关于函数概念的教学,通过实例引导学生分析总结得出,并明确表示函数关系的方法通常有三种:①解析法.②列表法.③图象法.关于函数自变量的取值范围的教学,通过实例引导学生分析得出:求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.。
第19章.一次函数--全品习题答案

19.1 函数19.1.1 变量与函数第1课时 变量(全品第61页) 教师详答1.A [解析] 由于100是不变的,所以是常量,而W 和n 是变化的,因此是变量.故选A . 2.y =0.5x 0.5 x ,y3.[全品导学号:07712121]S ,a 12,h4.解:(1)s =300-50t.(2)300,50是常量,t ,s 是变量.5.V ,R 43,π6.[全品导学号:07712122]解:S =12³3x =32x.常量:32;变量:S ,x.7.[全品导学号:07712123]解:(1)60是常量,S ,x 是变量. (2)R 是常量,V ,h 是变量.19.1 函数19.1.1 变量与函数第2课时 函数(全品第62页)教师详答1.D2.[全品导学号:07712124]C [解析] 根据函数的定义来判断,如果三角形的高一定,则给定一个底边长,相应地就确定了一个三角形的面积的值,所以①不具有函数关系;如果多边形给定一个边数值,相应地就确定了一个多边形的内角和的值,所以②具有函数关系;如果给定一个半径,相应地就确定了一个圆的面积,所以③具有函数关系;④中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,所以④具有函数关系.故选C .3.B [解析] 把x =a ,y =1代入,得1=2a -1,解得a =1. 4.解:(1)x 是自变量,y 是x 的函数.y =0.55x.(2)x 是自变量,y 是x 的函数.y =60x.(3)x 是自变量,Q 是x 的函数.Q =20+5x.5.D 6.x ≤237.[全品导学号:07712125]解:(1)Q =800-50t.(2)当抽完水时有0=800-50t ,解得t =16,所以自变量t 的取值范围为0≤t ≤16. (3)当t =10时,Q =800-50t =800-50³10=300(立方米). 答:10小时后,水池中还有300立方米的水.8.[全品导学号:07712126]解:m =n +19(1≤n ≤25,且n 为正整数). (1)m =2n +18 (2)m =3n +17(3)m =(n -1)b +a(1≤n ≤p ,且n 为正整数).19.1 函数 19.1.2 函数的图象第1课时 函数的图象及其画法(全品第63-64页)教师详答1.D2.(1)15 1.1 (2)10 (3)12 0.9 (4)18 (5)22253.[全品导学号:07712127]解:(1)时间t 路程s(2)由图可知:9时、12时所走的路程分别是4千米、15千米. (3)根据图象可得,该旅行者休息的时间为:10.5-10=0.5(时). (4)根据图象可得:(15-9)÷(12-10.5)=4(千米/时).答:他从休息后直至到达目的地这段时间的平均速度是4千米/时.4.C [解析] 根据函数图象的定义,如果点的坐标满足函数解析式,那么这个点就在这个函数的图象上,通过计算,可知选C .5.A [解析] 把x =2,y =3代入y =ax 2-x +1中,有3=4a -2+1,解得a =1.6.[全品导学号:07712128]5 [解析] 根据函数图象的定义知点P(3,m)和点Q(n ,2)都满足函数y =x +8的解析式,所以3+8=m ,n +8=2,解得m =11,n =-6,所以m +n =11+(-6)=5.7点(1,1),(2,3)在函数y =2x -1的图象上,点(-1,0),(-2,3)不在函数y =2x -1的图象上.8.[全品导学号:07712129]C [解析] 向上抛球的过程,球的速度开始最大,而后逐渐变为0,然后又增大,符合条件的图象是C .9.[全品导学号:07712130]C [解析] A 项,根据图象可得,乙前4秒行驶的路程为12³4=48(米),正确;B 项,根据图象可得,在0到8秒内甲的速度每秒增加4米,正确;C 项,根据图象可得,两车到第3秒时行驶的路程不相等,错误;D 项,在4至8秒内甲的速度都大于乙的速度,正确.故选C .10.80 [解析] 从图象可以看出,小明用20分钟行驶的路程是1600米,所以他步行回家的平均速度是80米/分.11(2)当x =-3时,y =12³(-3)2=2≠-2,∴点(-3,-2)不在函数y =12x 2的图象上.12.[全品导学号:07712131]解:(1)5 70 5 54 5(2)y 是x 的函数.理由:由图象可知,变量y 随着x 的变化而变化,同时对于每一个x ,按照图象,都有唯一的y 值与之相对应,符合函数的定义.(3)摩天轮的直径是70-5=65(m ).19.1 函数 19.1.2 函数的图象第2课时 实际问题中的函数图象(全品第65-66页)教师详答1.[全品导学号:07712132]C [解析] 两个变量之间,如果给定自变量一个值,另一个变量也有唯一的值与之对应,这样的两个变量之间的关系才是函数关系.选项中给定自变量x 一个值时,相应的另一个变量y 却得到了两个值.故C 项不能体现y 是x 的函数关系.2.B 3.B4.C [解析] 由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快. 5.D [解析] 0<x ≤20,表示小强从家步行去车站,总路程为2千米,故A 正确;20<x ≤30,表示小强在车站等小明,用的时间是10分钟,故B 正确;30<x ≤60,表示两人一起乘公共汽车去学校,用的时间是30分钟,走的路程是15千米,所以公共汽车的平均速度是30千米/时,所以C 正确,D 不正确.6.C7.解:(1)声速与气温 气温 声速 气温 (2)随着T 的增大,v 也增大.(3)气温每升高5 ℃,声速增加3 m /s即气温每升高1 ℃,声速增加35m /s .∴v =331+35T.(4)当T =30 ℃时,v =331+35³30=331+18=349(m /s ),349³6=2094(m ).答:发生打雷的地方距小明大约有2094 m . 8.[全品导学号:07712133]D9.y =0.5x10.[全品导学号:07712134]8 [解析] 进水管进水的速度为20÷4=5(升/分),出水管出水的速度为5-(30-20)÷(12-4)=3.75(升/分),∴关闭进水管后,放完水经过的时间为30÷3.75=8(分).11.解:由题意可知s =240-30t(0≤t ≤8). 列表:函数图象如图所示:12.[全品导学号:07712135]; 当x >20时,y =3.3(x -20)+2.5³20=3.3x -16. (2)∵该户4月份的水费平均每吨2.8元, ∴该户4月份用水超过20吨.设该户4月份用水a 吨,根据题意,得 2.8a =3.3a -16,解得a =32. 答:该户4月份用水32吨.19.2 一次函数 19.2.1 正比例函数第1课时 正比例函数的概念(全品第67页)教师详答1.[全品导学号:07712136]D [解析] 路程=速度³时间,速度一定时,路程是时间的正比例函数.故选D .2.C3.A [解析] ∵y =x +2a -1是正比例函数,∴2a -1=0,解得a =12.故选A .4.y =-2x 正比例5.-236.-1 127.S =3x [解析] 由三角形的面积公式可得S =12³6x ,即S =3x.8.[解析] 判断一个函数是不是正比例函数,要看解析式能否转化为y =kx(k ≠0)的形式. 解:(1)y =28-5x ,y 不是x 的正比例函数.(2)y =x 2,y 不是x 的正比例函数.9.D [解析] 根据正比例函数的定义,形如y =kx(k ≠0)的函数是正比例函数.y =3x -1可转化为y +1=3x ,把y +1看成一个整体,则y +1与x 成正比例;y =-x 2中,k =-12,所以y 与x 成正比例;在y =2(x +1)中,把x +1看作一个整体时k =2,所以y 与x +1成正比例;在y =x +3中,把x +3看作一个整体时k =1,所以y 与x +3成正比例.综上可知D 项的说法不正确.故选D .10.[全品导学号:07712137]C11.[全品导学号:07712138]2 [解析] 由题意知y =2x +k -2,由正比例函数的定义得k -2=0,即k =2.12.[全品导学号:07712139]解:正比例函数必须满足y =kx(k 是常数,k ≠0)的形式,无常数项,所以解得所以函数解析式为y =-4x.19.2 一次函数 19.2.1 正比例函数第2课时 正比例函数的图象与性质(全品第68-69页)教师详答1.D [解析] 因为正比例函数y =kx(k ≠0)的图象是一条经过原点的直线,所以只有D 项的图象符合题意.故选D .2.B 3.B4.-2 [解析] 把(2,-4)代入y =kx ,得-4=2k ,解得k =-2. 5.[全品导学号:07712140]0.26.1 [解析] 因为函数图象过原点,所以-(4m -4)=0,解得m =1. 7.略 8.C9.A [解析] 由正比例函数的性质可知:当y 随x 的增大而减小时,k -1<0,即k <1.故选A .10.>11.[全品导学号:07712141][解析] 正比例函数的比例系数决定函数的增减性.解:(1)当5-2k>0,即k<52时,y 随x 的增大而增大.(2)当5-2k<0,即k>52时,y 随x 的增大而减小.12.D [解析] x 的取值为正整数,y 也为正整数.故选D .13.C [解析] 对于正比例函数y =kx ,当k<0时,y 随x 的增大而减小,所以当x 1<x 2时,y 1>y2,即y 1-y 2>0.14.[全品导学号:07712142]C [解析] 如图,过点A 作直线y =x 的垂线,当B 是垂足时,AB 最短.过点B 作BE ⊥OA ,垂足为E.因为直线y =x 是第一、三象限的平分线,所以∠AOB =45°.由AB ⊥OB ,可得∠OAB =∠AOB =45°,可得BO =AB.由BE ⊥OA ,可得AE =OE ,从而得BE =AE=OE =12,所以点B 的坐标为(-12,-12).15.减小 [解析] 点(2,-6)在正比例函数y =kx 的图象上,即当x =2时,y =-6,∴-6=2k ,解得k =-3.∵k <0,∴y 随x 的增大而减小.16.y =73x [解析] 根据正比例函数的概念,可得9t 2=1,解得t =±13.∵函数图象经过第一、三象限,∴1-4t>0,解得t<14,∴t =-13.将t =-13代入y =(1-4t)x9t 2,得y =73x.17.y =2x(答案不唯一) [解析] ∵正比例函数y =kx 的图象经过第一、三象限, ∴k >0,当k 取2时可得函数解析式为y =2x.18.[全品导学号:07712143]1319.解:(1)将x =1,y =2代入y =kx ,得k =2, 故正比例函数的解析式为y =2x.(2)当x =-1时,y =2³(-1)=-2. (3)∵0≤y ≤5,∴0≤2x ≤5,解得0≤x ≤52.20.[全品导学号:07712144]解:(1)函数的图象如图:(2)y 轴的夹角变小. (3)由(2)中的规律可知,k 1>k 2.周滚动练习(二)(全品第70-71页)教师详答1.B 2.C 3.C4.[全品导学号:07712145]C 5.C6.πr 2S 和r π7.二、四 0 -5 减小8.[全品导学号:07712146]2 [解析] 由题意知,当x =3时,y 与x 满足的解析式为y =-x +5.把x =3代入y =-x +5,得-3+5=2,所以当输入x =3时,输出的结果y =2.9.< [解析]∵P 1(1,y 1),P 2(2,y 2)是正比例函数y =13x 的图象上的两点,∴y 1=13,y 2=13³2=23.∵13<23,∴y 1<y 2. 10.x ≥-2且x ≠111.解:(1)y =0.1x. (2)x =28-5y. (3)y =4x. 其中(1)(3)中的y 是x 的正比例函数12.解:(1)观察图象可知:自变量x 的取值范围是0≤x ≤5. (2)观察图象可知:当x =5时,y 有最小值,最小值是2.5. (3)观察图象可知y 随着x 的增大而减小.13.[解析] 根据题意知小明和小刚行驶的时间是2.5小时,所以速度为502.5=20(千米/时),所以二人前1.5小时行驶了20³1.5=30(千米),修车后行驶的1小时行驶的路程为20千米,依此可画出图象.解:图象如图所示.14.解:(1)由题意得解得k =±2.当k 等于±2时,该函数是正比例函数.(2)当k =2时,正比例函数的图象经过第一、三象限,正比例函数的解析式为y =52x.(3)当k =-2时,正比例函数y 随x 的增大而减小,正比例函数的解析式为y =-32x.15.[全品导学号:07712147][解析] 两人行驶的路程s 是时间t 的函数.从图象可以看出骑自行车的人先出发却后到达乙地,行驶的路程都是100千米.解:(1)甲地与乙地相距100千米;骑摩托车的人用了2小时,骑自行车的人用了6小时;骑摩托车的人先到达乙地,早到了1小时.(2)骑自行车的人先匀速行驶了2小时,行驶40千米后休息了1小时,然后用3小时匀速到达乙地.骑摩托车的人在骑自行车的人出发3小时后出发,行驶2小时后到达乙地.(3)摩托车行驶的平均速度是50千米/时.19.2 一次函数19.2.2 一次函数第1课时一次函数的概念(全品第72页)教师详答1.C[解析] ①y=πx,②y=2x-1是一次函数,共2个.2.C3.[全品导学号:07712148]D4.5 -3 -3 55.6.D7.B8.[全品导学号:07712149]解:(1)当m=-3,n为任意实数时,它是一次函数.(2)当m=-3,n=2时,它是正比例函数.9.[全品导学号:07712150][解析] 从表格中可以看出一张方桌能坐4人,以后每多一张方桌可以多坐2个人.表中应填的数字为10,y与x之间的函数解析式是y=4+2(x-1)=2x +2.解:表中填10.(1)y=2x+2,y是x的一次函数.(2)把y=42代入y=2x+2中,得42=2x+2,解得x=20.答:需要20张这样的方桌.19.2 一次函数19.2.2 一次函数第2课时一次函数的图象与性质(全品第73-74页)教师详答1.A2.y=3x+2 [解析] 根据图象沿y轴向上平移的规律,得最终图象对应的函数解析式为y =3x-1+3=3x+2.3.C 4.D 5.C 6.D7.解:图象略.共同点:函数图象都是一条直线,且均交y轴于点(0,2).8.C9.A[解析] ∵k=-2<0,∴y随x的增大而减小.∵1<2,∴a>b.10.m>-211.四[解析] ∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0.∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.12.[全品导学号:07712151]解:(1)由1-3m=0且m-1≠0,得m=13.(2)把(0,2)代入,得1-3m=2,解得m=-13.(3)由m-1<0,得m<1.13.[全品导学号:07712152]C14.A[解析] 分四种情况:①当a>0,b>0时,直线y=ax+b和y=bx+a均经过第一、二、三象限,选项中不存在此情况;②当a>0,b<0时,直线y=ax+b经过第一、三、四象限,直线y=bx+a经过第一、二、四象限,选项A符合此条件;③当a<0,b>0时,直线y =ax+b经过第一、二、四象限,直线y=bx+a经过第一、三、四象限,选项中不存在此情况;④当a<0,b<0时,直线y=ax+b经过第二、三、四象限,直线y=bx+a经过第二、三、四象限,t选项不存在此情况.故选A.15.答案不唯一,如y=-x+3 [解析] 设一次函数的解析式为y=kx+b.因为一次函数的图象过点(0,3),所以b=3.又因为函数y随x的增大而减小,所以k<0.16.-6 [解析] 函数y=2x+3的图象与x轴的交点坐标是(-32,0),函数y=4x-b的图象与x轴的交点坐标是(b4,0),所以-32=b4,解得b=-6.17.解:当x=0时,y=-6.当y=0时,即-12x-6=0,解得x=-12.所以点A,B的坐标分别为(-12,0),(0,-6),所以OA=||-12=12,OB=||-6=6,所以S =12OA ²OB =12³12³6=36.19.[全品导学号:07712154][解析] (1)在图中描出表中已知四对对应值的点,分析四个点的排列位置,猜想它们在同一直线上,y 与x 之间是一次函数关系,从表中对应值发现:19=17³1+2,36=17³2+2,53=17³3+2,70=17³4+2,…,所以y 与x 之间的函数解析式不难求得.(2)中的问题可利用(1)中求得的函数解析式解决.解:(1)如图所示.猜想y 与x 之间是一次函数关系.y 关于x 的函数解析式为y =17x +2(x 为正整数). (2)由(1)得y 与x 之间的函数解析式为y =17x +2,当y =1000时,17x +2=1000,解得x =581217,而x 为正整数,所以x ≈59.答:每根彩纸链至少要用59个纸环.19.2 一次函数 19.2.2 一次函数第3课时 一次函数解析式的求法(全品第75-76页)教师详答1.2.A 3.D 4.C5.[全品导学号:07712155]D [解析] ∵点B 在正比例函数y =2x 的图象上,横坐标为1,∴y =2³1=2,∴B(1,2),设这个一次函数的解析式为y =kx +b.∵一次函数的图象过点A(0,3),与正比例函数y =2x 的图象相交于点B(1,2),∴可得出方程组解得∴这个一次函数的解析式为y =-x +3. 6.310.D [解析] 设直线y =-3x 向上平移后得到直线AB ,则直线AB 的函数解析式可设为y =-3x +k ,把(m ,n)代入得n =-3m +k ,解得k =3m +n , ∵3m +n =10,∴k =10,∴直线AB 的函数解析式为y =-3x +10. 故选D .11.[全品导学号:07712156]y =2x +2 [解析] 由图象知OA =2,在Rt △AOB 中,OB =(5)2-22=1,所以点B 的坐标为(-1,0).将A(0,2),B(-1,0)的坐标代入y =kx +b 中,解得k =2,b =2,所以函数解析式为y =2x +2.12.(-1,0) [解析] 如图,作出点A(2,3)关于x 轴对称的点C(2,-3),连接CB 交x 轴于点P ,且可求得直线CB 的函数解析式为y =-x -1,当y =0时,-x -1=0,解得x =-1,∴点P 的坐标是(-1,0).13.[全品导学号:07712157]-23或516.[全品导学号:07712158]73≤k ≤3 [解析] 若直线y =kx -k(k ≠0)过点(2,3),则3=2k -k ,解得k =3;若直线y =kx -k(k ≠0)过点(4,7),则7=4k -k ,解得:k =73.因为直线y =kx -k(k ≠0)与线段AB 有交点,所以k 的取值范围为73≤k ≤3.19.2 一次函数 19.2.2 一次函数第4课时 一次函数的应用(全品第77-78页)教师详答1.C2.y =0.3x +6(0≤x ≤5)运送到B港口的物资为(80-x)吨,Array从乙仓库运送到A港口的物资为(100-x)吨,运送到B港口的物资为50-(80-x)=(x-30)(吨),∴总运费y与x之间的函数解析式为y=14x+20(100-x)+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=-8x+2560,∵-8<0,∴y随x的增大而减小,∴当x=80时,总运费最低,当x=80时,y=-8³80+2560=1920,即最低费用为1920元.此时方案为:把甲仓库的物资全部运往A港口,再从乙仓库运往A港口20吨物资,乙仓库余下的全部物资运往B港口.7.[全品导学号:07712161]解:(1)∵从甲仓库运送到A港口的物资为x吨,∴从甲仓库周滚动练习(三)(全品第79-80页)教师详答1.D[解析] ∵k=2>0,b=1>0,根据一次函数的图象即可判断函数图象经过第一、二、三象限,不经过第四象限.故选D.2.B3.C[解析] A项,令y=-2x+1中的x=-1,则y=3,∴一次函数的图象不过点(-1,2),即A项不正确;B项,∵k=-2<0,b=1>0,∴一次函数的图象经过第一、二、四象限,即B项不正确;C项,∵k=-2<0,∴一次函数中的y随x的增大而减小.∵令y=-2x+1中的x=1,则y=-1,∴当x>1时,y<0成立,即C项正确;D.∵k=-2<0,∴一次函数中y随x的增大而减小,即D项不正确.故选C.4.C[解析] ∵正比例函数y=kx的图象经过点(2,-3),∴-3=2k,解得k=-32,∴正比例函数的解析式是y=-32x,四个选项中只有C选项的点在正比例函数y=-32x的图象上.故选C.5.B[解析] 因为正比例函数y=kx的图象过第二、四象限,所以k<0,因此一次函数y =x+k中y随x的增大而增大,且其图象与y轴负半轴相交,即函数图象位于第一、三、四象限.故选B.6.[全品导学号:07712163]C[解析] ①乙晚出发1小时.②乙出发3-1=2(时)后追上甲.③甲的速度是123=4(千米/时).④乙在距A地12千米处追上甲,且乙的速度快,所以乙先到达B地.综上可知,有3个说法正确.故选C.7.y=30x30 x和y8.≠1 -19.< [解析] 一次函数y=2x+1中y随x的增大而增大,所以若x1<x2,则y1<y2.10.(0,-3) [解析] 将直线y=3x+2沿y轴向下平移5个单位长度可得y=3x+2-5,即y=3x-3,∴平移后直线与y轴的交点坐标为(0,-3).11.三12.[全品导学号:07712164]5 [解析] 由题意可知:从甲地匀速驶往乙地,所用时间为3.2-0.5=2.7(时),返回的速度是它从甲地驶往乙地的速度的1.5倍,返回用的时间为2.7÷1.5=1.8(时),所以a=3.2+1.8=5.13.解:(1)∵k>0时,函数y随x的增大而增大,即2a+4>0,解得a>-2,b为任意实数.(2)∵k<0,b<0时,函数图象经过第二、三、四象限,∴2a+4<0,-(3-b)<0,解得a<-2,b<3,∴当a<-2,b<3时,函数图象经过第二、三、四象限.14.解:(1)把(1,4)代入y=kx+3,得k+3=4,解得k=1,即这个一次函数的解析式为y=x+3.(2)∵k=1,∴原不等式可化为x+3≤6,解得x≤3.15.解:由题意,得y=27x+3. 当x=20时,y=27³20+3=543.16.解:(1)(3900-3650)÷5=250÷5=50(米/分),即小丽步行的速度为50米/分.(18-15)³50=150(米).即学校与公交站台乙之间的距离为150米.(2)设过C,D两点的直线的函数解析式为y=kx+b.∵C(8,3650),D(15,150),∴当8≤x ≤15时,y =-500x +7650.17.[全品导学号:07712165]解:(1)∵直线y =2x +1与直线y =kx -1垂直, ∴2k =-1,解得k =-12.(2)∵过点A 的直线与直线y =-13x +3垂直,∴可设过点A 的直线所对应的函数解析式为y =3x +b. 把点A 的坐标(2,3)代入,得3=3³2+b ,解得b =-3, ∴该直线所对应的函数解析式为y =3x -3.19.2 一次函数19.2.3 一次函数与方程、不等式第1课时 一次函数与一元一次方程、不等式(全品第81-82页)教师详答1.C2.(-3,0) [解析] 因为关于x 的方程mx +n =0的解为x =-3,所以-3m +n =0,即对于函数y =mx +n ,当x =-3时,y =0,∴点(-3,0)是直线y =mx +n 与x 轴的交点.3.x =2 [解析] 因为点(2,3)在一次函数y =kx +b 的图象上,所以3=2k +b ,即关于x 的方程kx +b =3的解为x =2.4.x =-15.解:(1)x =2.(2)x =0.(3)x =-1.6.[解析] 方程2x -6=0的解可以利用函数y =2x -6的图象与x 轴的交点坐标求得. 解:函数y =2x -6的图象如图所示.从函数图象上可以看出直线y =2x -6与x 轴的交点坐标是(3,0),所以方程2x -6=0的解是x =3.7.C 8.B 9.C10.≥211.[全品导学号:07712166]解:函数y =2x +6的图象如图:(1)当x =-3时,y =0,所以方程2x +6=0的解为x =-3. (2)当x >-1时,y >4,所以不等式2x +6>4的解集为x >-1. (3)当-4≤x ≤-2时,-2≤y ≤2.12.B [解析] 将一次函数y =12x 的图象向上平移2个单位长度,平移后的图象所对应的函数解析式为y =12x +2.令y =0,解得x =-4;令x =0,解得y =2,画出其图象如图所示.∴若y >0,则x的取值范围是13.-4 -11 [解析] 由题意,得3x +1=2x -3,解得x =-4.当x =-4时,y =3x +1=-11.14.-1<x<2 [解析] 两函数图象都在x 轴上方的自变量的取值在-1和2之间,所以-1<x<2.15.[全品导学号:07712167]y<-2 [解析] 因为一次函数y =kx +b 的图象过点(0,-4),所以y =kx -4.将(2,0)代入y =kx -4,得0=2k -4,解得k =2,所以y =2x -4.当x =1时,y =2³1-4=-2.根据图象可得当x<1时,y<-2.17.[全品导学号:07712169]解:(1)根据表中的数据可知y 与x 满足正比例函数关系.设y =kx ,将x =100,y =40代入y =kx ,得k =0.4,所以y =0.4x ,其他几组值也符合该函数解析式,所以函数的解析式为y=0.4x.(2)y =0.15x +200. (3)如图所示:19.2 一次函数19.2.3 一次函数与方程、不等式第2课时 一次函数与二元一次方程组(全品第83页)教师详答1.A [解析] 方法一:图中的两条直线分别为直线y =5x -1和直线y =2x +5,分别代入y =0和x =0,可求出两条直线与x 轴、y 轴的交点坐标,根据交点坐标知A 项是正确的.方法二:首先根据k 的值排除C 项和D 项,然后由直线的倾斜程度考虑B 项是否正确,于是把B 项中的交点坐标(3,7)代入直线解析式中,发现不成立.故选A .2.D6.[全品导学号:07712171]D [解析] 直线y =-23x -3与y 轴的交点为(0,-3).当a=-3时,直线y =a 与y =-23x -3交于y 轴上的点(0,-3);当a<-3时,直线y =a 与y =-23x -3的交点在第四象限,所以选D .7.[全品导学号:07712172]解:直线AB 和直线CD 所对应的函数解析式分别为y =2x +6和y =-12x +1,∴直线AB 与直线CD 的交点坐标为(-2,2).8.[全品导学号:07712173]解:∵直线y =-43x +4与y 轴交于点A ,∴点A 的坐标为(0,4).∵直线y =45x +45与x 轴交于点C ,∴点C 的坐标为(-1,0).∵直线y =-43x +4与直线y=45x +45相交于点B ,∴点B 的坐标为(32,2).∵直线y =-43x +4与x 轴交于点D ,∴点D 的坐标为(3,0),∴△ACD 的面积为12³4³4=8,△BCD 的面积为12³4³2=4,∴△ABC 的面积为8-4=4.专题训练(三) 一次函数易错题(全品第84页)教师详答1.-2 [解析] 根据一次函数的定义,得错误!解得m =-2.2.解:已知正比例函数y =(m -1)x5-m 2的图象经过第二、四象限,∴m -1<0,5-m 2=1, 解得m =-2.3.x =1或x =-1 [解析] 在x 轴上到y 轴的距离为1的点的坐标为(1,0)或(-1,0),不要忽略任何一种情况.4.-3≤m <2 [解析] 由一次函数y =(m -2)x +m +3的图象不经过第三象限, 可知它经过第二、四象限或第一、二、四象限, ∴错误!或错误! 解得-3≤m <2.5.[全品导学号:07712174]解:一次函数y =kx +4的图象与y 轴、x 轴的交点坐标分别是(0,4),⎝ ⎛⎭⎪⎫-4k ,0,图象与两坐标轴围成的三角形的面积是12³4³⎪⎪⎪⎪⎪⎪-4k =16,解得k =±12.所以这个一次函数的解析式是y =12x +4或y =-12x +4.6.D 7.C 8.C9.[全品导学号:07712175]解:若y 随x 的增大而增大,则当x =-3时,y =-1;当x =2时,y =9.所以错误! 解得错误!所以k +b =7.若y 随x 的增大而减小,则当x =-3时,y =9;当x =2时,y =-1. 所以错误!解得错误! 所以k +b =1.综上所述,k +b 的值是7或1.19.3 课题学习 选择方案(全品第85-86页)教师详答1.B [解析] 两函数图象的交点坐标为(2,4),即售出2件产品时,售价相同;在交点左侧,乙家较便宜;在交点右侧,甲家较便宜;买1件产品时,乙家的售价为2元.故选B .2.169网费3.解:(1)方案一:y =0.95x ;方案二:y =0.9x +300.(2)∵0.95³5880=5586(元),0.9³5880+300=5592(元),∴选择方案一更省钱. 4.[全品导学号:07712176]解:(1)∵购买大型客车x 辆,∴购买中型客车(20-x)辆. 根据题意,得y =62x +40(20-x)=22x +800. (2)依题意得20-x <x.解得x >10.∵y =22x +800,y 随着x 的增大而增大,x 为整数,∴当x =11时,购车费用最省,为22³11+800=1042(万元). 此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,该方案所需费用为1042万元. 5.解:(1)设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元,根据题意,得答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m 件,则购进乙种商品(100-m)件,根据题意,得 m ≥4(100-m), 解得m ≥80.设卖完A ,B 两种商品商场的利润为w ,则w =(40-30)m +(90-70)(100-m)=-10m +2000,∵-10<0,w 随m 的增大而减小,∴当m =80时,w 取得最大值,最大利润为1200元. 故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元. 6.解:(1)由题意知: 当0<x ≤1时,y 甲=22x ;当x >1时,y 甲=22+15(x -1)=15x +7. y 乙=16x +3.(2)①当0<x ≤1时,令y 甲<y 乙,即22x <16x +3,解得0<x <12;令y 甲=y 乙,即22x =16x +3,解得x =12;令y 甲>y 乙,即22x >16x +3,解得12<x ≤1.②当x >1时,令y 甲<y 乙,即15x +7<16x +3, 解得x >4;令y 甲=y 乙,即15x +7=16x +3, 解得x =4;令y 甲>y 乙,即15x +7>16x +3, 解得1<x <4.综上可知:当12<x <4时,选乙快递公司省钱;当x =4或x =12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱.7.[全品导学号:07712177]解:(1)根据题意可知,参加演出的男生有x 人,参加演出的女生有(2x -100)人.总费用y 1(单位:元)和y 2(单位:元)与参演男生人数x 之间的函数解析式分别是:y 1=0.7[120x +100(2x -100)]+2200=224x -4800,y 2=0.8[100(3x -100)]=240x -8000.(2)当y 1>y 2时,即224x -4800>240x -8000,解得x <200; 当y 1=y 2时,即224x -4800=240x -8000,解得x =200; 当y 1<y 2时,即224x -4800<240x -8000,解得x >200.即当参演男生人数少于200人时,购买B 公司的服装比较合算;当参演男生人数等于200人时,购买两家公司的服装总费用相同,可在任一家公司购买;当参演男生人数多于200人时,购买A 公司的服装比较合算.8.[全品导学号:07712178]解:(1)y A =20x +25(200-x)=-5x +5000; y B =15(240-x)+18(60+x)=3x +4680.(2)∵y A -y B =(-5x +5000)-(3x +4680)=-8x +320. ∴当-8x +320>0,即x<40时,B 地的运费较少; 当-8x +320=0,即x =40时,两地的运费一样多; 当-8x +320<0,即x>40时,A 地的运费较少.(3)设两地运费之和为y 元,则y =y A +y B =(-5x +5000)+(3x +4680)=-2x +9680. 由题意知3x +4680≤4830, 解得x ≤50.∵-2<0,∴y 随x 的增大而减小, ∴x 为50时,y 有最小值,∴y 最小值=-2³50+9680=9580,∴在此情况下,当A 地运往甲、乙两仓库的猕猴桃分别为50吨、150吨;B 地运往甲、乙两仓库的猕猴桃分别为190吨、110吨时,才能使两地运费之和最少,最少费用是9580元.小结与思考(全品第87-88页)教师详答1.D 2.D 3.D4.D [解析] x =-3时,分母x +3为0,无意义.故选D . 5.y =2x -37.B [解析] 因为b <0,所以直线与y 轴交于负半轴.故选B .8.[全品导学号:07712179]B [解析] ∵直线y =-x +m 与y =nx +4n(n ≠0)的交点的横坐标为-2,直线y =nx +4n 与x 轴的交点坐标为(-4,0),∴关于x 的不等式组-x +m >nx +4n >0的解集为-4<x <-2,∴其整数解为-3.故选B . 9.一、三 [解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k<0,b<0,所以kb>0,所以正比例函数y =kbx 的图象经过第一、三象限.10.>11.[全品导学号:07712180] 25 [解析] 由题意,得b =a +5,d =c +5,所以a(c -d)-b(c -d)=(a -b)(c -d)=(-5)³(-5)=25.12.4 [解析] 如图,在△ABC 中,BC 为底,AO 为高,且高为2,面积为4,故△ABC 的底边BC =8÷2=4.因为点B 的坐标为(0,b 1),点C 的坐标为(0,b 2),所以b 1-b 2即是BC 的长.13.A14.解:(1)设工厂生产x 件A 产品,则生产(50-x)件B 产品.根据题意,得解得30≤x ≤32. ∵x 为整数,∴x =30,31,32,∴有三种生产方案:①A:30件,B:20件;②A:31件,B:19件;③A:32件,B:18件.(2)方法一:当生产A种产品30件,B种产品20件时,利润为30³80+20³120=4800(元).当生产A种产品31件,B种产品19件时,31³80+19³120=4760(元).当生产A种产品32件,B种产品18件时,32³80+18³120=4720(元).故当生产A种产品30件,B种产品20件时,获得的利润最大.方法二:B产品生产得越多获得的利润越大,即生产A种产品30件,B种产品20件时,最大利润为30³80+20³120=4800(元).15.[全品导学号:07712181]解:(1)y=4x大+210.(2)①当x大=6时,y=4³6+210=234,∴y=3x小+234.②根据题意,得3x小+234≤260,解得x小≤823,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.本章中考演练(全品第89-90页)教师详答1.B[解析] 根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选B.2.A[分析] 由题意,得x≥0且x-2≠0,解得x≥0且x≠2.故选A.3.[全品导学号:07712182]C[解析] ∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12³4³(6-x)=12-2x(0<x<6),∴选项C符合.故选C.4.A5.(-4,1)6.y=2x-2 [解析] 根据平移的规则可知:直线y=2x+1向下平移3个单位长度后所得直线的函数解析式为y=2x+1-3=2x-2.7.一[解析] ∵关于x的方程mx+3=4的解为x=1,∴m+3=4,解得m=1,∴直线y=(m-2)x-3为直线y=-x-3,∴直线y=(m-2)x-3一定不经过第一象限.8.二、四[解析] 由题意得|m|=1,且m-1≠0,解得m=-1,∴函数解析式为y=-2x.∵k=-2<0,∴该函数的图象经过第二、四象限.故答案为:二、四.9.-110.解:将x=-1,y=1代入y=kx+2,得1=-k+2,解得k=1.∴一次函数的解析式为y=x+2.当x=0时,y=2;当y=0时,x=-2,∴函数图象经过(0,2),(-2,0)两点,此函数图象如图所示.11.解:(1)∵点B 在直线l 2上, ∴4=2m ,∴m =2, ∴B(2,4).设直线l 1的函数解析式为y =kx +b ,∴直线l 1的函数解析式为y =12x +3.(2)可知C ⎝ ⎛⎭⎪⎫n ,12n +3,D(n ,2n), 当点C 在点D 上方时,有n2+3>2n ,解得n <2.12.解:(1)∵点A(2,0),AB =13,∴OB =AB 2-OA 2=3, ∴点B 的坐标为(0,3). (2)∵△ABC 的面积为4, ∴12³BC ³OA =4, ∴12³BC ³2=4,即BC =4. ∵OB =3,∴OC =4-3=1, ∴C(0,-1).设直线l 2的函数解析式为y =kx +b ,则∴该运动员从起点到第二次经过C 点所用的时间是7+68=75(分), ∴直线AB 经过(35,10.5),(75,2.1)两点. 设AB 所在直线的函数解析式为s =kt +b ,∴AB 所在直线的函数解析式为s =-0.21t +17.85.②该运动员跑完赛程用的时间即为直线AB 与x 轴交点的横坐标, ∴当s =0时,-0.21t +17.85=0,解得t =85. ∴该运动员跑完赛程用时85分钟.14.解:(1)设y B 关于x 的函数解析式为y B =k 1x +b(k 1≠0), 由线段EF 过点E(1,0)和点P(3,180),得∴y B 关于x 的函数解析式为y B =90x -90(1≤x ≤6). (2)设y A 关于x 的函数解析式为y A =k 2x(k 2≠0), 由题意,得180=3k 2,即k 2=60,∴y A =60x. 当x =5时,y A =5³60=300, 当x =6时,y B =90³6-90=450, 450-300=150(千克).答:如果A ,B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.自我综合评价(四)(全品第91-92页)教师详答1.D2.B [解析] 因为-2<0,所以y 随x 的增大而减小.因为3>-2,所以y 1<y 2. 3.B4.C [解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k <0,b <0. 5.C 6.D7.x ≠1 [解析] 函数y =x +1x -1的自变量x 的取值范围是x -1≠0,即x ≠1.8.y =32x -29.x =2 [解析] 观察图象,由直线y =ax +b 与直线y =cx +d 相交于点(2,1),即可知关于x 的一元一次方程ax +b =cx +d 的解为直线y =ax +b 与直线y =cx +d 交点的横坐标,即x =2.10.4.5 [解析] 令x =0,可求直线l 1与y 轴的交点坐标是(0,4),直线l 2与y 轴的交点坐标是(0,-5),所以BC =4-(-5)=9.因为E ,F 分别是AB ,AC 的中点,所以EF =12BC =92.11.[全品导学号:07712184]0<m <3212.解:(1)设这个一次函数的解析式为y =kx +b , ∵该函数图象经过(-2,1)和(1,4)两点,∴这个一次函数的解析式为y =x +3. (2)当x =3时,y =3+3=6.13.解:(1)由y 1=-12x +1,可知当y =0时,x =2,∴点A 的坐标是(2,0), ∴AO =2.∵直线y 1=-12x +1与直线y 2=-32x 交于点B ,∴点B 的坐标是(-1,1.5), ∴△AOB 的面积=12³2³1.5=1.5.(2)由(1)可知交点B 的坐标是(-1,1.5), 由函数图象可知y 1>y 2时,x >-1. 14.[全品导学号:07712185]解:(1)令y =0,得x =-32,∴点A 的坐标为⎝ ⎛⎭⎪⎫-32,0. 令x =0,得y =3,∴点B 的坐标为(0,3). (2)设点P 的坐标为(x ,0), 依题意,得x =±3.∴点P 的坐标为(3,0)或(-3,0),∴S △ABP =12³⎝ ⎛⎭⎪⎫32+3³3=274,或S △ABP =12³⎝ ⎛⎭⎪⎫3-32³3=94,∴△ABP 的面积为274或94.15.解:(1)从小刚家到该景区乘车一共用了4 h . (2)设线段AB 所在直线的函数解析式为y =kx +b. ∵点A(1,80),B(3,320)在直线AB 上,∴y =120x -40(1≤x ≤3).(3)当x =2.5时,y =120³2.5-40=260, 380-260=120(km ).故小刚一家出发2.5小时时离目的地还有120 km . 16.解:(1)根据题意,得2000³2x +1600x +1000³(100-3x)≤170000. 解得x ≤261213. ∵x 为正整数, ∴x 最大为26. 答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y =(2300-2000)³2x +(1800-1600)x +(1100-1000)³(100-3x)=500x +10000. ∵k =500>0,∴y 随x 的增大而增大.∵x ≤261213且x 为正整数,∴当x =26时,y 取最大值,最大值为500³26+10000=23000.答:当购买冰箱26台时,商店销售完这批家电后获得的利润最大,最大利润为23000元.第十九章一次函数测试题。
中小学电子资源教学课件中小学电子资源教学课件19.1.1变量与函数第一课时变量

C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
变量
常量
(2)式变-2)量常=量(n 子×m180°( 变量多边m形为的内角和,
n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= . 变量
3.小明带着10元钱去文具商店买日记本.已
知每本日记售价2元,则小明剩余的钱数y(元)
特别 提醒
பைடு நூலகம்
1.判断一个量是变量还是常量的关键:看 这个量所在的变化过程中,该量的值是否发 生变化(或者是否会取不同的数值).
2.指出一个变化过程中的常量时,应连同 它前面的符号.
基础巩固
随堂演练
1.某人要在规定的时间内加工100个零件,则工作
效率p与时间t之间的关系,下列说法正确的是( C )
A.数100和p,t都是变量 B.数100和p都是常量
变量
你能从中发现什么呢?
有些量的数值是变化的,例如 时间t,路程s,售出票数x……
有些量的数值是始终不变的,例如 速度60km/h,票价10元/张……
在一个变化过程中,我们称数值发生变化 的量为变量,数值始终不变的量为常量.
练习 指出下列问题中的变量和常量:
1.某市的自来水价为4元/t.现在抽取若干 户居民调查水费支出情况,记某户月用水量 为x t,月应交水费y元. 变量:月用水量x t,月应交水费y元; 常量:自来水价4元/t.
变量:半径r,圆周长C; 常量:圆周率π.
4.把10本书随意放入两个抽屉(每个抽屉 内都放),第一个抽屉放入x本,第二个抽屉 放入y本.
变量:第一个抽屉x本,第二个抽屉y本; 常量:10本书.
人教八年级数学下册-变量与函数(附习题)

C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
(1)圆的变周量长l=2π常r(其量中l为周长,r为半径);
(2)式变子量m=(n-常2)量×18变0°量(m为多边形的内角
和,n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= 36 . 变量
2.能列出函数解析式表示两个变量之间 的关系.
3.能根据函数解析式求函数自变量的取 值范围.
4.能根据问题的实际意义求函数自变量 的取值范围.
推进新课
知识点 1 函数的概念及函数值
思考下面两个问题, 你学到了什么?
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
小圆半径 小圆面积 圆环面积
课堂小结
变量
数值发生变化的量
常量
数值始终不变的量
拓展延伸 心理学家发现,学生对概念的接受能力y
与提出概念所用的时间x(单位:分)之间有如 下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
13分钟
第2课时 函数
新课导入
上节课我们学习了变量与常量, 这节课我们进一步学习函数及函数自 变量的取值范围问题.
试判断下面所给的两个例子中两 个变量是否也存在一一对应的关系.
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案

售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;
人教版八年级数学下册19.1.1 变量与函数(第1课时)

行星在宇宙中的位置随时间而变化
万物皆变
气温随海拔而变化
汽车行驶里程随行驶时间而变化
像这样在某一个过程中,有些量固定不变,有些量不断改变.为了更深刻地认识和了解这些变化现象中所隐含的变化规律,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.
变量
数值始终不变的量
常量
上述运动变化过程中出现的量,你认为可以怎样分类?
s = 60t
y = 10x
变量:在一个变化过程中,数值发生变化的量为变量.
常量:在一个变化过程中,数值始终不变的量为常量.
2(x+y)=10
S=πr2
提示:在同一个变化过程中,理解变量与常量的关键词:发生了变化和始终不变.
B
B
元/升
数量、金额
指出下列关系式中的变量与常量:
(1) y = 3x -4;
(2) y=x;
(3) y= x2+2x-8;
(4) S = πr2.
解:(1)3和-4是常量,x和y是变量.
(2)1是常量,x、y是变量.
(3)1、2、-8是常量,x、y是变量.
(4)π是常量,s、r是变量.
1. 结合实例,了解变量、常量的意义,并能正确区分常量与变量.
2. 体会运动变化过程中的数量变化.
学习目标
3. 能确定两个量之间的关系式.
t /h
1
2
3
4
5
s /km
1.汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h,填写下表,s的值随t 的值的变化而变化吗? (1)请同学们根据题意填写上表:(2)在以上这个过程中,变化的量是______________, 不变化的量是_____.(3)试用含t的式子表示s 是_______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
______________. 2
n, 变 量:
s 常 量: 2, 180
总结回顾
1.在一个变化的过程中,我们称数值发生变化的量 为变量,数值始终不变的量为常量。 2.能指出问题中的变量与常量; 3.会列变量之间的关系式。
y(元)
的关系式,可以表示为:
y = 2x
购买的总本数x 总金额y 单价
变量 变量 常量
2、若球体体积为V,半径为R,则V=
其中变量是
4 是 3
V
.、Biblioteka R4 33 R 3
3
,常量
3、汽车开始行使时油箱内有油40升,如果每小 时耗油5升,则油箱内余油量Q升与行使时间t小 时的关系是是 Q=40-5t . 并指出其 中的常量是 40、5 ,变量是 Q、t
6、一辆汽车以40千米/小时的速度行驶, 写出行驶路程s(千米)与行驶时间t(时) 的关系式。
S = 40t
时间 t 小时 路程 S 千米
速度 40千米/时
变量 变量
常量
7、一辆汽车要行驶50千米的路程,写出行 驶速度v(千米/小时)与行驶时间t(小时) 之间的关系式 .
50 V= t 时间 t 小时 速度V千米/时 路程50千米
19.1.1变量与函数
第1课时
探究新知
1、汽车以60km/h的速度匀速行驶,行
驶路程为s km,行驶的时间为t h,填 写下表,s的值随t的值的变化而变化吗? t/h s/km 1 60 2 120 3 180 4 240 5 300
(1)在以上这个过程中,变化的量是 S、t 60千米/时 ________ ,不变化的量是_________ 。
19.1.1变量与函数 (第一课时)
当你坐在摩天轮上时,你离开地面的高 度随着时间而变化
行星在宇宙中的位置随时间而变化
气温随海拔而变化
汽车行驶里程随行驶时间而变化
在我们周围的事物中,这种一个量随 另一个量的变化而变化的现象大量存 在。为了更深刻地认识千变万化的世 界,在这一章中我们将学习有关一种 量随另一种量变化的知识,共同见证 事物变化的规律.
变量
变量
常量
试一试,你能行
1、指出下面各个问题中,哪些量是 变量,哪些量是常量?
(1)如果直角三角形中一锐角的度数
为 ,另一个锐角的度数为 ,试 用含 的式子表示 .
0 - = 90 解: 变量是 、 常量是 90
(2)如果某种报纸的单价为
示购买这种报纸的份数,
的总价,试用含
4、一个三角形的底边长5cm,高h可以任意 S = 5h 其 伸缩.面积S随h变化关系式__________ 2 5 s 、h 中的常量是__________变量__________.
2
5、夏季高山上温度从山脚起每升高 100米降低0.7℃,已知山脚下温度是 23℃,则温度y ℃与上升高度x米之间 y=23-0.007x,其中的常量 关系式为__________ 23、0.007 变量__________ x、 y __________
r、s (1)在以上这个过程中,变化的量是________ ,不变 化的量是_________。 (2)怎样用含有r的式子表示s呢?
2
s r
2
4.用10m长的绳子围一个矩形。当矩形的一边长x分 别为3m,3.5m,4m,4.5m时,它的邻边长y分别 为多少?y的值随x的值的变化而变化吗? 2m 、_____ 1m 、_____ 0.5m 。 1.5m 、_____ 邻边长y分别为_____
y (元)表示买报纸 的式子表示 . y x
x、y
a
元,
x
表
解:
y ax
变量是
常量是
a
2、完成下列问题,并指出其中的变量与常量。
(1)等腰三角形的顶角为x度,那么底角y的 180 x 度数用含x的式子表示为
y
x,y 常 量: 变 量: 2, 180 (2)n边形的内角和S与边数n的关系式
x 、y (1)在以上这个过程中,变化的量是________,不 10m 变化的量是_________ 。 (2)你能用含x的式子表示y吗? y=5-x
形成概念
在一个变化过程中,我们称数值发生 变化的量为变量,数值始终不变的量 为常量.
巩固练习
1、小明到商店买练习簿,每本单价2元,
购买的总数
x(本)与总金额
(2)怎样用含有t的式子表示s呢?
S=60t
2.电影票的售价为10元/张。第一场售出150张票,第二 场售出205张票,第三场售出310张票,三场电影的票 房收入各是多少元?设一场电影售出x张票,票房收入 为y元,y的值随x的值得变化而变化吗? 三场电影的票房收入分别是 1500 ____元、2050 ____元、 3100 ____ 元。 x、 y (1)在以上这个过程中,变化的量是________ , 10元/张 不变化的量是_________ 。 (2)怎样用含有x的式子表示y呢?
y=10x
3.你见过水中的涟漪吗?圆形水波慢慢地扩大, 这一过程中,当圆的半径r分别为 10cm,20cm,30cm时,圆的面积s分别为多少? s的值随r的值的变化而变化吗?
2 100 π cm 400 cm2 、 圆的面积分别是__________、__________
900πcm 。 __________