【通用版】2021年中考数学专题《分式与分式方程和二次根式》(含解析)最新人教版
专题03分式与二次根式(共50题)-2021年中考数学真题分项汇编(解析版)(全国通用)

2021年中考数学真题分项汇编【全国通用】专题3分式与二次根式(共50题) 一.选择题(共13小题)1.(2020•安顺)当x =1时,下列分式没有意义的是( )A .x+1xB .x x−1C .x−1xD .x x+1【分析】直接利用分式有意义的条件分析得出答案.【解析】A 、x+1x ,当x =1时,分式有意义不合题意;B 、x x−1,当x =1时,x ﹣1=0,分式无意义符合题意;C 、x−1x ,当x =1时,分式有意义不合题意;D 、x x+1,当x =1时,分式有意义不合题意;故选:B .2.(2020•遂宁)下列计算正确的是( )A .7ab ﹣5a =2bB .(a +1a )2=a 2+1a 2C .(﹣3a 2b )2=6a 4b 2D .3a 2b ÷b =3a 2【分析】根据整式的加减、乘除分别进行计算,再判断即可.【解析】7ab 与﹣5a 不是同类项,不能合并,因此选项A 不正确;根据完全平方公式可得(a +1a )2=a 2+1a 2+2,因此选项B 不正确;(﹣3a 2b )2=9a 4b 2,因此选项C 不正确;3a 2b ÷b =3a 2,因此选项D 正确;故选:D .3.(2020•金华)分式x+5x−2的值是零,则x 的值为( )A .2B .5C .﹣2D .﹣5 【分析】利用分式值为零的条件可得x +5=0,且x ﹣2≠0,再解即可.【解析】由题意得:x +5=0,且x ﹣2≠0,解得:x =﹣5,故选:D .4.(2020•绥化)化简|√2−3|的结果正确的是( )A .√2−3B .−√2−3C .√2+3D .3−√2【分析】根据绝对值的定义解答即可.【解析】∵√2−3<0,∴|√2−3|=−(√2−3)=3−√2.故选:D .5.(2020•泰州)下列等式成立的是( )A .3+4√2=7√2B .√3×√2=√5C .√36=2√3D .√(−3)2=3【分析】根据二次根式的加、乘、除法法则及二次根式的性质逐一判断即可得.【解析】A .3与4√2不是同类二次根式,不能合并,此选项计算错误;B .√3×√2=√6,此选项计算错误;C .√3÷6=√3×√6=3√2,此选项计算错误; D .√(−3)2=3,此选项计算正确;故选:D .6.(2020•聊城)计算√45÷3√3×√35的结果正确的是( )A .1B .53C .5D .9【分析】根据二次根式的性质化简二次根式后,再根据二次根式的乘除法法则计算即可. 【解析】原式=3√5÷3√3×√155 =3√5×√39×√155 =√5×3×1515 =1515=1.故选:A .7.(2020•无锡)下列选项错误的是( )A .cos60°=12B .a 2•a 3=a 5C .√2=√22D .2(x ﹣2y )=2x ﹣2y 【分析】分别根据特殊角的三角函数值,同底数幂的乘法法则,二次根式的除法法则以及去括号法则逐一判断即可.【解析】A .cos60°=12,故本选项不合题意;B .a 2•a 3=a 5,故本选项不合题意;C .√2=√2√2⋅√2=√22,故本选项不合题意; D .2(x ﹣2y )=2x ﹣4y ,故本选项符合题意.故选:D .8.(2020•杭州)√2×√3=( )A .√5B .√6C .2√3D .3√2 【分析】根据二次根式的乘法运算法则进行运算即可.【解析】√2×√3=√6,故选:B .9.(2020•上海)下列二次根式中,与√3是同类二次根式的是( )A .√6B .√9C .√12D .√18【分析】根据同类二次根式的定义,先化简,再判断. 【解析】A .√6与√3的被开方数不相同,故不是同类二次根式;B .√9=3,与√3不是同类二次根式;C .√12=2√3,与√3被开方数相同,故是同类二次根式;D .√18=3√2,与√3被开方数不同,故不是同类二次根式.故选:C .10.(2020•绥化)下列等式成立的是( )A .√16=±4B .√−83=2C .﹣a √1a =√−aD .−√64=−8【分析】分别根据算术平方根的定义,立方根的定义,二次根式的性质逐一化简即可判断.【解析】A .√16=4,故本选项不合题意;B .√−83=−2,故本选项不合题意;C .−a √1a =−√a ,故本选项不合题意;D .−√64=−8,故本选项符合题意.故选:D .11.(2020•济宁)下列各式是最简二次根式的是( )A .√13B .√12C .√a 3D .√53【分析】利用最简二次根式定义判断即可.【解析】A 、√13是最简二次根式,符合题意;B 、√12=2√3,不是最简二次根式,不符合题意;C 、√a 3=|a |√a ,不是最简二次根式,不符合题意;D 、√53=√153,不是最简二次根式,不符合题意.故选:A .12.(2020•重庆)下列计算中,正确的是( )A .√2+√3=√5B .2+√2=2√2C .√2×√3=√6D .2√3−2=√3【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【解析】A .√2与√3不是同类二次根式,不能合并,此选项计算错误;B .2与√2不是同类二次根式,不能合并,此选项计算错误;C .√2×√3=√2×3=√6,此选项计算正确;D .2√3与﹣2不是同类二次根式,不能合并,此选项错误;故选:C .13.(2020•衢州)要使二次根式√x −3有意义,则x 的值可以为( )A .0B .1C .2D .4【分析】根据二次根式有意义的条件可得x ﹣3≥0,再解即可.【解析】由题意得:x ﹣3≥0,解得:x ≥3,故选:D .二.填空题(共12小题)14.(2020•济宁)已如m +n =﹣3,则分式m+n m ÷(−m 2−n 2m −2n )的值是 13 .【分析】根据分式运算法则即可求出答案.【解析】原式=m+n m ÷−(m 2+2mn+n 2)m=m+n m •m −(m+n)2=−1m+n ,当m +n =﹣3时,原式=13故答案为:13 15.(2020•聊城)计算:(1+a 1−a )÷1a 2−a= ﹣a . 【分析】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案.【解析】原式=1−a+a 1−a •a (a ﹣1) =11−a •a (a ﹣1)=﹣a .故答案为:﹣a .16.(2020•南充)若x 2+3x =﹣1,则x −1x+1= ﹣2 . 【分析】根据分式的减法可以将所求式子化简,然后根据x 2+3x =﹣1,可以得到x 2=﹣1﹣3x ,代入化简后的式子即可解答本题.【解析】x −1x+1=x(x+1)−1x+1 =x 2+x−1x+1, ∵x 2+3x =﹣1,∴x 2=﹣1﹣3x ,∴原式=−1−3x+x−1x+1=−2x−2x+1=−2(x+1)x+1=−2, 故答案为:﹣2.17.(2020•重庆)计算:(π﹣1)0+|﹣2|= 3 .【分析】根据零次幂和绝对值的意义,进行计算即可.【解析】(π﹣1)0+|﹣2|=1+2=3,故答案为:3.18.(2020•台州)计算1x −13x 的结果是 23x .【分析】先通分,再相减即可求解.【解析】1x −13x =33x −13x =23x .故答案为:23x.19.(2020•湖州)化简:x+1x2+2x+1=1x+1.【分析】直接将分母分解因式,进而化简得出答案.【解析】x+1x2+2x+1 =x+1(x+1)2=1x+1.故答案为:1x+1.20.(2020•哈尔滨)计算√24+6√16的结果是3√6.【分析】根据二次根式的性质化简二次根式后,再合并同类二次根式即可.【解析】原式=2√6+√6=3√6.故答案为:3√6.21.(2020•滨州)若二次根式√x−5在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解析】要使二次根式√x−5在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.22.(2020•常德)计算:√92−√12+√8=3√2.【分析】直接化简二次根式进而合并得出答案.【解析】原式=3√22−√22+2√2=3√2.故答案为:3√2.23.(2020•常德)若代数式√2x−6在实数范围内有意义,则x的取值范围是x>3.【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.【解析】由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.24.(2019•衡阳)√27−√3= 2√3 .【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解析】原式=3√3−√3=2√3.故答案为:2√3.25.(2020•苏州)使√x−13在实数范围内有意义的x 的取值范围是 x ≥1 . 【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式得到答案.【解析】由题意得,x ﹣1≥0,解得,x ≥1,故答案为:x ≥1.三.解答题(共25小题)26.(2020•连云港)化简a+31−a ÷a 2+3aa −2a+1.【分析】直接利用分式的性质进而化简进而得出答案.【解析】原式=a+31−a •(a−1)2a(a+3)=a+31−a •(1−a)2a(a+3)=1−a a. 27.(2020•泸州)化简:(x+2x +1)÷x 2−1x. 【分析】根据分式的混合运算顺序和运算法则进行计算.【解析】原式=2x+2x ×x (x+1)(x−1)=2(x+1)x ×x (x+1)(x−1)=2x−1. 28.(2020•河南)先化简,再求值:4aa 2−9÷(1+a−3a+3),其中a =√2+3. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【解析】原式=4a (a+3)(a−3)÷(a+3a+3+a−3a+3) =4a (a+3)(a−3)÷2a a+3=4a (a+3)(a−3)•a+32a=2a−3, 当a =√2+3时,原式=2+3−3=2 =√2.29.(2020•达州)求代数式(2x−1x−1−x ﹣1)÷x−2x 2−2x+1的值,其中x =√2+1. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 【解析】原式=(2x−1x−1−x 2−1x−1)÷x−2(x−1)2=−x 2+2x x−1)÷x−2(x−1)2 =−x(x−2)x−1•(x−1)2x−2 =﹣x (x ﹣1)当x =√2+1时,原式=﹣(√2+1)(√2+1﹣1)=﹣(√2+1)×√2=﹣2−√2.30.(2020•泰安)(1)化简:(a ﹣1+1a−3)÷a 2−4a−3; (2)解不等式:x+13−1<x−14. 【分析】(1)先计算括号内异分母分式的加法,再将除法转化为乘法,继而约分即可得;(2)根据解一元一次不等式的基本步骤依次计算可得.【解析】(1)原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2)=(a−2)2a−3•a−3(a+2)(a−2)=a−2a+2; (2)去分母,得:4(x +1)﹣12<3(x ﹣1),去括号,得:4x +4﹣12<3x ﹣3,移项,得:4x ﹣3x <﹣3﹣4+12,合并同类项,得:x <5.31.(2020•河南)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解析】(1−1a+1)÷aa2−1=a+1−1a+1×(a−1)(a+1)a=a﹣1,把a=√5+1代入a﹣1=√5+1﹣1=√5.32.(2020•成都)先化简,再求值:(1−1x+3)÷x+2x2−9,其中x=3+√2.【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解析】原式=x+3−1x+3•(x−3)(x+3)x+2=x﹣3,当x=3+√2时,原式=√2.33.(2020•哈尔滨)先化简,再求代数式(1−2x+1)÷x2−12x+2的值,其中x=4cos30°﹣1.【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算,把x的值代入得出答案.【解析】原式=x−1x+1•2(x+1)(x−1)(x+1)=2x+1,∵x=4cos30°﹣1=4×√32−1=2√3−1,∴原式=23−1+1=√33.34.(2020•甘孜州)化简:(3a−2−1a+2)•(a2﹣4).【分析】根据分式的减法和乘法可以解答本题.【解析】(3a−2−1a+2)•(a2﹣4)=3(a+2)−(a−2)(a+2)(a−2)•(a+2)(a﹣2)=3a+6﹣a+2=2a+8.35.(2020•乐山)已知y=2x,且x≠y,求(1x−y+1x+y)÷x2yx2−y2的值.【分析】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案.【解析】原式=2x (x+y)(x−y)÷x 2y x 2−y 2 =2x x 2−y 2×x 2−y 2x 2y=2xy ,∵y =2x ,∴原式=2x⋅2x=1 解法2:同解法1,得原式=2xy , ∵y =2x,∴xy =2,∴原式=22=1. 36.(2020•德州)先化简:(x−1x−2−x+2x )÷4−x x 2−4x+4,然后选择一个合适的x 值代入求值. 【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【解析】(x−1x−2−x+2x )÷4−x x 2−4x+4=[x(x−1)x(x−2)−(x−2)(x+2)x(x−2)]×(x−2)24−x=4−x x(x−2)⋅(x−2)24−x =x−2x ,把x =1代入x−2x =1−2x =−1.37.(2020•滨州)先化简,再求值:1−y−x x+2y ÷x 2−y 2x 2+4xy+4y 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1. 【分析】直接利用分式的混合运算法则化简,再计算x ,y 的值,进而代入得出答案.【解析】原式=1−y−x x+2y ÷(x+y)(x−y)(x+2y)2=1+x−y x+2y •(x+2y)2(x+y)(x−y) =1+x+2y x+y=x+y+x+2y x+y =2x+3y x+y, ∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2, ∴原式=3×3+3×(−2)3−2=0. 38.(2020•无锡)计算:(1)(﹣2)2+|﹣5|−√16;(2)a−1a−b −1+b b−a .【分析】(1)根据乘方的定义,绝对值的定义以及算术平方根的定义计算即可;(2)根据同分母分式的加减法法则计算即可.【解析】(1)原式=4+5﹣4=5;(2)原式=a−1a−b +1+b a−b=a−1+1+b a−b =a+b a−b . 39.(2020•南充)先化简,再求值:(1x+1−1)÷x 2−x x+1,其中x =√2+1. 【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【解析】(1x+1−1)÷x 2−x x+1 =1−(x+1)x+1⋅x+1x(x−1) =1−x−1x(x−1)=−x x(x−1)=11−x ,当x =√2+1时,原式=1−2−1=−√22. 40.(2020•自贡)先化简,再求值:x+1x −4•(1x+1+1),其中x 是不等式组{x +1≥05−2x >3的整数解.【分析】根据分式的加法和乘法可以化简题目中的式子,再根据x 是不等式组{x +1≥05−2x >3的整数解,然后即可得到x 的值,再将使得原分式有意义的整数值代入化简后的式子即可解答本题.【解析】x+1x 2−4•(1x+1+1)=x+1(x+2)(x−2)⋅1+x+1x+1=x+2(x+2)(x−2)=1x−2,由不等式组{x +1≥05−2x >3,得﹣1≤x <1, ∵x 是不等式组{x +1≥05−2x >3的整数解, ∴x =﹣1,0,∵当x =﹣1时,原分式无意义,∴x =0,当x =0时,原式=10−2=−12.41.(2020•重庆)计算:(1)(x +y )2+x (x ﹣2y );(2)(1−m m+3)÷m 2−9m 2+6m+9. 【分析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.【解析】(1)(x +y )2+x (x ﹣2y ),=x 2+2xy +y 2+x 2﹣2xy ,=2x 2+y 2;(2)(1−m m+3)÷m 2−9m 2+6m+9, =(m+3m+3−m m+3)×(m+3)2(m+3)(m−3), =3m+3×m+3m−3,=3m−3.42.(2020•遂宁)先化简,(x 2+4x+4x −4−x ﹣2)÷x+2x−2,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【解析】原式=[(x+2)2(x+2)(x−2)−(x +2)]•x−2x+2 =(x+2x−2−x 2−4x−2)•x−2x+2=−x 2+x+6x−2•x−2x+2=−(x+2)(x−3)x−2•x−2x+2 =﹣(x ﹣3)=﹣x +3,∵x ≠±2,∴可取x =1,则原式=﹣1+3=2.43.(2020•常德)先化简,再选一个合适的数代入求值:(x +1−7x−9x )÷x 2−9x. 【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解析】(x +1−7x−9x )÷x 2−9x=x(x+1)−(7x−9)x ⋅x (x+3)(x−3)=x 2+x−7x+9(x+3)(x−3)=(x−3)2(x+3)(x−3) =x−3x+3,当x =2时,原式=2−32+3=−15. 44.(2020•衢州)先化简,再求值:aa 2−2a+1÷1a−1,其中a =3.【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.【解析】原式=a (a−1)2•(a ﹣1) =a a−1,当a =3时,原式=33−1=32. 45.(2020•重庆)计算:(1)(x +y )2+y (3x ﹣y );(2)(4−a 2a−1+a )÷a 2−16a−1. 【分析】(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,【解析】(1)(x +y )2+y (3x ﹣y ),=x 2+2xy +y 2+3xy ﹣y 2,=x 2+5xy ;(2)(4−a 2a−1+a )÷a 2−16a−1, =(4−a 2a−1+a 2−a a−1)×a−1(a+4)(a−4), =4−a a−1×a−1(a+4)(a−4),=−1a+4.46.(2020•黔东南州)(1)计算:(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0; (2)先化简,再求值:(3a+1−a +1)÷a 2−4a 2+2a+1,其中a 从﹣1,2,3中取一个你认为合适的数代入求值.【分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解析】(1)(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0 =4+√2−3+2×1﹣1=4+√2−3+2﹣1=2+√2;(2)(3a+1−a +1)÷a 2−4a 2+2a+1=3−(a−1)(a+1)a+1×(a+1)2(a+2)(a−2)=−(a+2)(a−2)a+1=﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.47.(2020•铜仁市)(1)计算:2÷12−(﹣1)2020−√4−(√5−√3)0.(2)先化简,再求值:(a+3−a2a−3)÷(a2−1a−3),自选一个a值代入求值.【分析】(1)原式利用除法法则,乘方的意义,算术平方根定义,以及零指数幂法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解析】(1)原式=2×2﹣1﹣2﹣1=4﹣1﹣2﹣1=0;(2)原式=a(a−3)+3−a2a−3•a−3(a+1)(a−1)=−3(a−1)a−3•a−3 (a+1)(a−1)=−3a+1,当a=0时,原式=﹣3.48.(2020•黔西南州)(1)计算(﹣2)2﹣|−√2|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(2a+1+a+2a−1)÷aa−1,其中a=√5−1.【分析】(1)直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.【解析】(1)原式=4−√2−2×√22+1=4−√2−√2+1=5﹣2√2;(2)原式=[2(a−1)(a−1)(a+1)+a+2(a−1)(a+1)]•a−1a=3a(a−1)(a+1)•a−1 a=3a+1,当a=√5−1时,原式=3√5−1+1=3√55.49.(2020•遵义)化简式子x 2−2xx 2÷(x −4x−4x),从0、1、2中取一个合适的数作为x 的值代入求值. 【分析】直接利用分式的性质进行通分运算,进而结合分式的混合运算法则分别化简得出答案.【解析】原式=x(x−2)2÷x 2−4x+4x =x(x−2)x 2•x (x−2)2=1x−2, ∵x ≠0,2,∴当x =1时,原式=﹣1.50.(2020•湖州)计算:√8+|√2−1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解析】原式=2√2+√2−1=3√2−1.。
2021《新中考数学》最新初中数学—分式的知识点总复习含解析

一、选择题1.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣52.下列各式、、、+1、中分式有( )A .2个B .3个C .4个D .5个3.下列分式变形中,正确的是( ). A . b a b a b a +=++22 B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 4.在分式ab a b+(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值( ) A .扩大为原来的2倍 B .缩小为原来的12 C .不变 D .不确定5.分式 (a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的C .不变D .缩小为原来的6.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥3 7.下列算式,计算正确的有( )①10-3=0.0001; ②(0.0001)0=1; ③3a -2=213a; ④(-2)3÷(-2)5=-2-2. A .1个 B .2个 C .3个 D .4个8.如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .﹣12+8B .16﹣8C .8﹣4D .4﹣2 9.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x + C .x +1 D .x ﹣110.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的 11.PM 2.5是指大气中直径小于或等于2.5μm (1μm =0.000001m )的颗粒物,也称为可入肺颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm 用科学记数法可表示为( )A .23×10﹣5mB .2.3×10﹣5mC .2.3×10﹣6mD .0.23×10﹣7m 12.“清明”期间,几名同学包租一辆面包车前往“宜兴竹海”游玩,面包车的租价为600元,出发时,又增加了4名学生,结果每个同学比原来少分担25元车费,设原来参加游玩的同学为x 人,则可得方程( )A .B .C .D .13.在式子31x - 、2xy π 、2334a b c 、2x x 中,分式的个数是( ) A .1个 B .2个 C .3个 D .4个14.下列变形正确的是( )A .x y y x x y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+= D .0.250.25a b a b a b a b ++=++ 15.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3.A .1.239×10﹣3B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣4 16.计算222x y x y y x +--的结果是( ) A .1B .﹣1C .2x y +D .x y + 17.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥B .2x >C .2x ≠D .2x ≤ 18.若分式的值为0,则x 的值是( )A .3B -3C .4D .-419.(2015秋•郴州校级期中)下列计算正确的是( )A .B .•C .x÷y•D .20.要使分式有意义,则x 的取值应满足( ) A .x=﹣2 B .x ≠ C .x >﹣2 D .x ≠﹣221.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9 B .227 C .π D .(3)0 22.若将分式(a ,b 均为正数)中a ,b 的值分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .缩小为原来的C .不变D .缩小为原来的23.若a >-1,则下列各式中错误..的是( ) A .6a >-6 B .2a >-12 C .a +1>0 D .-5a <-524.用科学记数方法表示0.00000601,得( ) A .0.601×10-6 B .6.01×10-6 C .60.1×10-7 D .60.1×10-625.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y 2 B .11a - C .x D .13π【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】0.000 000 076用科学记数法可表示为7.6×10﹣8.故选B .2.A解析:A【解析】试题分析:根据分式的定义进行解答即可.试题解析:这一组数数中,与是分式,共2个.故选A.考点:分式的定义. 3.C解析:C【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A 、B 无法进行约分,C 正确;D 需要保证m 不能为零.考点:分式的约分4.A解析:A【解析】 试题分析:在分式ab a b(a ,b 为正数)中,字母a ,b 值分别扩大为原来的2倍,则分式的值是原来的2倍,故选A .考点:分式的基本性质. 5.B解析:B【解析】 ,分式的值缩小为原来的 .故选B .6.C解析:C【解析】试题分析:根据分式有意义的条件,分母不等于0,可得x-3≠0,解得x≠3. 故选:C.7.A解析:A【解析】分析:本题考查的是负指数幂的运算.解析:①10-3=0.00001,故①错误;②(0.0001)0=1正确;③3a -2=23a ,故③错误;④(-2)3÷(-2)5=2-2,故④错误. 故选A.8.A解析:A【解析】面积分别为16cm 2和12cm 2的两张正方形的边长分别为4cm 、cm ,所以图中空白部分的面积为4(4+)-(12+16)=-12+8 (cm 2),故选A. 点睛:本题考查了二次根式的混合运算在实际中的应用,根据题意正确求得两个正方形的边长是解题的关键.9.A解析:A【分析】根据分式混合运算法则计算即可.【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ . 故选:A .【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.10.B解析:B 【解析】 试题分析:当a 和b 都扩大2倍时,原式=,即分式的值缩小为原来的. 考点:分式的值11.C解析:C【详解】解:2.3μm=2.3×0.000001m=2.3×10﹣6m ,故选C .【点睛】本题考查科学记数法—表示较小的数.12.A解析:A【解析】试题分析:原有的同学每人分担的车费应该为元,而实际每人分担的车费为元,方程应该表示为:.故选A .考点:由实际问题抽象出分式方程. 13.B解析:B2xy π 、2334a b c 的分母中均不含有字母,因此它们是整式,而不是分式. 31x -,2x x 的分母中含有字母,因此是分式. 故选B .14.D解析:D【解析】A 选项错误,x y x y -+=-y x y x-+; B 选项错误, x y y x +-=x y y x y x y x +---()()()()=()222y x x y --; C 选项错误,2a a ab+=1a a ab +()=1a b +; D 选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变.15.A解析:A【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A . 16.A解析:A【解析】2x y 2x y y 2x +--=2x y 2x y 2x y ---=2x y 2x y--=1, 故选:A.17.B解析:B【详解】解:根据题意得:x ﹣2≥0且x ﹣2≠0,解得:x >2.故选B .【点睛】本题考查函数自变量的取值范围.18.A【解析】试题分析:当x-3=0时,分式的值为0,所以x=3,故选:A.考点:分式的值为0的条件.19.B解析:B【解析】试题分析:原式各项计算得到结果,即可做出判断.解:A、原式=•=,错误;B、原式=,正确;C、原式=,错误;D、原式==,错误,故选B.考点:分式的乘除法.20.D解析:D【解析】试题分析:根据分母不为零分式有意义,可得答案.解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.21.C解析:C【解析】9=3,227是无限循环小数,π是无限不循环小数,()031=,所以π是无理数,故选C.22.B解析:B【解析】由题意得==,缩小为原来的23.D解析:D【解析】根据不等式的基本性质可知,A. 6a >−6,正确;B. 2a >12- , 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误;故选D.24.B解析:B【解析】试题分析:根据科学记数法表示较小的数,可知a=6.01,n=-6,所以用科学记数法表示为6.01×10-6. 故选:B点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 25.B解析:B【解析】 试题解析:由于11a -中,分母含有字母, 故选B.。
2021《新中考数学》最新初中数学—分式的全集汇编附解析

一、选择题1.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义2.若2220110.2,2,(),.()25a b c d --=-=-=-=-,则( ) A .a b c d <<<B .b a d c <<<C .a b d c <<<D .c a d b <<<3.若代数式()11x --有意义,则x 应满足( ) A .x = 0B .x ≠ 0C .x ≠ 1D .x = 14.若(x 2﹣ax ﹣b )(x +2)的积不含x 的一次项和二次项,则a b =( ) A .116B .-116C .16D .﹣165.把分式a2a b+中的a 、b 都扩大2倍,则分式的值( ) A .缩小14 B .缩小12C .扩大2倍D .不变6.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。
2.5微米等于0.0000025米,把0.0000025用科学记数法表示为( ) A .0.25×10–5米B .2.5×10–7米C .2.5×10–6米D .25×10–7米7.纳米是一种长度单位,1纳米810-=米,己知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米 B .43.510-⨯米 C .33.510-⨯米D .93.510-⨯8.与分式()()a b a b ---+相等的是( ) A .a ba b +- B .a ba b-+ C .a ba b+-- D .a ba b--+ 9.当x =_____ 时,分式11xx-+无意义.( ) A .0B .1C .-1D .210.下列运算结果最大的是( )A .112-⎛⎫ ⎪⎝⎭B .02C .12-D .()12-11.下列分式运算中,正确的是( )A .111x y x y+=+B .x a ax b b+=+ C .22x y x y x y -=+- D ..a c adb d bc= 12.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯B .80.4 10⨯C .8410⨯D .8410-⨯13.已知11(1,2)a x x x =-≠≠,23121111,,,111n n a a a a a a -==⋯⋯=---,则2017a =( )A .21xx-- B .12x- C .1x - D .无法确定14.化简21211a aa a----的结果为( ) A .11a a +- B .a ﹣1 C .a D .115.下列变形中,正确的是( )A .2211x xy y-=-B .22m m n n=C .2()a b a ba b-=-- D .2233x x +=+ 16.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍 D .不变17.若分式21x -有意义,则( ) A .1x ≠B .1x =C .0x ≠D .0x =18.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只B .81.5510⨯只C .90.15510⨯只D .6510⨯只19.下列计算错误的是( ) A .()326327x x -=-B .()()325y y y --=-C .326-=-D .()03.141π-=20.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变21.下列运算正确的是( ) A .1133a a﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=22.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .c a d b <<<23.下列计算中错误的是( )A .020181=B .224-=C 2=D .1133-=24.下列等式成立的是( ) A .123a b a b +=+ B .212a b a b =++ C .2ab aab b a b=-- D .a aa b a b=--++ 25.函数y =的自变量x 的取值范围是( ) A .3x >-B .3x ≥-C .3x ≠-D .3x ≤-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】互为相反数两个数的和为0,同时要考虑到0+0=0,从而进行判断. 【详解】 解:∵a +b =0 ∴a=-b 或a=0,b=0∴ba的值为-1或无意义, 故选:D. 【点睛】掌握互为相反数的两个数的和为0和0+0=0,是本题的解题关键.2.B解析:B 【解析】 【分析】分别计算出a 、b 、c 、d 的值,再进行比较即可.因为20.2a =-=-0.04,b=22--=-14,c=212-⎛⎫- ⎪⎝⎭=4,d=015⎛⎫- ⎪⎝⎭=1, 所以b a d c <<<. 故选B. 【点睛】本题考查比较有理数的大小,涉及知识有负整数指数幂、0次幂,解题关键是熟记法则.3.C解析:C 【解析】 【分析】代数式中有0指数幂和负整数指数的底数不能为0,再求x 的取值范围; 【详解】解:根据题意可知,x-1≠0且解得x≠1. 故选:C. 【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.4.A解析:A 【解析】 【分析】先把原式展开,再根据题意2()(2)x ax b x --+的积不含x 的一次项和二次项,得知20a -=,20a b +=,然后求解即可.【详解】2322()(2)222x ax b x x x ax ax bx b --+=+---- 32(2)(2)2x a x a b x b =+--+-,2()(2)x ax b x --+的积不含x 的一次项和二次项, ∴2020a a b -=⎧⎨+=⎩,2a ∴=,4b =-,41216b a -∴==. 故选A . 【点睛】本题考查了多项式乘多项式,解题的关键是明确积不含x 的一次项和二次项,即它们的系数为零.5.D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式a2a b+中的a、b都扩大2倍,得2a2a a22a2b2(2a b)2a b==⨯+++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.0000025=2.5×10﹣6,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.B解析:B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-8米=3.5×10-4米.故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.解析:B【分析】根据分式的基本性质,分式的分子和分母同时乘以和除以一个不为0的整式,分式的值不变.【详解】解:原分式()()()()()()1=1a b a b a ba b a b a b----⨯--=-+-+⨯-+,故选B.【点睛】本题主要考查分式的基本性质,解决本题的关键是要熟练掌握分式的基本的性质. 9.C解析:C【分析】根据分式无意义的条件,分母等于0,列不等式求解即可.【详解】因为分式11xx-+无意义,所以1+x=0,解得x=-1.故选C.【点睛】本题主要考查分式无意义的条件,解决本题的关键是要熟练掌握分式无意义的条件. 10.A解析:A【解析】【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简得出答案.【详解】∵11=22-⎛⎫⎪⎝⎭;02=1;12-=12;()12=2--,2>1>12>-2,∴运算结果最大的是112-⎛⎫⎪⎝⎭,故选A.【点睛】本题主要考查了负整数指数幂的性质和零指数幂的性质,正确化简各数是解题关键. 11.C解析:C根据分式的运算法则计算各个选项中的式子,从而可以解答本题. 【详解】 解:∵11,x y x y xy++= 故A 错误; (0)x a ax x b b+≠≠+,故B 错误;. 22()()x y x y x y x y x y x y -+-==+--,故C 正确; ∵.a c ac b d bd =,故D 错误. 故选:C 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.12.D解析:D 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.000 000 04=4×10-8, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.C解析:C 【分析】按照规定的运算方法,计算出前几个数的值,进一步找出数字循环的规律,利用规律得出答案即可. 【详解】解:∵11(1,2)a x x x =-≠≠,∴2111111(1)2a a x x ===----,321121111()2x a a xx-===----,34111211()1a x x a x ===-----… ∴以x−1,12x -,21x x--为一组,依次循环,∵2017÷3=672…1, ∴2017a 的值与a 1的值相同, ∴20171a x =-, 故选:C . 【点睛】此题考查数字的变化规律以及分式的运算,找出数字之间的运算规律,利用规律解决问题是解答此题的关键.14.B解析:B 【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=21211a aa a -+--, =2(1)1a a --, =a ﹣1 故选B .点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15.C解析:C 【分析】根据分式的性质分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,进行判断选择即可. 【详解】A ,B ,D 均不符合分式分子分母同时乘(或除以)同一个不为零的整式,分式的值不变的性质,选项C 可以将分子分母同时除以(a-b )到()2a b a b a b-=--,故答案选择C.【点睛】本题考查的是分式的基本性质,熟知分式中分子分母同时乘(或除以)同一个不为零的整式,分式的值不变,是解题的关键.16.A解析:A用2a ,2b 分别替换掉原分式中的a 、b ,进行计算后与原分式对比即可得出答案. 【详解】用2a ,2b 分别替换掉原分式中的a 、b ,可得:()2221=222822+++=⨯⨯⨯a b a ba b a b ab ab,所以分式缩小到原来的12倍, 故选A. 【点睛】本题考查了分式的基本性质,关键是根据条件正确的替换原式中的字母,然后化简计算.17.A解析:A 【解析】 【分析】根据分式有意义的条件是分母不等于零求解即可. 【详解】 解:∵要使分式21x -有意义 ∴10x -≠1x ∴≠ 故选A.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是分母不等于零是解题的关键.18.B解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】500万×31=5000000×31=155000000=1.55×108(只), 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.19.C解析:C 【分析】根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算A . ()326327x x -=-,不符合题意;B . ()()325y y y --=-,不符合题意;C . -312=8,原选项错误,符合题意; D . ()03.141π-=,不符合题意; 故选:C 【点睛】本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.20.D解析:D 【分析】 根据题意把分式x xy2中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断. 【详解】 解:∵分式x xy2中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变. 故选:D 【点睛】本题考查了分式的基本性质,属于基础题型,能够熟练掌握分式的基本性质是解决问题的关键.21.D解析:D 【分析】直接利用负指数幂的性质以及同底数幂的乘除运算法则计算得出答案. 【详解】 解:A 、133aa-=,故此选项错误; B 、22a a +,不是同类项无法合并;C 、()325aa a -⋅=-,故此选项错误; D 、()()32a a a -÷-=,正确;故选:D .【点睛】此题考查负指数幂的性质以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.22.B解析:B【分析】分别求出a 、b 、c 、d 的值,比较大小即可.【详解】20.30.09a =-=-2213139b -=-=-=- 01()3c =-=1 2211=(-3))9(3d -==- 故b a d c <<<故选:B【点睛】本题考查正指数与负指数的计算,注意负指数的运算规则.23.B解析:B【分析】根据零指数幂、指数幂、平方根、负整数指数幂的定义分别验证四个选项即可得到答案.【详解】解:A 、020181=,任何非零数的零次方都等于1,故A 不是答案;B 、224-=-,故B 是答案;C 2=,故C 不是答案;D 、1133-=,故D 不是答案; 故选:B .【点睛】本题主要考查了零指数幂、指数幂、平方根、负整数指数幂的定义,熟练掌握各知识点是解题的关键.24.C解析:C【分析】根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a ab a +=+,故A 错误; B 、22a b +,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.25.A解析:A【分析】根据根式和分母有意义进行判断即可.【详解】要使得该函数有意义分母不能为0且根号内不能为负∴30x +>解得:3x >-故选:A.【点睛】本题主要考查根式和分式的意义,熟练掌握判断有意义的条件是关键.。
2021《新中考数学》最新初中数学—分式的真题汇编含解析

一、选择题1.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只B .81.5510⨯只C .90.15510⨯只D .6510⨯只2.若把分式x yxy+中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍3.若代数式()11x --有意义,则x 应满足( ) A .x = 0 B .x ≠ 0 C .x ≠ 1 D .x = 1 4.蜜蜂建造的蜂巢坚固省料,其厚度约为0.000073米,0.000073用科学计数法表示为A .40.7310-⨯B .47.310-⨯C .57.310-⨯D .67.310-⨯5.已知:a ,b ,c 三个数满足,则的值为( ) A .B .C .D .6.将分式2x x y+中的x 、y 都扩大2倍,则分式值( )A .扩大为原来的2倍B .缩小为原来的2倍C .保持不变D .无法确定7.如果把分式2++a ba b中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变B .缩小10倍C .是原来的20倍D .扩大10倍8.已知11(1,2)a x x x =-≠≠,23121111,,,111n n a a a a a a -==⋯⋯=---,则2017a =( ) A .21xx-- B .12x- C .1x -D .无法确定9.下列各分式中,最简分式是( )A .21x x +B .22m n m n-+C .22a ba b +-D .22x yx y xy ++10.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁11.若把分式3xyx y-(,x y 均不为0)中的x 和y 都扩大3倍,则原分式的值是( )A .扩大3倍B .缩小至原来的13C .不变D .缩小至原来的1612.若2220110.2,2,(),.()25a b c d --=-=-=-=-,则( )A .a b c d <<<B .b a d c <<<C .a b d c <<<D .c a d b <<< 13.将0.00086用科学记数法表示为( )A .8.6×104 B .8.60×104 C .8.6×10-4 D .8.6×10-6 14.若式子01(1)k k -+-有意义,则一次函数()11y k x k =-+-的图象可能是( )A .B .C .D .15.若a=20180,b=2016×2018-20172,c=(23-)2016×(32)2017,则a ,b ,c 的大小关系正确的是( ) A .a<b<c B .a<c<bC .b<a<cD .c<b<a16.若把分式x xy2中的x 和y 同时扩大为原来的3倍,则分式的值( ) A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变17.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<18.下列计算中错误的是( ) A .020181=B .224-=C 42=D .1133-=19.若分式242x x --的值为0,则x 等于( )A .±2 B .±4 C .-2D .220.下列运算正确的是( )A .(﹣x 3)4=x 12B .x 8÷x 4=x 2C .x 2+x 4=x 6D .(﹣x )﹣1=1x21.计算下列各式①(a 3)2÷a 5=1;②(-x 4)2÷x 4=x 4;③(x -3)0=1(x ≠3);④(-a 3b )3÷5212a b =-2a 4b 正确的有( )题 A .4 B .3C .2D .122.若代数式21a 4-在实数范围内有意义,则实数a 的取值范围为( ) A .a 4≠ B .a 2>-C .2a 2-<<D .a 2≠±23.已知1112a b -=,则ab a b-的值是( ) A .12B .12-C .2D .-224.下列各式中,正确的是( )A .22x y x y -++=-B .()222x y x y x y x y --=++ C .1a b b ab b++= D .23193x x x -=-- 25.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】500万×31=5000000×31=155000000=1.55×108(只),故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】根据题意,分式中的x和y都扩大2倍,则222()2242x y x y x yx y xy xy+++==⋅;【详解】解:由题意,分式xyyx+中的x和y都扩大2倍,∴222()2242x y x y x yx y xy xy+++==⋅;分式的值是原式的12,即缩小2倍;故选C.【点睛】本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.3.C解析:C【解析】【分析】代数式中有0指数幂和负整数指数的底数不能为0,再求x的取值范围;【详解】解:根据题意可知,x-1≠0且解得x≠1.故选:C.【点睛】本题考查负整数指数幂和0指数幂的底数不能为0.4.C解析:C【解析】【分析】数学术语,a×10的n次幂的形式.将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,这种记数方法叫科学记数法。
2021《新中考数学》最新初中数学—分式的全集汇编附解析

一、选择题1.把分式2nm n+中的m 与n 都扩大3倍,那么这个代数式的值A .不变B .扩大3倍C .扩大6倍D .缩小到原来的132.若要使分式23363(1)x x x -+-的值为整数,则整数x 可取的个数为( )A .5个B .2个C .3个D .4个3.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 4.分式的值为0,则x 的值为A .4B .-4C .D .任意实数5.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( ) A .2 B .﹣2 C .﹣2或﹣2 D .2或2 6.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯7.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .a b d c <<<8.如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .﹣12+8B .16﹣8C .8﹣4D .4﹣29.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1C .1-D .±110.分式(a ,b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来2倍B .缩小为原来倍C .不变D .缩小为原来的11.下列各式12x y +,52a b a b --,2235a b -,3m ,37xy中,分式共有( )个.A .2B .3C .4D .512.如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A.扩大5倍B.不变C.缩小5倍D.扩大10倍 13.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y2 B .11a - C .xD .13π14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.无论x 取何值,总是有意义的分式是( ) A .21xx + B .221xx + C .331xx + D .21x x+ 16.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3. A .1.239×10﹣3 B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣417.若式子212x x m-+不论x 取任何数总有意义,则m 的取值范围是( ) A .m≥1B .m>1C .m≤1D .m<118.化简﹣的结果是( )m+3 B .m-3 C . D .19.已知实数a ,b ,c 均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c+++-+-+-的值是( ) A .为正 B .为负 C .为0 D .与a ,b ,c 的取值有关 20.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9B .227C .πD .(3)021.下列运算错误的是 A .B .C .D .22.计算的结果是( )A .a+bB .2a+bC .1D .-123.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( ) A .0.21×10-5 B .2.1×10-5 C .2.1×10-6 D .21×10-624.若a >-1,则下列各式中错误..的是( ) A .6a >-6 B .2a >-12C .a +1>0D .-5a <-525.如果把分式22a bab+中的a 和b 都扩大了2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小2倍D .缩小4倍【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 试题解析:分式2nm n+中的m 与n 都扩大3倍,得 6233n nm n m n =++,故选A .2.C解析:C 【解析】试题分析:根据x 为整数,且分式23363(1)x x x -+-的值为整数,可得3是(x-1)的倍数,可得答案.试题解析:由题意得,x-1=-3,1,3,故x-1=-3,x=-2; x-1=1,x=2; x-1=3,x=4, 故选C . 考点:分式的值.3.C解析:C . 【解析】试题分析:先把2222-21a a a a a ++++进行化简得222(1)a a a -+,再把012=-+a a 化简为:2-a 2=a+1,21a a +=,代入即可求值.试题解析:2222222(2)21(1)a a a a a a a a a a ++-+-=++++ =222(1)a a a -+ ∵012=-+a a ∴2-a 2=a+1,21a a +=原式=2211111(1)(1)1a a a a a a a +====+++ 故选C . 考点:分式的值.4.A解析:A 【解析】试题分析:根据分式的值为零的条件可以求出x 的值. 试题解析:若分式的值为0,则|x|-4=0且x+4≠0.得x 1=4,x 2=-4.当x=-4时,分母为0,不合题意,舍去. 故x 的值为4. 故选A .考点:分式的值为零的条件.5.D解析:D 【解析】试题分析:根据题意可得:x-y=0或2x-y=0,则x=y 或2x=y ,当x=y 时,原式=1+1=2;当2x=y 时,原式=21+2=221.考点:(1)、分式的计算;(2)、分类讨论思想6.B解析:B 【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B 【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.7.D解析:D【解析】试题解析:因为a=-3-2=-211=-39, b=-0.32=-0.09, c=(-13)-2=21913=⎛⎫- ⎪⎝⎭, d=(-15)0=1, 所以c >d >a >b . 故选D .【点睛】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数>0;0>负数;两个负数,绝对值大的反而小.8.A解析:A 【解析】面积分别为16cm 2和12cm 2的两张正方形的边长分别为4cm 、cm ,所以图中空白部分的面积为4(4+)-(12+16)=-12+8(cm 2),故选A.点睛:本题考查了二次根式的混合运算在实际中的应用,根据题意正确求得两个正方形的边长是解题的关键.9.B解析:B 【解析】由题意得:101x x -=⇒= ,故选B.10.B解析:B【解析】试题分析:当a和b都扩大2倍时,原式=,即分式的值缩小为原来的.考点:分式的值11.B解析:B【解析】试题解析:2235a b-,37xy的分母中均不含有字母,因此它们是整式,而不是分式.12 x y +,52a ba b--,3m的分母中含有字母,因此是分式.故选B.12.B 解析:B 【解析】试题分析:如果把223yx y-中的x和y都扩大5倍,则变为()()()252253523y yx y x y=--,分式的值没改变,所以选B考点:分式点评:本题考查分式,本题的关键是掌握分式的性质,本题难度不大,属基础题13.B解析:B【解析】试题解析:由于11a-中,分母含有字母,故选B. 14.C 解析:C 【解析】原式=()()()2111mm m+++=21m+,当m=-3时,原式=-1;当m=-2时,原式=-2;当m=0时,原式=2;当m=1时,原式=1.m的值有4个.故选C.15.B解析:B【解析】A. 当2x+1≠0时,分式有意义,即x≠−12,所以A选项错误;B. 当x为任何实数,分式有意义,所以B选项正确;C. 当3x+1≠0时,分式有意义,即x≠−1,所以C选项错误;D. 当x²≠0时,分式有意义,即x≠0,所以D选项错误.故选B.16.A解析:A【解析】根据绝对值小于1的正数也可以利用科学记数法表示方法(一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定)可得:0.001239 =1.239×0.001=1.239×10﹣3,故选A.17.B解析:B【解析】试题解析:分式21 2x x m-+不论x取何值总有意义,则其分母必不等于0,即把分母整理成(a+b)2+k(k>0)的形式为(x2-2x+1)+m-1=(x-1)2+(m-1),因为论x取何值(x2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,即m>1.故选B.18.A解析:A【解析】试题分析:因为2299(3)(3)33333m m m mmm m m m-+--===+----,所以选:A.考点:分式的减法.19.C解析:C.【解析】试题解析:∵a+b+c=0,∴a=-(b+c),∴a2=(b+c)2,同理b2=(a+c)2,c2=(a+b)2.∴原式=11111()0 22a b cbc ac ab abc++-++=-⨯=,故选C.考点:分式的运算.20.C【解析】9=3,227是无限循环小数,π是无限不循环小数,()31=,所以π是无理数,故选C .21.D解析:D 【解析】根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案. 解:A 、==1,故本选项正确; B 、==﹣1,故本选项正确;C 、,故本选项正确;D 、,故本选项错误;故选D .22.C解析:C【解析】试题解析:故选C.23.C解析:C【解析】0.0000021=2.1×10-6,故选C .24.D解析:D 【解析】根据不等式的基本性质可知, A. 6a >−6,正确; B.2a>12- , 正确; C. a +1>0,正确;D. 根据性质3可知,a >−1两边同乘以−5时,不等式为−5a <5,故D 错误; 故选D.25.C解析:C分式22a bab+中的a 和b 都扩大了2倍,得: 4212822a b a bab ab ++=⨯, 所以是缩小了2倍. 故选C.。
专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)

专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.【详解】4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .2.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A【分析】由二次根式的性质,分别进行判断,即可得到答案. 【详解】2==,故A 正确,C 错误;2,故B 、D 错误;故选:A .3.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】解:A2B3C 12为有理数D5故选:C4.(2021·江苏苏州市·中考真题)计算2的结果是()A B.3C.D.9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B.【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a=≥是解答此题的关键.5.(2021·甘肃武威市·中考真题)下列运算正确的是()A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.【详解】=A 错;=B 错;=C 正确;2=,故D 错.故选:C .6.(2021· )A .7B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;【详解】===故选:B .7.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键.8.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2+=C =D 3= 【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C.=D. =故选:C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.9.(2021· )A .4B .4±C .D .±【分析】()0,0,a b a b=≥≥直接化简即可得到答案.【详解】==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.10.(2021·江苏苏州市·中考真题)已知点)A m,3,2B n⎛⎫⎪⎝⎭在一次函数21y x=+的图像上,则m与n 的大小关系是()A.m n>B.m n=C.m n<D.无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∵y随x的增大而增大.∵2<94,32<.∵m<n.故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键.11.(2021·浙江台州市·之间的整数有()A.0个B.1个C.2个D.3个【分析】【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.13.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( ) A .2,1--B .1-,0C .0,1D .1,2 【答案】C【分析】1的范围即可得到答案.【详解】<<解:12,∴011,<-<∴==0,1,a b故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.二、填空题14.(2021·天津中考真题)计算1)的结果等于_____.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】2=-=.1)19故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.15.(2021·浙江丽水市·有意义,则x可取的一个数是__________.x≥)【答案】如4等(答案不唯一,3【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵有意义,∵x﹣3≥0,∵x≥3,∵x可取x≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.16.(2021·江苏连云港市·=__________. 【答案】5【分析】直接运用二次根式的性质解答即可.【详解】5.故填5.【点睛】()()00a a a a ⎧-⎪=⎨≥⎪⎩<成为解答本题的关键. 17.(2021·湖南衡阳市·有意义,则x 的取值范围是________.【答案】x ≥3【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,30x -≥,解得,x ≥3,故答案为:x ≥3.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.18.(2021·浙江金华市·x 的取值范围是___.【答案】x 3≥.【详解】x 30x 3-≥⇒≥.19.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___. 【答案】1x 2≥【详解】 试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非在实数范围内有意义,必须12x 10x 2-≥⇒≥.20.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.21.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______. 【答案】12016-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.三、解答题22.(2021·陕西中考真题)计算:0112⎛⎫-+ ⎪⎝⎭【答案】【分析】根据零次幂、算术平方根及二次根式的加减运算可直接进行求解.【详解】解:原式11=-=【点睛】本题主要考查零次幂、算术平方根及二次根式的加减运算,熟练掌握零次幂、算术平方根及二次根式的加减运算是解题的关键.23.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.【答案】﹣【分析】 根据零指数幂运算法则、绝对值符号化简、特殊角的三角函数值代入计算,然后根据同类二次根式合并求解即可.【详解】解:()020212tan 60π--︒=(12--=12-+=﹣.【点睛】本题主要考查了实数的综合运算能力,是中考题中常见的计算题型.熟练掌握零指数幂、特殊角的三角函数值、绝对值化简方法,同类二次根式是解题关键.24.(2021·四川眉山市·中考真题)计算:(10143tan 602-⎛⎫--︒--+ ⎪⎝⎭【答案】3【分析】依次计算“0次方”、tan 60︒等,再进行合并同类项即可.【详解】解:原式=()132123--+=-+=【点睛】本题综合考查了非零数的零次幂、特殊角的三角函数、负整数指数幂以及二次根式的化简等内容,解决本题的关键是牢记相关计算公式等,本题易错点为对112-⎛⎫-- ⎪⎝⎭的化简,该项出现的“ -”较多,因此符号易出错,因此要注意.25.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+--,(112-⨯=31,=2.26.(2021·浙江台州市·中考真题)计算:|-2|【答案】【分析】先算绝对值,化简二次根式,再算加减法,即可求解.【详解】解:原式=2+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.27.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦=【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.28.(2021·甘肃武威市·中考真题)计算:011(2021)()2cos 452π--+-︒.【答案】3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】 解:011(2021)()2cos 452π--+-︒,122=+-3=【点睛】 本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.29.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-. 【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.30.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221-- =3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.31.(2021·江苏苏州市·中考真题)先化简再求值:21111x x x-⎛⎫+⋅ ⎪-⎝⎭,其中1x =.【答案】1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解.【详解】 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式=【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.32.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=1142-+⨯=11-+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.33.(2021·江苏苏州市·223--.【答案】-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.【详解】223-- 229=+-5=-.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.34.(2021·江苏扬州市·中考真题)计算或化简:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭. 【答案】(1)4;(2)ab【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【详解】解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+⎪⎝⎭ =()a b a b ab++÷ =()ab a b a b+⨯+ =ab【点睛】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.35.(2021·四川自贡市·0|7|(2-+-.【答案】1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=-+=-.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.36.(2021·浙江丽水市·中考真题)计算:0|2021|(3)-+-.【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:0|2021|(3)-+--202112=+-,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.。
【中考数学分项真题】分式(共38题)-(解析版)

2021年中考数学真题分项汇编【全国通用】(第01期)专题4分式(共38题)姓名:__________________ 班级:______________ 得分:_________________ 一、单选题1.(2021·陕西中考真题)计算:()23a b -=( )A .621a b B .62a bC .521a b D .32a b -【答案】A 【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可. 【详解】 解:()23621a ba b-=, 故选:A . 【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键. 2.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A 【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】 原式33a ba b -=-, 3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键.3.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A 【分析】根据分式的混合运算顺序和运算法则计算可得. 【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭ =11ab ab ab-⨯- =a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 4.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A 【分析】直接利用同分母分式的减法法则计算即可. 【详解】 解:11111a a aa a a a++--===. 故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.5.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断. 【详解】解:A 、当x =-1时,x +1=0,故不合题意; B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意; D 、当x =-1时,()210x +=,故不合题意; 故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 6.(2021·浙江宁波市·中考真题)要使分式12x +有意义,x 的取值应满足( ) A .0x ≠ B .2x ≠-C .2x ≥-D .2x >-【答案】B 【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】 解:分式12x +有意义, 20,x ∴+≠2.x ∴≠-故选:.B 【点睛】本题考查的是分式有意义的条件,掌握“分式有意义,则分母不为零”是解题的关键. 7.(2021·浙江金华市·中考真题)12a a+=( ) A .3 B .32aC .22aD .3a【答案】D 【分析】根据分式的运算法则即可求出答案. 【详解】 解:原式123a a+==, 故选:D . 【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 8.(2021·四川南充市·中考真题)下列运算正确的是( )A .232496b a b a b ⋅= B .2312332b b ab a ÷=C .11223a a a += D .2112111a a a -=-+- 【答案】D 【分析】根据分式的加减乘除的运算法则进行计算即可得出答案 【详解】 解:A.2324916b a a b b⋅=,计算错误,不符合题意; B. 2231213=333221b a ab a ab b b÷=⨯,计算错误,不符合题意;C.23111=2222a a a a a+=+,计算错误,不符合题意; D.+--=--+---22211112=11111a a a a a a a ,计算正确,符合题意; 故选:D 【点睛】本题考查了分式的加减乘除的运算,熟练掌握运算法则是解题的关键9.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于( ) A .2- B .1-C .1D .2【答案】A 【分析】先化简式子,再利用配方法变形即可得出结果. 【详解】解:∵22=b a b a a b ab++,∵()2222==a b ab b a b a a b ab ab+-++, ∵两个不等于0的实数a 、b 满足0a b +=,∵()22-2===-2a b ab b a ab a b ab ab+-+, 故选:A . 【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.10.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B 【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】 解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=-- 故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则. 11.(2021·四川遂宁市·中考真题)下列说法正确的是( ) A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x,xπ,985,42ba+,13y+中,1a,42ba+是分式,故选项错误;D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A.【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.二、填空题12.(2021·0(1)π-=__________.【答案】2【分析】根据算数平方根的定义和零指数幂的性质进行计算即可.【详解】(1)3-1=2π-=;故答案为:2【点睛】本题考查了算数平方根和零指数幂,熟练掌握性质是解题的关键.13.(2021·浙江中考真题)计算:122-⨯=_____.【答案】1【分析】根据负整指数幂的意义,可得答案.【详解】解:1122212-⨯=⨯=,故答案为:1. 【点睛】本题考查了负整指数幂,熟知负整数指数为正整数指数的倒数是解题的关键. 14.(2021·四川自贡市·中考真题)化简:22824a a -=-- _________. 【答案】22a + 【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】 解:22824a a --- ()()28222a a a =--+- ()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+, 故答案为:22a +. 【点睛】本题考查分式的减法,掌握分式的基本性质是解题的关键.15.(2021·四川遂宁市·中考真题)若20a -=,则b a =_____. 【答案】14【分析】根据非负数的性质列式求出a 、b 的值,然后计算即可求解. 【详解】解:根据题意得, a −2=0,a +b =0,解得a =2,b =-2, ∵2124ba -==. 故答案为:14. 【点睛】本题考查了两个非负数之和为零的性质,绝对值与算术平方根的非负性,负整数指数幂的运算,掌握以上知识是解题的关键.16.(2021·四川乐山市·中考真题)计算:0(2021)π-=__________.【答案】1 【分析】直接利用零指数幂的性质计算得出答案. 【详解】解:0(2021)1π-=. 故答案为:1. 【点睛】本题考查零指数幂,是基础考点,掌握相关知识是解题关键. 17.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3 【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-= ∵21x x -=∵()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.18.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】 解:∵3n mn m+=-, ∵()3n m n m +=-, ∵2n m =,∵22222222417+=44m n m m n m m m += 故答案为:174【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.19.(2021·浙江丽水市·中考真题)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题: 已知实数,a b 同时满足2222,22a a b b b a +=++=+,求代数式b aa b+的值.结合他们的对话,请解答下列问题: (1)当a b =时,a 的值是__________. (2)当ab 时,代数式b aa b+的值是__________. 【答案】2-或1 7 【分析】(1)将a b =代入222a a b +=+解方程求出a ,b 的值,再代入222b b a +=+进行验证即可; (2)当a b 时,求出30++=a b ,再把b aa b+通分变形,最后进行整体代入求值即可. 【详解】解:已知222222a a b b b a ⎧+=+⎨+=+⎩①②,实数a ,b 同时满足∵,∵,∵-∵得,22330a b a b -+-= ∵()(3)0a b a b -++= ∵0a b -=或30++=a b ∵+∵得,22+=4a b a b --(1)当a b =时,将a b =代入222a a b +=+得,220a a +-=解得,11a =,22a =- ∵11b =,22b =-把=1a b =代入222b b a +=+得,3=3,成立; 把=2a b =-代入222b b a +=+得,0=0,成立; ∵当a b =时,a 的值是1或-2 故答案为:1或-2; (2)当ab 时,则30++=a b ,即=3a b +-∵22+=4a b a b -- ∵22+=7a b∵222()=+2+9a b a ab b += ∵1ab =∵227=71b a a b a b ab ++== 故答案为:7. 【点睛】此题主要考查了用因式分解法解一元二次方程,完全平方公式以及求代数式的值和分式的运算等知识,熟练掌握运算法则和乘法公式是解答此题的关键.三、解答题20.(2021·四川广安市·中考真题)先化简:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭,再从-1,0,1,2中选择一个适合的数代入求值. 【答案】1a ,12【分析】先根据分式的混合运算法则化简,再取使得分式有意义的a 的值代入计算即可. 【详解】解:2221211a a a a a a -+⎛⎫÷- ⎪-+⎝⎭=()()()()21112111a a a a a a a a -+⎡⎤÷-+-⎢+⎣+⎥⎦=()()()()211111a a a a a a +-+⨯--=1a由原式可知,a 不能取1,0,-1, ∵a =2时,原式=12. 【点睛】此题考查了分式的化简求值,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.21.(2021·湖南邵阳市·中考真题)先化简,再从1-,0,1,21中选择一个合适的x 的值代入求值.2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭. 【答案】1;11x --(答案不唯一) 【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简,再结合分式有意义的条件和除数不为0,即可代值计算.【详解】解:原式()()()()()()2211111=1111111x x x xx x x x x x x +++-⨯=⨯=++-++-- 代数式有意义,分母和除数不为0∴()()110x x +-≠即1x ≠± ∴当0x =时,原式=111101x ==---(答案不唯一). 【点睛】本题考察分式的化简求值、分式有意义的条件、因式分解和分母有理化,属于基础题,难度不大.解题的关键是掌握分式的运算法则和分式有意义的条件.22.(2021·江苏苏州市·中考真题)先化简再求值:21111x x x -⎛⎫+⋅⎪-⎝⎭,其中1x =.【答案】1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解. 【详解】 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式=【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.23.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a .【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 【详解】解:2269111a a a a ++⎛⎫+÷⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式3===. 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则. 24.(2021·江苏扬州市·中考真题)计算或化简:(1)013|tan603⎛⎫-+-+︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭.【答案】(1)4;(2)ab 【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算. 【详解】解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭ =()a b a b ab ++÷=()aba b a b+⨯+=ab【点睛】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.25.(2021·甘肃武威市·中考真题)先化简,再求值:2224(2)244x x x x x --÷--+,其中4x =. 【答案】42,23x --+ 【分析】小括号内先通分计算,将除法变成乘法并因式分解,根据乘法法则即可化简,再代值计算即可. 【详解】解:原式2242(2)()22(2)(2)x x x x x x x --=-⨯--+- 4222x x x --=⨯-+ 42x =-+ 当4x =时,原式42423=-=-+. 【点睛】本题考察分式的化简求值,难度不大,属于基础题型.解题的关键在于熟悉运算法则和因式分解. 26.(2021·甘肃武威市·中考真题)计算:011(2021)()2cos 452π--+-︒.【答案】3 【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可. 【详解】解:011(2021)()2cos 452π--+-︒,1222=+-⨯,3=-【点睛】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.27.(2021·云南中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 【答案】6 【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法. 【详解】解:201tan 452(3)1)2(6)23-︒-++-+⨯- =1191422++--=6 【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.28.(2021·山东泰安市·中考真题)(1)先化简,再求值:23169111a a a a a a --+⎛⎫-+÷ ⎪++⎝⎭,其中3a =+; (2)解不等式:7132184x x ->--.【答案】(1)3aa --;1-(2)1x < 【分析】(1)先根据分式混合运算法则化简,然后代入条件求值即可; (2)根据解一元一次不等式的步骤求解即可. 【详解】解:(1)原式2231111(3)a a a a a --++=⋅+- 2(3)11(3)a a a a a --+=⋅+-3aa =--当3a =+时,原式1===--(2)8(71)2(3x 2)x -->-87164x x -+>- 7649x x -->-- 1313x ->- 1x <.【点睛】本题考查分式的化简求值,解一元一次不等式等,掌握相应的运算法则,注意分母有理化是解题关键.29.(2021·浙江温州市·中考真题)(1)计算:()0438⨯-+--.(2)化简:()()215282a a a -++. 【答案】(1)-6;(2)22625a a -+. 【分析】(1)直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案; (2)直接利用完全平方公式以及单项式乘以多项式运算法则计算再合并即可得出答案. 【详解】解:(1)()0438⨯-+-12831=-+-+6=-;(2)()()215282a a a -++ 2210254a a a a =-+++ 22625a a =-+.【点睛】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.30.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13.【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解. 【详解】解:原式=()()()22111111x x x x x x⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦ =211111x x x x x+-⎛⎫-⋅ ⎪--⎝⎭ =211x x x x -⋅- =1x303x x -=∴=将3x =代入原式,原式=13. 【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 31.(2021·重庆中考真题)计算(1)()()22x y x x y -++;(2)2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭. 【答案】(1)222x y +;(2)22a - 【分析】(1)利用完全平方公式和整式的乘法运算法则计算即可; (2)根据分式混合运算的运算法则计算即可. 【详解】解:(1)()()22x y x x y -++ =x 2﹣2xy +y 2+x 2+2xy =2x 2+y 2;(2)2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭ =22(2)(2))22(2)a a a a a a a ++--÷+++( =22(2)2(2)(2)a a a a +⨯++- =22a -. 【点睛】本题考查整式的混合运算、分式的混合运算、平方差公式、完全平方公式,熟练掌握运算法则是解答的关键.32.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可.【详解】解:∵2x y -=, ∵1121y x x y xy xy---===, ∵2xy =-,∵()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.33.(2021·浙江嘉兴市·中考真题)(1)计算:12sin 30-+︒;(2)化简并求值:11a a -+,其中12a =-.【答案】(1)(2)11a +,2【分析】(1)先分别化简负整数指数幂,二次根式,特殊角三角函数,然后再计算; (2)先计算异分母分式的减法进行化简,然后代入求值. 【详解】解:(1)12sin 30-︒1122=+=(2)11aa -+ 11a aa +-=+ =11a + 当12a =-时,原式12112==-+. 【点睛】本题考查负整数指数幂,特殊角三角函数及异分母分式的加减法计算,掌握运算顺序和计算法则准确计算是解题关键.34.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭=2223m m m m ÷--= 2232m m m m -⋅-= 32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长, ∵3-2<m <3+2,即1<m <5, ∵m 为整数, ∵m =2、3、4, 又∵m ≠0、2、3 ∵m =4, ∵原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则. 35.(2021·四川泸州市·中考真题)化简:141()22a a a a a --+÷++. 【答案】1a -. 【分析】首先将括号里面进行通分运算,进而合并分子化简,再利用分式除法法则计算得出答案. 【详解】 解:141()22a a a a a --+÷++ =22141()222a a a a a a a +--+÷+++ =221122a a a a a -+-÷++ =2(1)221a a a a -++- =1a -. 【点睛】此题主要考查了分式的混合运算,正确进行分式的通分运算是解答此题的关键.36.(2021·四川泸州市·中考真题)计算:0120211423cos304. 【答案】12.【分析】根据零指数幂,负整指数幂,去括号法则,特殊角的三角函数值化简,然后再计算即可.【详解】 解:0120211423cos304314423 144312=.【点睛】本题考查了零指数幂,负整指数幂,去括号法则,特殊角的三角函数值等知识点,熟悉相关知识点是解题的关键37.(2021·重庆中考真题)计算:(1)2(23)()a a b a b ++-; (2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭. 【答案】(1)223++a ab b ;(2)-31x x + 【分析】(1)根据单项式乘以多项式以及完全平方公式计算即可;(2)利用分式的混合运算法则进行计算即可.【详解】解:(1)2(23)()a a b a b ++- 2222+3+2+=a ab a ab b -22=3++a ab b(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭()()()222+3-3+3=11+x x x x x x x ⎛⎫-÷ ⎪++⎝⎭()()()2+3-31=31x x x x x +++ -3=1x x + 【点睛】本题考查了整式的混合运算和分式的混合运算,熟练掌握运算法则是解题的关键.38.(2021·四川乐山市·中考真题)已知2612(1)(2)A B x x x x x --=----,求A 、B 的值. 【答案】A 的值为4,B 的值为-2【分析】根据分式、整式加减运算,以及二元一次方程组的性质计算,即可得到答案.【详解】(2)(1)12(1)(2)(1)(2)A B A x B x x x x x x x ---=+------, ∵(2)(1)26(1)(2)(1)(2)A xB x x x x x x -+--=----, ∵(2)(1)26A x B x x -+-=-,即()(2)26A B x A B x +-+=-.∵226A B A B +=⎧⎨+=⎩,解得:42A B =⎧⎨=-⎩ ∵A 的值为4,B 的值为2-.【点睛】本题考查了分式、整式、二元一次方程组的知识;解题的关键是熟练掌握分式加减运算、整式加减运算、二元一次方程组的性质,从而完成求解.。
专题5二次根式-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)

2021年中考数学真题分项汇编【全国通用】(第02期)专题5二次根式姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南株洲市·中考真题)计算:4-=( )A .-B .-2C .D .【答案】A【分析】【详解】解:()44-=-=-故选:A .【点睛】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.2.(2021·湖南)下列运算正确的是( )A .236a a a ⋅=B .()235a a =C 3=D .222()a b a b +=+ 【答案】C【分析】分别根据同底数幂的乘法运算法则、幂的乘方运算法则、二次根式的性质以及完全平方公式分别计算各项后,再进行判断即可得到答案.【详解】解:A . 23235a a a a +⋅==,故选项A 计算错误,不符合题意;B . ()23326aa a ⨯==,故选项B 计算错误,不符合题意;C . |3|3=-=,此选项计算正确,故符合题意;D . 222()2a b a ab b +=++故选项D 计算错误,不符合题意;【点睛】此题主要考查了同底数幂的乘法、幂的乘方运算、二次根式的性质以及完全平方公式,熟练掌握运算法则是解答此题的关键.3.(2021·湖南常德市·中考真题)计算:11122⎛⎫+-⋅= ⎪⎝⎭( )A .0B .1C .2D 【答案】C【分析】 先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:11122⎛⎫-⋅ ⎪ ⎪⎝⎭=512- =2.故选:C .【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键.4.(2021·山东东营市·中考真题)下列运算结果正确的是( )A .235x x x +=B .()2222a b a ab b --=++C .()23636x x =D =【答案】B【分析】根据合并同类项法则、完全平方公式、积的乘方的运算法则、二次根式的运算法则依次计算各项后即可解答.选项A ,2x 和3x 不是同类项,不能够合并,选项A 错误;选项B ,根据完全平方公式可得()()22222a b a b a ab b --=+=++,选项B 正确;选项C ,根据积的乘方的运算法则可得()23639x x =,选项C 错误;选项D 不能够合并,选项D 错误.故选B .【点睛】本题考查了合并同类项法则、完全平方公式、积的乘方的运算法则及二次根式的运算法则,熟练运用公式和法则是解决问题的关键.5.(2021·化为最简二次根式,其结果是( )A .2B .2C .2D .2【答案】D【分析】根据二次根式的化简方法即可得.【详解】解:原式=2=, 故选:D .【点睛】本题考查了二次根式的化简,熟练掌握化简方法是解题关键.6.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.7.(2021·黑龙江绥化市·0在实数范围内有意义,则x 的取值范围是( ) A .–1x >B .1x ≥-且0x ≠C .1x >-且0x ≠D .0x ≠【答案】C【分析】 0在实数范围内有意义,必须保证根号下为非负数,分母不能为零,零指数幂的底数也不能为零,满足上述条件即可.【详解】 0在实数范围内有意义, 必须同时满足下列条件:10x +≥0≠,0x ≠,综上:1x >-且0x ≠,故选:C .【点睛】本题主要考查分式有意义的条件,二次根式有意义的条件,零指数幂有意义的条件,当上述式子同时出现则必须同时满足.8.(2021·广西柳州市·中考真题)下列计算正确的是( )A=B.3+=C=D.2=【答案】C【分析】根据二次根式的运算性质求解,逐项分析即可【详解】A.B. 3+,不是同类二次根式,不能合并,不符合题意;C. ==D.2,不是同类二次根式,不能合并,不符合题意.故选C.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.9.(2021· 1.442)A.-100B.-144.2C.144.2D.-0.01442【答案】B【分析】类比二次根式的计算,提取公因数,代入求值即可.【详解】33 1.442=33-=--=-333(13∴-=-144.2故选B.【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.10.(2021·).A .321-+B .321+-C .321++D .321--【答案】A【分析】 根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0故选:A .【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.11.(2021·湖北恩施土家族苗族自治州·,这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .3【答案】C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解.【详解】解:由题意得: (2,==-=∵所有积中小于2的有2-两个;故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.12.(2021·四川达州市·中考真题)下列计算正确的是( )A =B 3±C .()110a a a -⋅=≠D .()2224436a b a b -=-【答案】C【分析】根据二次根式的性质和运算法则,负整数指数幂,积的乘方法则,逐一判断选项,即可.【详解】解:A.B. 3=,故该选项错误,C. ()110a a a -⋅=≠,故该选项正确,D. ()2224439a b a b -=,故该选项错误,故选C .【点睛】 本题主要考查二次根式的性质和运算,负整数指数幂,积的乘方法则,熟练掌握上述性质和法则,是解题的关键.13.(2021·山东临沂市·中考真题)如图,点A ,B 都在格点上,若B ,则AC 的长为( )A B C .D .【答案】B【分析】 利用勾股定理求出AB ,再减去BC 可得AC 的长.【详解】解:由图可知:AB∵BC∵AC =AB -BC = 故选B .【点睛】 本题考查了二次根式的加减,勾股定理与网格问题,解题的关键是利用勾股定理求出线段AB 的长.14.(2021·内蒙古中考真题)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3- 【答案】C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.15.(2021·广东中考真题)设6的整数部分为a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .【答案】A【分析】a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34<<,∵263<<,∵62a =,∵小数部分624b ==-∵(((22244416106a b =⨯+=-=-=. 故选:A .【点睛】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.16.(2021·黑龙江鹤岗市·中考真题)下列运算中,计算正确的是( )A .2352m m m +=B .()32626a a -=- C .()222a b a b -=- D =【答案】D【分析】根据积的乘方、完全平方公式及二次根式的除法可直接进行排除选项.【详解】解:A 、2m 与3m 不是同类项,所以不能合并,错误,故不符合题意;B 、()32628a a -=-,错误,故不符合题意;C 、()2222a b a ab b -=-+,错误,故不符合题意;D =故选D .【点睛】本题主要考查积的乘方、完全平方公式及二次根式的除法,熟练掌握积的乘方、完全平方公式及二次根式的除法是解题的关键.17.(2021·湖北襄阳市·在实数范围内有意义,则x 的取值范围是( ) A .3x ≥-B .3x ≥C .3x ≤-D .3x >- 【答案】A【分析】根据二次根式有意义的条件,列出不等式,即可求解.【详解】∵在实数范围内有意义,∵x +3≥0,即:3x ≥-,故选A .【点睛】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键. 18.(2021·内蒙古呼和浩特市·中考真题)下列计算正确的是( )A .224347a a a +=B 11a= C .31812()42-+÷-= D .21111a a a a --=-- 【答案】D【分析】 根据有理数、整式、分式、二次根式的运算公式运算验证即可.【详解】222347a a a +=,故A 错;当a >011a =,当a <011a=-,故B 错; 31812()262-+÷-=-,故C 错; 21111a a a a --=--,D 正确; 故选:D .【点睛】本题主要考查了有理数、整式、分式、二次根式的运算,熟记运算定理和公式是解决问题的额关键. 19.(2021·湖北黄石市·中考真题)函数()02y x =+-的自变量x 的取值范围是( ) A .1x ≥-B .2x >C .1x >-且2x ≠D .1x ≠-且2x ≠ 【答案】C【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解.【详解】解:函数()02y x =+-的自变量x 的取值范围是: 10x +>且20x -≠,解得:1x >-且2x ≠,故选:C .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.二、填空题20.(2021·广西贺州市·中考真题)x 的取值范围是________.【答案】1x ≥-【分析】根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】有意义10x ∴+≥1x ∴≥-故答案为:1x ≥-【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.21.(2021·山东威海市·____________________.【答案】【分析】根据二次根式的四则运算法则进行运算即可求解.【详解】解:原式==-=,故答案为:【点睛】本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可求解.22.(2021·贵州铜仁市·中考真题)计算=______________;【答案】3【分析】先化简二次根式,再利用平方差公式展开计算即可求出答案.【详解】解:(==⨯322=⨯-3⎡⎤⎢⎥⎣⎦31=⨯=.3故答案为:3.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则,细心运算是解题的关键.23.(2021·x的取值范围是_______________.x≥【答案】7【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x-≥,解得:7x≥;故答案为7x≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.24.(2021·山东聊城市·=_______.【答案】4【分析】根据二次根式的运算法则,先算乘法,再算加减法,即可.【详解】解:原式=1 642-⨯=4.故答案是:4.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.25.(2021·江苏宿迁市·x的取值范围是____________.【答案】任意实数【分析】根据二次根式有意义的条件及平方的非负性即可得解.【详解】解:∵20x≥,∵22x+>0,∵无论x∵x 的取值范围为任意实数,故答案为:任意实数.【点睛】本题考查了二次根式有意义的条件及平方的非负性,熟练掌握二次根式的定义是解决本题的关键.26.(2021·浙江衢州市·x 的值可以是_________.(写出一个即可)【答案】3【分析】由二次根式有意义的条件:被开方数为非负数可得答案.【详解】∵10x -≥,解得:1≥x ,∵x 的值可以是3,故答案为:3【点睛】本题考查二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题关键.27.(2021·江苏南京市·________.【答案】2【分析】【详解】解:原式=2=;.【点睛】本题考查了二次根式的减法运算,涉及到二次根式的化简等知识,解决本题的关键是牢记二次根式的性质和计算法则等.28.(2021·江苏南京市·在实数范围内有意义,则x 的取值范围是________.【答案】x ≥0【分析】根据二次根式有意义的条件得到5x ≥0,解不等式即可求解.【详解】解:由题意得5x ≥0,解得x ≥0.故答案为:x ≥0【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件“被开方数为非负数”是解题关键.29.(2021·x 的取值范围是________. 【答案】0x >【分析】根据分式及二次根式有意义的条件可直接进行求解.【详解】解:由题意得:0x ≠且20x ≥, ∵0x >;故答案为0x >.【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.30.(2021·湖南怀化市·中考真题)比较大小:2__________12(填写“>”或“<”或“=”). 【答案】>【分析】12-,结果大于0大;结果小于0,则12大. 【详解】解:11=0222->,∵122, 故答案为:>.【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.31.(2021·湖北荆州市·中考真题)已知:(1012a -⎛⎫=+ ⎪⎝⎭,b ==_____________.【答案】2【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解.【详解】解:∵(1012213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,=2=,故答案是:2.【点睛】本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键.32.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =,b =1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++.则1210S S S +++=____.【答案】10【分析】先根据1ab =求出1111n n n S a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得. 【详解】解:1ab =,111111()1nn n n n n n a S a b a a b ∴=+=+++++(n 为正整数), 11()nn n na a a ab =+++, 111nn n a a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键.三、解答题33.(2021·湖北中考真题)(1)计算:0(346)-⨯-++ (2)解分式方程:212112x x x+=--. 【答案】(1)8;(2)1x =.【分析】(1)先计算零指数幂、去括号、立方根、化简二次根式,再计算实数的混合运算即可得;(2)先将分式方程化成整式方程,再解一元一次方程即可得.【详解】解:(1)原式1462⨯--+=44=+,8=;(2)212112x x x+=--, 方程两边同乘以21x -得:221x x -=-,移项、合并同类项得:33x -=-,系数化为1得:1x =,经检验,1x =是原分式方程的解,故方程的解为1x =.【点睛】本题考查了零指数幂、立方根、化简二次根式、解分式方程,熟练掌握各运算法则和方程的解法是解题关键.34.(2021·湖南娄底市·中考真题)计算:101)2cos 452π-⎛⎫+-︒ ⎪⎝⎭. 【答案】2【分析】直接利用零指数幂,二次根式分母有理化、负整数指数幂、特殊角的三角函数值计算即可.【详解】解:101)2cos 452π-⎛⎫+-︒ ⎪⎝⎭1222=+-⨯112=+2=.【点睛】本题考查了零指数幂,二次根式分母有理化、负整数指数幂、特殊角的三角函数值的运算法则,解题的关键是:掌握相关的运算法则.35.(2021·北京中考真题)计算:02sin 60(5π--.【答案】4【分析】根据特殊三角函数值、零次幂及二次根式的运算可直接进行求解.【详解】解:原式=2514+-=. 【点睛】本题主要考查特殊三角函数值、零次幂及二次根式的运算,熟练掌握特殊三角函数值、零次幂及二次根式的运算是解题的关键.36.(2021·湖北黄石市·中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a .【答案】11a +,3【分析】 先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可.【详解】 解:原式=1(1)(1)()aa a a a a 1(1)(1)a a a a a 1=1a +,将31a 代入,原式3===. 【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键.37.(2021·湖北恩施土家族苗族自治州·中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.【答案】22-+a ,【分析】先对分式进行化简,然后再代入进行求解即可.【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a =代入得:原式==. 【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键.38.(2021·湖南怀化市·中考真题)先化简,再求值:221262443x x x x x x x+-+⋅-++,其中2x =+.【答案】1;22x - 【分析】 先将乘法部分因式分解并约分化简,再通分合并,最后代值计算即可求解.【详解】解:原式=()()()()()223121222132222x x x x x x x x x x x x x +--++⨯=+==+----当2x =+时,原式=12x ===-故答案是:1;22x -. 【点睛】 本题考察分式的化简求值、因式分解和分母有理化,题目难度不大,属于基础计算题.解题的关键是掌握分式的计算法则.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【通用版】中考数学精选真题
专题01 分式与分式方程
学校:___________姓名:___________班级:___________
1.【湖北衡阳中考数学试卷】若分式1
2
+-x x 的值为0,则x 的值为( ).
A .2或-1
B .0
C .2
D .-1 【答案】C 【解析】
试题分析:根据12
+-x x 的值为0时,则分子x -2=0,得x=2.
故选C.
考点:分式值为零.
2.【湖南益阳中考数学试题】下列等式成立的是( )
A.123
a b a b B.2
1
2a b
a b C.2ab
a a
b b a b
D.a a a b
a b 【答案】C 【解析】
考点:分式的混合运算.
3.【山东省济南市中考二模】分式方程
3
1
1(1)(2)
x
x x x
-=
--+的解是()
A.x=1
B.x=-1+5
C.x=2
D.无解【答案】D.
【解析】
考点:解分式方程.
4.【河北省石家庄市中考一模】货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()
A.2535
20
x x
=
- B.
2535
20
x x
=
- C.
2535
20
x x
=
+ D.
2535
20
x x
=
+
【答案】C.【解析】
试题分析:根据题意,得x 25=2035
+x ;
故选C .
考点:由实际问题抽象出分式方程.
5.【吉林省中考数学试题】计算:
22
x x y x y x -⋅-= . 【答案】x y +. 【解析】
试题分析:原式=()()
x x y x y x y x +-⋅
-=x y +.故答案为:x y +.
考点:分式的乘除法.
6.【黑龙江绥化中考数学试题】若代数式626
5x 2-+-x x 的值等于0 ,则
x=_________. 【答案】x=2 【解析】
试题分析:当⎩⎨
⎧≠-=+-0620652x x x 时,代数式62652-+-x x x 的值等于0,解得:x=2.
考点:分式的值等于0.
7.【山东省潍坊中考三模】已知方程35
5x a
x x =-
--有增根,则a 的值为 . 【答案】﹣5. 【解析】
考点:分式方程的增根.
8.【河北省承德市中考二模】在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xcm ,则根据题意可得方程 .
【答案】24002400
8(120%)x x -=+.
【解析】
试题分析:原计划用的时间为:2400
x ,实际用的时间为:2400(120%)x +.根
据等量关系原计划用的时间-实际用的时间=8,所列方程为
24002400
8(120%)x x -=+.
考点:由实际问题抽象出分式方程.
9.【黑龙江哈尔滨中考数学试题】先化简,再求代数式
2
122
()
3x x y
x xy x 的值,其中x=2+tan60°,y=4sin30°.
【答案】3
x y ,3. 【解析】
试题分析:首先将括号里面的分式进行通分,然后将除法改成乘法进
行约分化简,最后将x 和y 根据三角函数的计算法则求出x 和y 的值,最后代入进行计算.
试题解析:原式=23()2x x x x y x =3x y
∵x=2+3,y=4×21
=2 , ∴原式3
2
32=3.
考点:分式的化简求值.
10.【浙江省杭州市
5月中考模拟】(1)计算:0
122sin 60|13|2012-︒+-+
(2)解分式方程:12
33x x =
-+.
【答案】(1)23;(2)x=9. 【解析】
考点:1.实数的运算;2.零指数幂;3.解分式方程;4.特殊角的三角函数值.
专题02 二次根式
学校:___________姓名:___________班级:___________
1.【湖北武汉中考数学试卷】若代数式2
-x 在实数范围内有意义,
则x 的取值范为是( )
A .x ≥-2
B .x >-2
C .x ≥2
D .x ≤2 【答案】C 【解析】
考点:二次根式的性质.
2.【湖北荆门中考数学试题】当12a <<时,代数式2(2)10a a -+-=的
值是( )
A .1-
B .1
C .23a -
D .32a - 【答案】B . 【解析】
试题分析:∵1<a<2,∴a-2<0,1-a<0,∴()2
2-a +|1-a|=2-a+a-1=1.
故选B .
考点:二次根式的性质与化简.
3.【湖南省邵阳市中考二模】下列二次根式中,最简二次根式是( )
A .6
B .8
C .12
D .12
【答案】A. 【解析】
试题解析:6是最简二次根式,A 正确;8=22,B 不正确;12=23,
C 不正确;22
21=
,D 不正确,
故选A .
考点:最简二次根式.
4.【四川省成都市外国语学校中考模拟】已知0<a <b ,a b b +b b a -x ,y 的大小关系是( )
A .x >y
B .x=y
C .x <y
D .与a 、b 的取值有关 【答案】C . 【解析】
考点:二次根式的化简求值.
5.【黑龙江哈尔滨中考数学试题】计算2
243
3-=
【答案】6 【解析】
试题分析:原式=26-3×6
3=26-6=6.
考点:二次根式的计算.
6.【辽宁葫芦岛中考数学试题】若代数式1x
x -有意义,则实数x 的取
值范围是 . 【答案】x ≥0且x ≠1. 【解析】
试题分析:∵1x
x -有意义,∴x ≥0,x ﹣1≠0,∴实数x 的取值范围
是:x ≥0且x ≠1.故答案为:x ≥0且x ≠1.
考点:1.二次根式有意义的条件;2.分式有意义的条件. 7.【湖北省黄冈市中考模拟】计算32278+-+的结果为 .
【答案】2+43.
【解析】
:原式=22+33﹣2+3=2+43. 考点:二次根式的加减法.
8.【江苏省南京市高淳区中考二模】计算(62-)×
2= .
【答案】23-2. 【解析】
考点:二次根式的混合运算.
9.【辽宁大连中考数学试题】计算:(
)(
)
2124131
3⎪
⎭⎫
⎝⎛-+-+
【答案】26+1. 【解析】
试题分析:先计算平方差、二次根式化简、0指数幂,然后按顺序计算即可; 试
题
解
析
:
(
)(
)
2124131
3⎪
⎭⎫
⎝⎛-+-+=
()162
132
2
-+-=3-1+26-1=26+1.
考点:1.实数的计算;2.二次根式的化简.
10.-2
1123--sin 602⎛⎫
-+︒
⎪⎝⎭. 【答案】23
+4.
【解析】
考点:1.实数的运算;2.负整数指数幂;3.特殊角的三角函数值.。