函数与导数中任意性和存在性问题探究

合集下载

利用导数研究存在性与任意性

利用导数研究存在性与任意性

利用导数研究存在性及任意性1.对,都有令,则; ,都有;,都有;.2.,使得,则;,使得;,都有;.3.,,使得;,,使得;,,使得且.21.(12分)已知函数2()(2),1x f x x e ax bx x =-++=是()f x 的一个极值点.(1)若1x =是()f x 的唯一极值点,求实数a 的取值范围;(2)讨论()f x 的单调性;(3)若存在正数0x ,使得0()f x a <,求实数a 的取值范围.21.(1)()(1)2x f x x e ax b '=-++,1x =是极值点()0f x '∴= ,故20a b +=, 2b a =- ()(1)(2)x f x x e a '=-+1x =是唯一的极值点20x e a ∴+≥恒成立或20x e a +≤恒成立由20x e a +≥恒成立得2x a e ≥-,又0x e > 0a ∴≥由20x e a +≤恒成立得2x a e ≤-,而x e -不存在最小值, 20x e a ∴+≤不可能恒成立.0a ∴≥ ………………4分(2)由(1)知,当0a ≥时,1x < , ()0f x '< ; 1x > , ()0f x '>.()f x ∴在(,1)-∞递减,在(1,)+∞上递增.当02ea -<<时,ln(2)1a -< ln(2)x a <-,()0f x '>; ln(2)1a x -<< , ()0f x '<; 1x >, ()0f x '>. ()f x ∴在(,ln(2))a -∞-、(1,)+∞上递增,在(ln(2),1)a -上递减。

当2ea <-时,()f x 在(,1)-∞、 (ln(2),)a -+∞上递增,在(ln(2),1)a -递减。

(完整版)函数导数任意存在”-型问题归纳总结,推荐文档

(完整版)函数导数任意存在”-型问题归纳总结,推荐文档

战略思想三: x R ,都有" f (x1) f (x) f (x2 )" f (x1), f (x2 ) 分别是 f (x) 的最小值和最大值, | x1 x2 | min 是同时出现最大值和最小值的最短区间.
y x1
x2 x
例 3.
已知函数
f
(x) 2sin( x 2
) ,若对 5
" f ( x1 x2 ) f (x1) f (x2 ) "恒成立的函数的个数是( )
2
2
A.0 B.1 C.2 D.3
解:本题实质就是考察函数的凸凹性,即满足条件" f ( x1 x2 ) f (x1) f (x2 ) "的函数,应是凸函
2
2
数的性质,画草图即知 y log2 2x 符合题意;
即 f (x) 在[1,1]上为增函数.
∵ f (1) 1,∴ x [1,1] ,恒有 f (x) 1; ∴要使 f (x) t2 2at 1 对所有 x [1,1] , a [1,1] 恒成立,
即要 t2 2at 1 1恒成立,故 t2 2at 0 恒成立,
令 g(a) 2at t2 ,只须 g(1) 0 且 g(1) 0 ,
x R ,都有"
f
(x1)
f (x)
f
(x2 )" 成立,则
| x1 x2 | 的最小值为____.
解 ∵对任意 x∈R,不等式 f (x1) f (x) f (x2 ) 恒成立,
∴ f (x1), f (x2 ) 分别是 f (x) 的最小值和最大值.
对于函数 y sin x ,取得最大值和最小值的两点之间最小距离是 π,即半个周期.
解得 t 2 或 t 0 或 t 2 .

函数与导数中任意性和存在性问题探究

函数与导数中任意性和存在性问题探究

函数与导数中任意性和存在性问题探究命题人:闫霄 审题人:冯昀山一、相关结论:结论1:min [,],()[()]x a b f x m f x m ∀∈>⇔>; 结论2:max [,],()[()]x a b f x m f x m ∀∈<⇔<; 结论3:max [,],()[()]x a b f x m f x m ∃∈>⇔>; 结论4:min [,],()[()]x a b f x m f x m ∃∈<⇔<;结论5:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>;【如图一】 结论6:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>;【如图二】 结论7:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>;【如图三】 结论8:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;【如图四】结论9:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空;结论10:1212[,],[,],()()()x a b x c d f x g x f x ∀∈∃∈=⇔的值域是()g x 的值域的子集【例题1】:已知两个函数232()816,()254,[3,3],f x x x k g x x x x x k R =+-=++∈-∈;(1) 若对[3,3]x ∀∈-,都有()()f x g x ≤成立,求实数k 的取值范围; (2) 若[3,3]x ∃∈-,使得()()f x g x ≤成立,求实数k 的取值范围; (3) 若对12,[3,3]x x ∀∈-,都有12()()f x g x ≤成立,求实数k 的取值范围;解:(1)设32()()()2312h x g x f x x x x k =-=--+,(1)中的问题可转化为:[3,3]x ∈-时,()0h x ≥恒成立,即min [()]0h x ≥。

函数导数任意存在”-型问题归纳总结

函数导数任意存在”-型问题归纳总结

令 g(x)x 2 2x x ln xx [1,e] , 又 g (x)(x 1)(x 2 2ln x)(x ln x)2函数导数任意性和存在性问题探究导学语函数导数问题是高考试题中占比重最大的题型,前期所学利用导数解决函数图像切线、函数单调性、 函数极值最值等问题的方法, 仅可称之为解决这类问题的“战术” ,若要更有效地彻底解决此类问题还必须研究“战略,”因为此类问题是函数导数结合全称命题和特称命题形成的综合性题目 .常用战略思想如下:题型分类解析一.单一函数单一“任意”型f(x)上限战略思想一: “ x A , a ( )f ( x)恒成立”等价于“当x A 时, a ( ) f (x)max ;”f(x)下限“ x A , a ( ) f (x) 恒成立”等价于“当x A 时, a ( )f ( x) min ”.例 1 :已知二次函数 f (x) ax 2 x ,若 x [0,1] 时,恒有 | f (x)| 1,求实数 a 的取值范围 解: | f (x)| 1 ,∴ 1 ax 2 x 1;即 1 x ax 2 1 x ; 当 x 0 时,不等式显然成立,∴ a ∈R.21 1 1 1 当 0 x 1 时,由 1 x ax 21 x 得:2 a 2 , x x x x11 又∵(2 )max2 ,∴a 2, 2 a 0 ,xx综上得 a 的范围是 a [ 2,0] . .单一函数单一“存在”型x A ,使得 a ( ) f ( x)成立”等价于“当x A 时, a ( )f ( x) max取值范围解析:f (x) (a 2)x a(x ln x) x 2 2x . ∵x [1,e] ,∴ln x 1 x 且等号不能同时取,所以 ln x x ,即 x ln x 0 , x 2 2x因而 a x [1,e] ,x ln x ,而(x 12 1x )min 0,∴a 0.xx战略思想x A ,使得 a ( ) f (x) 成立”等价于“当x A 时,a ( ) f(x)min ”;f ( x)上限f ( x)下限例 2. 已知函数 f (x) aln x x 2(a R ),若存在 x [1,e] ,使得f (x) (a 2)x 成立,求实数 a 的当x [1, e]时,x 1 0,ln x 1,x 2 2ln x 0,从而g (x) 0 (仅当x=1 时取等号),所以g(x)在[1, e]上为增函数,故g(x) 的最小值为g(1) 1,所以 a 的取值范围是[ 1, ) .三.单一函数双“任意”型战略思想三:x R,都有" f(x1) f (x) f(x2)" f(x1), f (x2) 分别是f (x) 的最小值和最大值,|x1 x2 | min 是同时出现最大值和最小值的最短区间.例 3. 已知函数f (x) 2sin( x ) ,若对x R,都有" f (x1) f (x) f (x2)" 成立,则| x1 x2 |25的最小值为 __ .解∵对任意x∈R ,不等式f (x1) f (x) f (x2) 恒成立,∴f (x1), f (x2)分别是f (x) 的最小值和最大值对于函数y sin x ,取得最大值和最小值的两点之间最小距离是π,即半个周期x又函数f (x) 2sin( 2 5 )的周期为4,∴| x1 x2 |的最小值为 2.战略思想四:x1,x2 A, " f (x1 x2)f (x1) f (x2)"成立22f (x) 在 A 上是上凸函数 f ''(x) 02例 4. 在y 2x,y log2 2x,y x ,y cosx 这四个函数中,当0 x1 x2 1时,使" f (x1 x2)f(x1) f ( x2 )"恒成立的函数的个数是( )22A.0B.1C.2D.3解:本题实质就是考察函数的凸凹性,即满足条件" f(x1 x2)f (x1) f (x2)" 的函数,应是凸函22数的性质,画草图即知y log2 2x 符合题意;战略思想五:x1,x2 A,"f (x1) f (x2)0"成立f(x)在 A 上是增函数x1 x2例 5 已知函数f (x) 定义域为[ 1,1],f (1) 1,若m,n [ 1,1],m n 0时,都有f(m) f(n) 0" ,若f(x) t2 2at 1对所有x [ 1,1],a [ 1,1]恒成立,求实数t取值范围. mn解:任取1 x1 x2 1,则f (x1) f (x2) f (x1) f (x2) (x1 x2),x1 x2由已知 f (x1) f (x2) 0,又x1 x2 0,∴f (x1) f (x2) 0,x1 x2即f (x) 在[ 1,1]上为增函数.∵f (1) 1,∴x [ 1,1],恒有f (x) 1;2∴要使f (x) t2 2at 1对所有x [ 1,1],a [ 1,1]恒成立,即要t2 2at 1 1恒成立,故t2 2at 0 恒成立,2令g(a) 2at t2,只须g( 1) 0且g(1) 0,解得t 2或t 0或t 2.战略思想六:x1,x2 A,| f (x1) f (x2)| t ( t为常数)成立t= f (x)max f (x)min4 3 1例 6. 已知函数f (x) x4 2x3,则对任意t1,t2 [ ,2](t1 t2)都有| f(t1) f (t2)| 恒2成立,当且仅当t1 = __ ,t2 = ___ 时取等号.解:因为| f (x1) f (x2)| |[ f ( x)] max [ f ( x)] min |恒成立,4 3 1由f(x) x4 2x3,x [ ,2] ,23 27 1 5易求得[ f (x)]max f (3) 27,[ f (x)]min f ( 1) 5,2 16 2 16∴| f (x1) f (x2)| 2.战略思想七:x1,x2 A,| f (x1) f (x2)| t |x1 x2 ||f(x1) f(x2)| t | f '(x)| t(t 0)例7. 已知函数y f (x)满足:(1)定义域为[ 1,1] ;(2)方程f (x) 0 至少有两个实根1和1;(3)过f (x) 图像上任意两点的直线的斜率绝对值不大于 1.(1)证明:| f(0) | 1;(2)证明:对任意x1,x2 [ 1,1],都有| f (x1) f (x2)| 1.证明(1) 略;(2)由条件(2)知f( 1) f (1) 0,不妨设 1 x 1 x 2 1,由(3)知| f (x 1) f (x 2)| |x 1 x 2 | x 2 x 1, 又∵| f(x 1) f(x 2)| |f(x 1)| | f(x 2)| | f(x 1) f( 1)| |f(x 2) f(1)|x 1 1 1 x 2 2 (x 2 x 1) 2 | f(x 1) f(x 2)|;∴|f(x 1) f(x 2)| 133 例 8. 已知函数 f(x)x 3 ax b ,对于 x 1,x 2(0, )(x 1 x 2 )时总有 | f (x 1) f (x 2)| |x 1 x 2 |成3立,求实数 a 的范围 .3 ' 2解 由 f (x) x 3 ax b ,得 f '(x) 3x 2 a ,评注 由导数的几何意义知道,函数 y f (x)图像上任意两点 P(x 1,y 1),Q(x 2,y 2) 连线的斜率k y2 y1 (x 1 x 2 )的取值范围,就是曲线上任一点切线的斜率(如果有的话 )的范围,利用这个结论,可x 2 x1以解决形如 |f(x 1) f(x 2)| m|x 1 x 2||或| f(x 1) f(x 2)| m|x 1 x 2 | (m >0)型的不等式恒成立问题四.双函数“任意”+“存在”型: x 1A,x 2 B ,使得 f (x 1) g (x 2)成立 f (x)min g(x)min ;x 1 A, x 2B ,使得 f (x 1)g(x 2)成立f (x)maxg(x)max .总有 f (x 1) g( x 2 )成立,求实数 m 的取值范围 .解析:题意等价于 f(x)在(0,1)上的最大值大于或等于 g ( x)在[1,2] 上的最大值 2 2x 2 5x 2 1 f (x) 2 ,由 f '(x) 0得, x 或 x 2,x211 当 x (0, ) 时, f (x) 0,当 x ( ,1)时 f (x) 0 , 221 所以在( 0,1)上, f ( x)max f (1) 3 5ln2 .2当 x (0, 33)时,a f (x) 1 a ,∵| f(x 1) f(x 2)| |x 1 x 2 |,∴| f(x 1) f(x 2) | 1x 1 x 2a1 1a11a0战略思想八: 例 9 .已知函数2 f (x) 2xx 25ln x , g(x) xmx 4 ,若存在 x 1 (0,1) ,对任意 x 2 [1,2] ,又g(x)在[1,2]上的最大值为 max{g(1),g(2)} ,所以有所以实数 m 的取值范围是 m 8 5ln 2.战略思想九: “ x 1 A , x 2 B ,使得 f (x 1) g(x 2)成立”“f (x) 的值域包含于.g( x ) 的值域”.例 10.设函数 f (x)1x 3 1 x 2 5x 4.333(1)求 f (x) 的单调区间.32(2)设 a ≥1,函数 g(x) x 3 3a 2x 2a .若对于任意 x 1 [0,1] ,总存在 x 0 [0,1] ,使得 f (x 1) g( x 0 )成立,求 a 的取值范围.' 22 5 ' 2 2 5 5解析:( 1 ) f '(x) x 2x ,令 f '(x)≥0,即 x 2 x ≤ 0 ,解得: ≤ x ≤1,3 3 3 3 355f(x) 的单增区间为 [ ,1] ;单调减区间为 ( , ]和[1, ) .33(2)由(1)可知当 x [0,1]时, f ( x)单调递增, ∴当 x [0,1]时, f(x) [f (0), f (1)] , 即 f(x) [ 4, 3] ;又g '(x) 3x 2 3a 2,且 a ≥1,∴当x [0,1]时, g '( x) ≤ 0 , g( x)单调递减, ∴当 x [0,1] 时, g(x) [ g (1),g (0)] ,即 g(x) [ 3a 2 2a 1, 2a] , 又对于任意 x 1 [0,1] ,总存在 x 0 [0,1] ,使得 f (x 1) g(x 0)成立 [ 4, 3] [ 3a 2 2a 1, 2a] ,1a例 11 .已知函数 f(x) ln x ax 1(a R) ; x1(1) 当 a 时,讨论 f (x) 的单调性;222)设 g(x) x 2 2bx 4 ,1当 a 时,若对 x 1 (0, 2) , x 2 [1,2] ,使 f(x 1) g(x 2) ,求实数4f(21) g(1) f(21) g(2)3 5ln 2 5 m 3 5ln 2 8 2mm 8 5ln 21m (11 5ln 2)2m 8 5ln 2 ,f(x)上限f(x)下限即3a 2 2a 1 ≤ 3 ≤ 2a4,解得:≤a ≤3g(x)上限b 的取值范围;解:(1)(解答过程略去,只给出结论)当 a ≤0 时,函数 f(x)在( 0,1 )上单调递减,在( 1,+∞)上单调递增;1 当 a= 时,函数 f(x) 在( 0, +∞)上单调递减;2 11当 0<a< 时,函数 f (x) 在(0,1 )上单调递减,在 (1, 1)上单调递增,在 2'21, ) 上单调递减; a2 )函数的定义域为( 0 , +∞),f (x )=1-a+ a21xxax 2 x 1 aa= 1 时,由 f4x )=0 可得 x 1=1,x 2=3.因为a= 1∈(0, 1 ),x 2=3 (0,2),结合( 1)可知 42函数 f(x)在( 0,1 )上单调递减,在( 1,2 )上单调递增, 所以f(x) 在( 0,2 )上的最小值为 f(1)= - 12由于 对 x 1∈(0,2), x 2∈[1,2], 使 f(x 1) ≥g(x 2) ”等价于 “g(x)在[1,2]上的最小值不大于 f(x) 在( 0,2)上的最小值 f(1)= 1”2”※)又 g(x)=(x -b)2+4-b 2, x ∈[1,2], 所以当 b<1 时,因为 [g(x)] min =g(1)=5 - 2b>0, 此时与(※)矛盾; 当 b ∈[1,2]时, 因为 [g(x)] min =4 -b 2≥0,同样与(※)矛盾; 当 b ∈(2,+∞)时,因为 [g(x)] min =g(2)=8 -4b.1 17 解不等式 8- 4b ≤- ,可得b ≥ .2817 综上, b 的取值范围是[ ,+ ∞).8五.双函数“任意”+“任意”型战略思想十: x 1 A, x 2 B ,使得 f(x 1) g(x 2)成立 f (x)min g(x)max例 12. 已 知 函 数 f(x) 1x 3 x 2 3x 4,g(x)3 3 29x c,若对任x 1,x 2 [ 2,2] ,都有 f (x 1) g(x 2),求 c 的范围 .解:因为对任意的 x 1,x 2 [ 2,2] ,都有 f(x 1) g(x 2)成立,∴[ f ( x)] max [g(x)]min ,∵f '(x) x2 2x 3,令f '(x) 0得x 3,x 1x>3 或x<-1;f '(x) 0得1 x 3;∴f(x)在[ 2, 1]为增函数,在[ 1,2]为减函数.18 c∵f( 1) 3, f (2) 6,∴[ f (x)]max 3,.∴3 ,∴c 24.22 3 2例13.已知两个函数f(x) 8x2 16x k,g(x) 2x3 5x2 4x,x [ 3,3], k R;(1) 若对x [ 3,3] ,都有f (x) g(x)成立,求实数k 的取值范围;(2) 若x [ 3,3] ,使得f (x) g(x) 成立,求实数k的取值范围;(3) 若对x1,x2 [ 3,3] ,都有f (x1) g(x2)成立,求实数k的取值范围;解:(1)设h(x) g(x) f (x) 2x3 3x2 12x k ,(1)中的问题可转化为:x [ 3,3] 时,h(x) 0 恒成立,即[ h( x)] min 0.'2h'(x) 6x2 6x 12 6(x 2)(x 1);当x 变化时,h(x),h'(x) 的变化情况列表如下:因为h( 1) k 7, h(2) k 20 ,所以,由上表可知[ h( x)] min k 45,故k-45 ≥0,得k≥45,即k∈[45,+ ∞).小结:①对于闭区间I,不等式f(x)<k 对x∈I 时恒成立[f(x)] max <k, x ∈I;不等式f(x)>k 对x∈I 时恒成立[f(x)] min>k, x ∈I.②此题常见的错误解法:由[f(x)] max ≤[g(x)] min 解出k 的取值范围.这种解法的错误在于条件“ [f(x)] max ≤[g(x)] min”只是原题的充分不必要条件,不是充要条件,即不等价.( 2)根据题意可知, ( 2)中的问题等价于h(x)= g(x) -f(x) ≥0 在x ∈[-3,3]时有解,故[h(x)] max≥0.由( 1)可知[h(x)] max = k+7 ,因此k+7 ≥0,即k∈[7,+ ∞).(3)根据题意可知, (3)中的问题等价于 [f(x)] max ≤[g(x)] min ,x ∈[-3,3].由二次函数的图像和性质可得 , x ∈[-3,3]时, [f(x)] max =120 -k. 仿照( 1),利用导数的方法可求得 x ∈[-3,3]时, [g(x)] min =-21. 由 120 - k ≥-21 得 k ≥141,即 k ∈[141,+ ∞). 说明:这里的 x 1,x 2 是两个互不影响的独立变量从上面三个问题的解答过程可以看出 ,对于一个不等式一定要看清是对“ x ”恒成立,还是“ x ”使之成还是两个独立的变量 ,然后再根据不同的情况采取不同的等价条件 ,千万不要稀里糊涂的去猜六.双函数“存在”+“存在”型战略思想十一: x 1 A, x 2 B ,使得 f(x 1) g(x 2)成立f (x)min g(x)max ;x 1 A, x 2 B ,使得 f(x 1) g(x 2)成立f(x)max g(x)min .x 3 2例 14.已知函数 f (x) ln x 1, g(x) x 2 2bx 4.若存在 x 1 (0,2) , x 2 1,2 ,使4 4xf (x 1) g(x 2) ,求实数 b 取值范围1 f (x)在(0,1)上单调递增,在 (1,2)上单调递减,f(x)min f (1) .2依题意有 f ( x) min g(x)max ,所以 g(x)max12.又g(x) (x b)2 b 2 4,g(1) 1 从而g(2) 212,解得b 187.战略思想十二: “ x 1 A, x 2 B ,使得 f (x 1) g(x 2) 成立”等价于f (x) 的值域与 g(x) 的值域相交非空”3 219 1例 15 .已知函数 f(x) x 3 (1 a)x 2 a(a 2)x(a R) , g(x) x .是否存在实数 a ,存63在 x 11,1 , x 2 0,2 ,使得 f '(x 1) 2ax 1 g(x 2)成立?若存在,求出 a 的取值范围;若不存在,说明理由立,同时还要看清不等式两边是同一个变量, 解析: f (x) 1 1 32x 4 4x 2(x 1)(x 3)4x 219 1 1解析:在0,2 上g x x 是增函数,故对于x 0,2 ,g x ,66 3 32设h x f x 2ax 3x22x a a 2 ,当x 1,1 时,h(x) [-a2 2a 13,-a2 2a 5].3要存在x1 [ 1,1] ,x2 [0,2] 使得h x1 g x2 成立,只要[-a2 2a 13,-a2 2a 5] [ 13,6]33考虑反面,[-a2 2a 31,-a2 2a 5] [ 13,6]1 2 2 1 57 57则5 a 2a 或6< -a 2a 1,解得a 1 或a 1 ,3 3 3 357 57从而所求为1 a 1 .33。

函数任意性与存在性问题探析_翟丽

函数任意性与存在性问题探析_翟丽
高中数学教与学
2015 年
函数任意性与存在性问题探析
翟 丽
( 江苏省扬州市新华中学, 225009 )
函数中的任意性与存在性问题, 也即函 数中的恒成立与能成立问题, 一直是高中数 也是高考的热点题型 . 学考试的重点和难点, 这一类问题主要涉及到函数的最值和值域, 常与导数工具相结合, 并且与数形结合 、 分类 讨论 、 转化与化归等数学思想紧密联系, 其基 本模式如下: ( 1 ) 对于任意的 x ∈ A, 不等式 m > f ( x) 成立 m > f ( x) 成立 m < f ( x) m > f( x) m < f( x)
f( x) = f 2 . 因 为 1 ∈ ( 0, e] ,所 以 m
min
( )
(i
f 2 ≤ f( 1 ) = 0 , 从而只要 f ( e) ≤ 0 , 解之得 m m≤ 2 2 2 , . 从而 ≤ m ≤ e -1 e e -1 m 的取值范围是 - ∞ , 2 . 综上, e -1 评注 上述题型包括两个函数, 并且含 有两个或者三个变量 . 这种双函数多变量中
设 a = 2, 若对任意给定的 x0 ∈
( 0, e] , e]上总存在 t1 , t2 ( t1 ≠ t2 ) , 在区间( 0 , 2 ) 成立, 使得 g ( x0 ) < f ( t i ) ( i = 1 , 求 m 的取 值范围 . 解 由 x0 的任意性, 知 g( x)
max
< f( t i ) ( i
(
]
g( x) =
ex , a 均为实数 . 其中 m, ex
( 1 ) ( 2 ) 略; ( 3 ) 设 a = 2 , 若对任意给定 e] , e]上总存在 t1 , t2 ( t1 的 x0 ∈ ( 0 , 在区间( 0 , ≠ t2 ) , 使得 f ( t1 ) = f ( t2 ) = g( x0 ) 成立, 求m 的取值范围 . 解 ( 3 ) g' ( x) = e( 1 - x) , 易得 g( x) 在 ex

浅议函数中任意性与存在性问题

浅议函数中任意性与存在性问题

浅议函数中任意性与存在性问题姻文/陈刚盐城市阜宁县陈集中学,江苏阜宁224400函数的任意性与存在性问题,是一种常见题型,也是高考的热点之一。

它们既有区别又有联系,意义和转化方法各不相同,容易混淆。

对于这类问题,利用函数与导数的相关知识,可以把相等关系转化为函数值域之间的关系,不等关系转化为函数最值大小的比较。

下面结合实例来看看函数中的任意性与存在性问题在解题中的区别。

1. 若函数()f x 的定义域为D ,对任意x D Î时有()0f x ³恒成立min ()0f x Û³;()0f x £恒成立max ()0f x Û£。

例1. 设函数32()29128f x x x x c =-++,若对任意[0,3]x Î,都有2()f x c <成立,则实数c 的取值范围是解析 因为32()29128f x x x x c =-++,由2()f x c < 所以32229128x x x c c -++<,所以32229128x x x c c -+<-令32()2912g x x x x =-+,欲使2()8g x c c <-对任意[0,3]x Î恒成立,则需使max ()g x <28c c -对任意[0,3]x Î成立即可。

所以 2()61812g x x x ¢=-+ 令()0g x ¢=,得121,2x x ==,当(0,1)x Î时,()0g x ¢>,所以函数()g x 在区间(0,1)上单调递增;当(1,2)x Î时,()0g x ¢<,所以函数()g x 在区间(1,2)上单调递减;当(2,3)x Î时,()0g x ¢>,所以函数()g x 在区间(2,3)上单调递增.又由(1)5,(3)9g g ==,故当[0,3]x Î时,max ()9g x =由题意得 298c c <-,得91c c ><-或。

函数中的任意性与存在性问题

函数中的任意性与存在性问题

龙源期刊网
函数中的任意性与存在性问题
作者:马军辉
来源:《新课程·教师》2013年第11期
任意与存在在逻辑上是互为否定的两个量词。

近几年全国各地的高考题以它们立意命题,已成为考查高中数学知识的热点。

尤其在函数与导数及不等式中频频出现,由于这类问题灵活多变,思辨性强,大多数学生望而生畏、束手无策。

本文通过对几道具有代表性、示范性的高考题进行改编并深入探究,通过一题多解、一题多变,总结出解决这类问题的思路与方法。

需要说明的是,通过分离参数最终转化为不含参数的新函数的最值问题,是我们解决这类问题的主要方法。

总之,处理函数中的任意性与存在性问题的主线是运用函数的最值,本文以一题多解、一题多变来培养学生思维的灵活性,加深对任意性与存在性问题的认识。

当然,在分析问题时还是要对问题进行适当的转化,找到最有效的解决途径,提炼出解题的思维与方法,提高思维能力与数学素养。

编辑薄跃华。

_任意性_存在性_问题剖析

_任意性_存在性_问题剖析

类型五: “ 任意”、 “ 存在” ( 或“ 存在”、 “ 任意” )型
例5 ( 2 0 1 0年山东高考理 2 2 )已知函数 f ( x ) =l n x- 1-a a x+ -1 ( a ) . ∈R x ( 1 )当 a 1 时, 讨论 f ( x )的单调性; 2 1 时, 若对任意 x 1 4
4 0 x , 存在 x , x - 3 , 3 ] , 都有 f ( x ) <g ( x ) , 求实数 c 的 1 2∈ [ 1 2 取值范围. 分析: 存在 x , x -3 , 3 ] , 都有 f ( x ) <g ( x ) , 等价 1 2∈ [ 1 2
2 2 ( x ) ( x ) , 由f ( x ) =7 x - 2 8 x -c=7 ( x - 2 ) - 于f m i n <g m a x
2 2 1 1 a +b 2+ 2 为定值 2 2 ; O A O B ab 2 2 4 a b 2 2 2 A B| a +b. 2 2 | a +b

2 2 4 a b 2 2 2 A B| a +b. 2 2 | a +b
这样结合平面几何知识由此题可知, 高考题第( Ⅱ)存 在半径 R 为
x +x 2 x +x +1 h ( x )= 2 , 则h ′ ( x )= , 故函数 h ( x ) 2 2 >0 2 x +1 ( 2 x +1 ) 2 在[ 1 , 2 ] 上是增函数, h ( x ) ( 1 )= , 所以实数 a 的取 m i n =h 3 值范围是 0 <a< 2 . 3

2 2 a b 2 = a +b 2
= 的圆满足题意, 从而 8+4 3 槡
8×4 2 6 槡
证明: 设点 A ( | O A| c o s , | O A| s i n ) , 则点 B ( | O B| θ θ π π c o s ( , | O B| s i n ( ) , θ+ ) θ+ ) 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与导数中任意性和存在性问题探究命题人:闫霄 审题人:冯昀山 一、相关结论:结论1:min [,],()[()]x a b f x m f x m ∀∈>⇔>; 结论2:max [,],()[()]x a b f x m f x m ∀∈<⇔<; 结论3:max [,],()[()]x a b f x m f x m ∃∈>⇔>; 结论4:min [,],()[()]x a b f x m f x m ∃∈<⇔<;结论5:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>;【如图一】 结论6:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>;【如图二】 结论7:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>;【如图三】 结论8:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;【如图四】 结论9:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空; 结论10:1212[,],[,],()()()x a b x c d f x g x f x ∀∈∃∈=⇔的值域是()g x 的值域的子集 【例题1】:已知两个函数232()816,()254,[3,3],f x x x k g x x x x x k R =+-=++∈-∈;(1) 若对[3,3]x ∀∈-,都有()()f x g x ≤成立,求实数k 的取值范围; (2) 若[3,3]x ∃∈-,使得()()f x g x ≤成立,求实数k 的取值范围; (3) 若对12,[3,3]x x ∀∈-,都有12()()f x g x ≤成立,求实数k 的取值范围;解:(1)设32()()()2312h x g x f x x x x k =-=--+,(1)中的问题可转化为:[3,3]x ∈-时,()0h x ≥恒成立,即min [()]0h x ≥。

'2()66126(2)(1)h x x x x x =--=-+;当x 变化时,'(),()h x h x 的变化情况列表如下:-3(-3,-1) -1 (-1,2) 2 (2,3) 3 h '(x)+-+h(x)k-45 增函数 极大值 减函数 极小值 增函数k-9因为(1)7,(2)20h k h k -=+=-,所以,由上表可知min [()]45h x k =-,故k-45≥0,得k ≥45,即k ∈[45,+∞). 小结:①对于闭区间I ,不等式f(x)<k 对x ∈I 时恒成立⇔[f(x)]max <k, x ∈I;不等式f(x)>k 对x ∈I 时恒成立⇔[f(x)]min >k, x ∈I.②此题常见的错误解法:由[f(x)]max ≤[g(x)]min 解出k 的取值范围.这种解法的错误在于条件“[f(x)]max ≤[g(x)]min ”只是原题的充分不必要条件,不是充要条件,即不等价. (2)根据题意可知,(2)中的问题等价于h(x)= g(x)-f(x) ≥0在x ∈[-3,3]时有解,故[h(x)]max ≥0.由(1)可知[h(x)]max = k+7,因此k+7≥0,即k ∈[-7,+∞). (3)根据题意可知,(3)中的问题等价于[f(x)]max ≤[g(x)]min ,x ∈[-3,3]. 由二次函数的图像和性质可得, x ∈[-3,3]时, [f(x)]max =120-k. 仿照(1),利用导数的方法可求得x ∈[-3,3]时, [g(x)]min =-21. 由120-k ≥-21得k ≥141,即k ∈[141,+∞). 说明:这里的x 1,x 2是两个互不影响的独立变量.从上面三个问题的解答过程可以看出,对于一个不等式一定要看清是对“∀x ”恒成立,还是“∃x ”使之成立,同时还要看清不等式两边是同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件,千万不要稀里糊涂的去猜..【例题2】:(2010年山东理科22) 已知函数1()ln 1()af x x ax a R x-=-+-∈; (1)当12a ≤时,讨论()f x 的单调性; (2)设2()24g x x bx =-+,当14a =时,若对1(0,2)x ∀∈,2[1,2]x ∃∈,使12()()f x g x ≥,求实数b 的取值范围;解:(1)(解答过程略去,只给出结论)当a ≤0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;当a=21时,函数f(x)在(0,+∞)上单调递减; 当0<a<21时,函数()f x 递增区间为1(1,1)a -,递减区间为(0,1),1(1,)a-+∞;(2)函数的定义域为(0,+∞),f '(x )=x 1-a+21xa -=-221x a x ax -+-,a=41时,由f '(x )=0可得x 1=1,x 2=3. 因为a=41∈(0,21),x 2=3∉(0,2),结合(1)可知函数f(x)在(0,1)上单调递减,在(1,2)上单调递增,所以f(x) 在(0,2)上的最小值为f(1)= -21.由于“对∀x 1∈(0,2),∃x 2∈[1,2],使f(x 1) ≥g(x 2)”等价于“g(x)在[1,2]上的最小值不大于f(x) 在(0,2)上的最小值f(1)= -21”. (※)又g(x)=(x -b)2+4-b 2, x ∈[1,2],所以① 当b<1时,因为[g(x)]min =g(1)=5-2b>0,此时与(※)矛盾;② 当b ∈[1,2]时, 因为[g(x)]min =4-b 2≥0,同样与(※)矛盾; ③ 当b ∈(2,+∞)时,因为[g(x)]min =g(2)=8-4b.解不等式8-4b ≤-21,可得b ≥817. 综上,b 的取值范围是[817,+∞).二、相关类型题:类型一:直接求最值(往往需带参讨论) 例3: 类题: 例4: 类题:类型二:分离常数法求最值 例5:类题:例6: 类题:类型三:先进行变形简化,再求最值 例7: 类题:类型四:分离常数法+罗比达法则 洛必达法则简介:法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()limx a f x l g x →'=', 那么 ()()lim x a f x g x →=()()limx a f x l g x →'='。

法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A ∃>,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0;(3)()()limx f x l g x →∞'=', 那么 ()()lim x f x g x →∞=()()limx f x l g x →∞'='。

法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()limx a f x l g x →'=',那么 ()()lim x a f x g x →=()()limx a f x l g x →'='。

利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a-→洛必达法则也成立。

○2洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。

○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。

当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。

○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

例8:(2010年全国新课标理)设函数2()1xf x e x ax =---。

(1) 若0a =,求()f x 的单调区间; (2) 若当0x ≥时()0f x ≥,求a 的取值范围 原解:(1)0a =时,()1xf x e x =--,'()1xf x e =-.当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加(II )'()12xf x e ax =--由(I )知1xe x ≥+,当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-,从而当120a -≥,即12a ≤时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥. 由1(0)xe x x >+≠可得1(0)xe x x ->-≠.从而当12a >时,'()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--,故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <.综合得a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭原解在处理第(II )时较难想到,现利用洛必达法则处理如下: 另解:(II )当0x =时,()0f x =,对任意实数a,均在()0f x ≥;当0x >时,()0f x ≥等价于21x e x a x--≤ 令()21x e x g x x --=(x>0),则322()x x xe e x g x x -++'=,令()()220xxh x xe e x x =-++>,则()1xxh x xe e '=-+,()0x h x xe ''=>,知()h x '在()0,+∞上为增函数,()()00h x h ''>=;知()h x 在()0,+∞上为增函数,()()00h x h >=;()0g x '∴>,g(x)在()0,+∞上为增函数。

相关文档
最新文档