二次函数教学设计与反思
初中数学_二次函数教学设计学情分析教材分析课后反思

例 如图,从半径为15cm 的圆形铁片上,挖去一个半径为x(cm)的圆,写出剩余部分的面积y 与x 之间的函数关系式,并指出自变量x 的取值范围。
拓展训练:如图,李大爷要围成一个矩形菜园ABCD ,菜园的一边AD 利用足够长的墙,另外三边用总长为24米的篱笆围成。
设边AB=x 米,BC=y 米。
(1)写出y 与x 之间的函数关系式,并写出x 的取值范围; (2)若矩形ABCD 的面积为S ,试写出S 与x 之间的函数关系式。
三、畅所欲言,反思总结本节课你有哪些收获?还有哪些疑惑?四、达标检测,查漏补缺 1. 下列函数是二次函数的为( ) A. 21+=x y B. ()213+=x y C. 32)1(x x y -+= D. x x y -=21 2. 已知函数2)1(x m mx y -+=是二次函数,则m ___________。
3. 如图,在ABC Rt ∆中,o09C =∠,o A 30=∠,写出它的面积y 与斜边长x 之间的函数表达式,并指出自变量x 的取值范第二部分第二阶段确定函数解析式过程,通过条件写出满足要求的函数解析式,此过程通过联系实际写出自变量的取值范围。
通过生活实例加深对二次函数的理解。
第三部分,通过新课教学以及巩固练习,学生自行总结本节课所学内容,并进行记录.第四部分,用来巩固二次函数定义及其特点。
xyCBA课后活动设计: Sotoday’shomework is : 1. Say学情分析学生已经学习了函数的定义,一次函数和反比例函数的基本形式及其图像和性质,且在围。
中考链接如图,在正方形ABCD 中,E 、F 分别为边BC 、CD 上的动点,且AB=4,AE=AF 。
设△AEF 的面积为y ,EC 的长为x ,写出y 与x 之间的函数关系式,并指出自变量x 的取值范围。
此部分和第一部分融会贯通,加深了同学们对二次函数认识。
并和中考紧密相连,联系到三角形全等来解决此问题。
二次函数”教学设计及反思

二次函数”教学设计及反思二次函数"教学设计及反思一、教材分析:1.教材的地位和作用本节课是在学生已经研究了一次函数、正比例函数、反比例函数的基础上,来研究二次函数的概念。
二次函数是初中阶段研究的最后一个具体的函数,也是最重要的。
在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。
进一步研究二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻地理解“数形结合”的重要思想。
本节课的二次函数的概念是研究二次函数的基础,是为后来研究二次函数的图象做铺垫。
因此,这节课在整个教材中具有承上启下的重要作用。
2.教学目标和要求本课任务是使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
从能力和情感目标上看,结合建构主义的有关理念,通过本节内容的研究,通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,体会数学从实践中来,激发学生研究数学的兴趣和积极性,培养学生的主体意识、合作意识和创新意识,发展学生的数学思维。
增强学好数学的愿望与信心。
本课重点:对二次函数概念的理解。
本课难点:由实际问题确定函数解析式和确定自变量的取值范围。
二、研究者分析1.研究准备的分析就一般特征而言,九年级学生的思维处于具体运算阶段向形式运算阶段的过渡时期,这是一个关键时期,需要由类比、归纳方法逐步向演绎方法过渡的教学方法支持。
就学生的起点水平而言,由于在八年级研究了《数量的变化》,《位置的的变化》,《一次函数》等,因此知道变量、自变量、因变量的定义,了解平面直角坐标系的有关知识,能判断图象上点的坐标的实际意义和变量的变化趋势,知道常见的公式,会求代数式的值。
2.研究者的研究风格分析通过课堂、课外的观察、谈话、作业等方式了解研究者的研究风格。
三、教学策略和方法:1.从创设情境入手,通过知识再现,孕育教学过程。
_二次函数的应用_教学设计及思考_许顺兆

A
N
B
S 关于 x 的函数关系式 , 应该怎样围才能使小 兔子的活动场地最大 ? 变式 1 如图 1 , 动物园围墙 EF 边上有块 变式 3
图2
如图 3 , 现有围墙 MDN 有处夹角
· 14·
第2 期
为 135 ° , 按照如图所示围成一个直角梯形的 场地 , 不考虑围墙的长度 , 怎样才能使场地的 面积最大 ? 最大面积是多少 ?
于 BC 时, ∠B, ∠C 趋向于 0 ° , 而 ∠ A 趋向于 180 ° , 合起来 , 三角形内角和趋向于 180 °. 由此 我们能想到 , 这个结论是怎样证明的 .
% A A A A
B
D
C
B
D
C
图1
图2
如图 2 , 设三角形内角和为 x° , 在 BC 上取 一点 D( 相当于点 A 的运动终点 ) , 连结 AD, 则 在 ABD 中 , ∠BAD + ∠B + ∠ADB = x° ; 在 ADC 中, ∠ CAD + ∠C + ∠ ADC = x°. ①+②, 得 ∠BAC + ∠B + ∠C + ( ∠ BDA + ∠ ADC) = 2 x°. 又 ∠ BAC + ∠ B + ∠C = x° , ∠ADB + ∠ADC = 180 ° , ② ①
考虑到学生对于函数应用的
畏难情绪 , 设计了简单的知识回顾 . 教学中要 注意变式 1 中的第 ( 2 ) 问应该让学生先进行 思考 , 然后在合作中讨论 , 让学生在充分的时 间和空间中 , 内化自变量取值范围的实际意 义. 这样的低起点 , 是为了照顾到所有学生 的学情 , 力求每一个学生都能认识到函数解 决实际问题的意义 , 从而达到教学目标 . 变式 2 为了把白兔和灰兔分开饲养 , 我 们把场地改成了如图 2 所示的形状 , 现在怎样 围才能使场地的总面积尽可能的大 , 能达到 多少 ?
《二次函数的图像和性质》教学设计与反思

《二次函数的图像和性质》教学设计与反思课题:二次函数的图像和性质科目:数学提供者:XXX教学对象:九年级单位:XXX课时:第一课时一、教学内容分析(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一.二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中研究一元二次不等式和圆锥曲线奠定基础。
在历届淮安市中考试题中,二次函数都是不可缺少的内容。
(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会二、教学目标一、知识技能目标1.学生会用描点法画出y ax2的图象;2.掌握二次函数y ax2的性质。
二、过程方法目标1.学生类比前面所学的函数图像的画法,用描点法画二次函数y ax2的图像;2.学生经历观察、考虑、探索二次函数y ax2图象性质的过程,结合解析式特性、图像特性,感知二次函数y ax2的性质。
三、情感立场方针使学生体会数形结合思想,培养学生观察、思考、归纳的良好思维惯三、研究者特性分析我本期才接手的两个班级,大部分学生数学基础不够扎实,理解能力,运算能力,思维能力等方面都还有所欠缺;研究积极性不高。
针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和研究积极性,指导学生积极思维、主动获取知识,养成良好的研究惯。
并逐步学会独立提出问题、解决问题。
引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
四、讲授策略挑选与设计1.探究引导策略:商量式研究;教师开导引导。
2.自主合作探究式研究策略:相互讨论、交流、合作的课堂氛围。
五、教学重点及难点讲授重点:会用描点法画出二次函数y=ax2的图象,探索二次函数性质教学难点:探索二次函数性质学生活动设计意图教师引导学生回顾:先画出一次函数的图象,然后创设问题情观察、分析、归纳得到一境,让学生通过一、情境引入可以用研类比学过的知识一次函数的性质是如何研究的?我们能否类次函数的性质。
二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。
学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。
之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。
重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。
教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。
4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。
观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。
(指名学生回答)。
师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。
师:这个猜想是否正确呢?这节课我们一起来验证一下。
(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。
《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。
次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。
【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。
【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。
重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。
【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。
教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。
)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。
3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。
)二、新课教授【例1】画出二次函数y=x2的图象。
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。
思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。
《二次函数》教学设计

六、教学评价设计
在本课的教学过程中,评价主体是多元的,有教师的评价,有学生的互评,有学生自我的评价等,本课中,我采用了多种评价方式:即时评价,对学生的课堂中的点滴表现进行鼓励性的即时评价;延迟评价,这是数学学习的特点,对学生的解题方法在验证后给出准确的评价;过程性评价,对学生的学习过程中的表现给予准确评价;总结性评价,对学生在课堂中的整个学习结果进行总结性评价.本课教学评价的内容十分丰富,既评价学生的学习结果,也评价学生的学习过程,从多角度、全方位对学生的学习活动进行评价,有利于激发和保持学生参与学习的积极性和求知欲望,提高学习效率.
七、课后反思
1.直观演示,“空想”变为现实
在本课的教学中,笔者借助信息技术,向学生提供了与本课教学内容相配套的动态学习资源.无论是片断一中的抛物线的运动,还是片断二中的三角形的中心对称变换,原本都应该在学生脑海中“运行”.在笔者的课堂中,通过直观演示,将这些变换过程完整地展示在学生的眼前,“呈现出抽象图象”的直观变换.一方面加深了学生对二次函数及与之相关联的知识的理解,为学生得出解题的一般方法提供帮助;另一方面,由信息技术引领的直观演示,为学生积累了丰富的数学活动经验,为他们今后自主探究此类问题提供了借鉴.在信息技术的指引下,原本在学生脑海中的“空想”,跃然眼前,成为现实,提高了课堂学习的效率和效益.
归纳建构“直角三角形”的一般方法:作垂线和作圆,得到直角顶点
求点的坐标,并在全班交流
小结本课的收获
记录作业
介绍信息技术给初中数学课堂带来的变化和已学的二次函数的基础知识,迅速吸引学生的眼球,让他们融入课堂.
应用多媒体技术演示抛物线的平移、翻折、旋转,让学生充分感知变换中抛物线“保形”的特点,并找出图形变换过程中从形的角度发现的“变”与“不变”,进而找寻出确定新抛物线解析式的关键:开口方向和顶点坐标.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数》教学设计一、教材分析(一)教材内容、地位和作用《二次函数》是鲁教版九年级上册第二章第二节,在螺旋式上升的数学知识体系中,是继常量与变量、一次函数、正比例函数、反比例函数之后,学习的又一种非常基本的初等函数。
二次函数是描述现实世界变量之间关系的重要数学模型,二次函数的图象也是人们最为熟悉的曲线之一,如喷泉水流、抛掷的铅球划过的轨迹等,同时,二次函数的相关性质也是解决最优化问题的理论基础。
本章从大量的生活情境入手,通过学生感兴趣的、广泛联系生活及其他学科的问题,使学生感受二次函数的意义及它的应用价值。
本节是在前面《对函数的再认识》基础上,通过实际情境,让学生观察、思考、归纳出二次函数的概念,并从中体会函数的模型思想。
(二)教学目标:1)知识与技能目标:经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验。
(2)过程与方法目标:能够表示简单变量之间的二次函数关系。
能利用尝试求值的方法解决实际问题,如猜测增种多少棵橙子树可以使橙子的总产量最多的问题。
(3)情感、态度与价值观目标:通过学生对现实问题的思考、分析、归纳、解决,提高学生“学数学、用数学”的责任意识。
(三)教学重、难点:(1)教学重点:对二次函数概念的理解。
(2)教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
二、学情分析对于九年级的学生来说,之前已经学习过常量与变量、一次函数、正比例函数和反比例函数,对于函数是刻画变量之间关系的数学模型思想也有了一定的认识,可以在此基础上用类比的方法继续深入学习二次函数。
而且,学生的逻辑思维、概括归纳能力也有了一定的高度,本节课可以在教材的基础上,更加灵活地处理,从现实情境入手,安排大量的探究活动,提高课堂思维含量,同时加强学生间的合作交流,获得相应的知识和技能,积累应用函数思想解决问题的能力。
三、教法选择情境教学法、类比归纳法、讨论交流法等。
根据本节教学内容的特点,以及学生已有的知识基础,并结合九年级学生较强的逻辑思维、概括归纳能力,以生活中常见的情境入手,通过学生的自主探究、类比分析,在已有知识的基础上概括归纳,从而生成新概念,有利于学生的理解掌握。
四、学法指导自主探究、合作交流、讨论归纳等本节课学生主要通过自主探究实际问题中变量之间的函数关系,在已有知识的基础上类比归纳,从而生成新知,达到深入学习的目的。
五、教学过程设计创设情境导入新课多媒体展示实例,学生思考解答。
(1)、若矩形的长为Xm,用长为40m 的篱笆围成矩形花坛面积为y m2, 你认为y 与x 之间有怎样的数量关系?(2)、正方体的棱长为x,表面积为y,那么y 与x 的关系可表示为。
(3)、如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃. 设苗圃的一边长为xm, 要围成苗圃的面积为, 那么y 与x 的关系可表示(4)、红星厂一种产品今年的产量是20万件,计划今后两年产量逐年增加. 如果每年都比上一年的产量增加的百分率为x ,两年后这种产品的产量为y ,那么y 与x 之间的关系可表示为。
一般地,形如y=ax2+bx+c(a,b,c 是常数,a ≠0)的函数叫做二次函数.概括x 是自变量,a 、b 、c 分别是二次函数表达式的二次项系数、一次项系数、常数项.学生自主探究,分析问题中的变量,并根据变量之间的数量关系列出函数关系式。
由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲。
学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。
学生分析四个引例的函数关系式,概括归纳出它们的共同特点,类比前面学通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数(1)函(6)展、开阔视野2、m取哪些值时,函数22y=(m -m)x +mx+(m+1)是以x 为自变量的二次函数?学生分组展开讨论,待学生充分交流后,教师再组织各小组展示自己的讨论结果,共同得到正确的结论,并获得解题的经验。
的辨别,熟练、正确、全面地理解了二次函数的概念。
学生通过讨论问题,进一步内化新知、突破难点。
整个探究过程都是让学生自己去探索,在探索中发现新知,在交流中归纳新知,巩固新知。
三) 巩固拓展学生独立思考后写出答案,师生共同评价。
练习2、3、4 着重复习二次函数的特征:自变量的最高次数为 2次,且二次项系数不为0.开阔视野学生独立思考后同桌交流,指名回答结果,学生交流正确解题思路。
5、已知二次函数y=x2+px+q , 当x=1时, 函数值为4, 当x=2 时, 函数值为-5 ,求这个二次函数的解析式.6、设人民币一年教育储蓄的年利率是x,一年到期后, 银行将本金和利息自动按一年定期储蓄转存. 如果存款是100 元, 那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).学生代入求值,利用二元一次方程组的知识解答。
通过层层递进的方式,考查学生对于二次函数概念的掌握情况,并加深对概念的正确理解和灵活应用。
问题 2是从简单的应用开始,及时巩固新知,让学生获得用二次函数表示变量之间关系的体验;问题3、4 是让学生对二次函数定义很深层次的理解,培养数学思维的严谨性。
在此渗透简单的用待定系数法求二次函数解析式的问题,为后续学习做铺垫。
7、某果园有 100棵橙子树 ,每一棵树 平均结 600个橙子. 现准备多种一些橙子 树以提高产量 , 但是如果多种树 ,那么树 之间的距离和每一棵树所接受的阳光就 会减少.根据经验估计 ,每多种一棵树 ,平 均每棵树就会少结 5 个橙子 .(1) 问题中有那些变量?其中哪些是 自变量?哪些是因变量? (2) 假设果园多种 x 棵橙子树 ,那么果 园共有多少棵橙子树?这时平均每棵树 结多少个橙子?(3) 如果果园橙子的总产量为 y 个, 那 么请你写出 y 与 x 之间的关系式 . (4) 在上述问题中 , 种多少棵橙子树 , 可以使果园橙子的总产量最多?学生根 据课本上 层层递进 的问题思 考解答,并 初步体验 关于经营 策略问题 的解题思学生分 析题意,根 据数量关 系列出二 次函数解 析式,进一 步巩固二次函数知 识。
简单的 实际问题, 学生会很容 易列出函数 关系式,也 很容易分辨 出是二次函 数。
通过简 单题目的练 习,让学生 体验到成功 的欢愉,激 发他们学习 数学的兴 趣,建立学 好数学的信 心。
本题是种。
必做题较基础,可以发现和弥补课堂学习的遗漏和不足;备选题则仅供学有余力的学生选用。
(六)2. 2 二次函数板书导入练习:一般形式:(1)y=ax2+bx+c(a,b,c 是常数,a≠0)设计特殊形式:(2)2 y=ax(a≠0,但是b=c=0)(3) 2 y=ax +bx(a ≠0,且b ≠ 0, 而c=0)(4) 2 y=ax+c(a ≠ 0,且 c ≠0, 而b=0)教后反思:灵活使用教材,创“双精双会”课堂新课程改革下的教材注重知识的生成过程,及学生的探究学习,通过一系列的“想一想”、“做一做”、“议一议”等活动,提升学生课堂的思维含量,真正地做到学生是学习的主体。
而且,教材的设置体现了提纲挈领的作用,提倡教师在教学活动中,选择性的使用教材,做到“用教材教”,而不是“教教材”《二次函数》是九年级上册第二章的第二节,是继第一节《对函数的再认识》之后,对二次函数基本概念的学习。
因为新教材体系呈螺旋式上升的特点,学生对初一学习过的《常量与变量》、初二学习过的《一次函数》、《正比例函数》、初三学习过的《反比例函数》略有遗忘,但通过第一节的再回顾,已唤醒记忆。
而且对于变化过程中两个变量之间的函数关系的学习,在方法上存在着共性,所以在本节的教法选择上,我采用了类比归纳法,使学生在旧知识的基础上,通过自己的探究学习,类比归纳从而获取新知。
但,本节创设情境,以生活中的实例导入课题环节,使用的是一个经营决策的例子;“ 某果园有100棵橙子树,每一棵树平均结600 个橙子.现准备多种一些橙子树以提高产量,但是如果多种树, 那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树, 平均每棵树就会少结5个橙子. ”虽说教材中问题的设置层层递进,但审清题意、分析理解题意,对于相当多的学生来说仍有的难度,所以,在备课时,我大胆地推翻了教材原有的对于知识的呈现过程,重新规划,选择适合于学生,有利于学生学习的内容来进行教学。
教学过程我设计了如下环节:第一环节:创设情境,导入新课在此环节,我选择了四个学生熟悉、难度不大的实例,引导学生自主探究,分析题意,得到相关的函数关系式,而且这四个关系式的表达形式各不相同,为后面二次函数解析式的不同表达形式埋下伏笔。
第二环节:概括归纳,获取新知由于上一节学生对学过的函数进行了回顾复习,概括总结,而对于函数的研究大致都是从基本概念、函数的图象与性质以及应用等角度研究,在研究方法上存在着共性。
所以,这一环节,我引导学生分析上一环节所得到的四个关系式存在的共同特点,从而由学生概括归纳,得到二次函数的概念和一般形式,并且,由于提前预设了伏笔,所以学生对于二次函数不同的表达形式进行分析,概括总结出在不同的条件下,二次函数存在的各种特殊形式,从而达到对二次函数全面而灵活的掌握。
此环节我注重发挥学生学习的主观能动性,调动学生的积极性,提高学生课堂的思维含量,发挥学生的逻辑分析能力和高度的概括总结能力,有学生自我总结,概括归纳,从而生成新知。
第三环节:巩固拓展,开阔视野此环节是对新知的巩固应用,从而使学生对于二次函数概念有个全面、熟练的掌握,并能够灵活的应用。
在此环节我设置了一系列从巩固基本概念,到正确理解二次函数的表达式,再到灵活应用二次函数解决实际问题的相关练习,层层深入,步步递进,达到巩固新知,开拓学生思维的目的。
同时,课本引例的设置是有一定目的的,它为后续经营决策的学习提前灌输思想,鉴于引例的难度,我把它放到了本节的最后,此时,学生经过一系列的学习和巩固,有了一定的能力,再把有一定难度的引例拿出来,解答这个问题就水到渠成,游刃有余了。
但是,在关于教育储蓄问题的设置上,我在课堂教学中,想把相关的知识也一古脑的都给学生,显得有些“拔苗助长”,反而打乱了课堂一气呵成的秩序,把学生顺畅的思维硬性地扯出来,让学生陷入了一时的迷茫,反而对课堂的教学起到了负作用。
今后,无论在备课时,还是课堂教学时,一定要遵循学生学习的思维规律,只有基于规律的设置才能产生共鸣,达到更好的效果。
课后,在看课堂教学录象的时候,看到学生的学习步步深入,一气呵成,对于本节的知识能够扎实、灵活地掌握,感到这一节教学内容的调整还是符合了学生的认知规律的,从而取得了较好的教学效益。