一阶与二阶常系数线性微分方程及其解法
合集下载
1 3 二阶常系数线性齐次微分方程

因此原方程的通解为,
y C1 e x C2 e3x
微分方程
例2. 求方程 y " 2 y ' y 0 的通解.
解: 特征方程 r2 2 r 1 0
有重根:
r1 r2 1
因此原方程的通解为,
y (C1 C2 x ) e x
微分方程
例3. 求方程 y " 2 y ' 5y 0 的通解.
y x2 1
微分方程
例2:自由落体运动
根据Newton第二定律:
F
mg
m
d2x dt 2
所以,
g
d2x dt 2
,
两次积分得到:x
1 2
gt 2
c1t
c2
微分方程
例3:简谐振动
胡克定律:F kx
由牛顿第二定律:
kx
m
d2x dt 2
d2x k
dt 2
x0 m
如何求解?
微分方程
微分方程的基本概念
含未知函数及其导数的方程叫做微分方程 方程中所含未知函数导数的最高阶数叫做微分方程的阶
通解—解中所含独立的任意常数的个数与方程的阶数相同
.
特解—不含任意常数的解
微分方程
二阶微分方程
y P(x) y Q(x) y f (x), 二阶线性微分方程
酒也。节奏划分思考“山行/六七里”为什么不能划分为“山/行六七里”?
会员免费下载 明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望之”是总起词语,故应从其后断句。【教学提示】引导学生在反复朗读的过程中划分朗读节奏,在划分节奏的过程中感知文意。对于部分结构复杂的句子,教师可做适
y C1 e x C2 e3x
微分方程
例2. 求方程 y " 2 y ' y 0 的通解.
解: 特征方程 r2 2 r 1 0
有重根:
r1 r2 1
因此原方程的通解为,
y (C1 C2 x ) e x
微分方程
例3. 求方程 y " 2 y ' 5y 0 的通解.
y x2 1
微分方程
例2:自由落体运动
根据Newton第二定律:
F
mg
m
d2x dt 2
所以,
g
d2x dt 2
,
两次积分得到:x
1 2
gt 2
c1t
c2
微分方程
例3:简谐振动
胡克定律:F kx
由牛顿第二定律:
kx
m
d2x dt 2
d2x k
dt 2
x0 m
如何求解?
微分方程
微分方程的基本概念
含未知函数及其导数的方程叫做微分方程 方程中所含未知函数导数的最高阶数叫做微分方程的阶
通解—解中所含独立的任意常数的个数与方程的阶数相同
.
特解—不含任意常数的解
微分方程
二阶微分方程
y P(x) y Q(x) y f (x), 二阶线性微分方程
酒也。节奏划分思考“山行/六七里”为什么不能划分为“山/行六七里”?
会员免费下载 明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望之”是总起词语,故应从其后断句。【教学提示】引导学生在反复朗读的过程中划分朗读节奏,在划分节奏的过程中感知文意。对于部分结构复杂的句子,教师可做适
二阶齐次常系数线性微分方程

二阶齐次常系数线性微分方程
二阶齐次常系数线性微分方程是一种常见的微分方程,它可以用来描述物理系
统中的动力学过程。
它的一般形式为:
$$ay''+by'+cy=0$$
其中a,b,c是常数,y是未知函数,y'和y''分别表示y的一阶和二阶导数。
二阶齐次常系数线性微分方程的解可以用欧拉法求得,即:
$$y=e^{-\frac{b}{2a}x}(C_1\cos\frac{\sqrt{b^2-
4ac}}{2a}x+C_2\sin\frac{\sqrt{b^2-4ac}}{2a}x)$$
其中C1和C2是任意常数。
二阶齐次常系数线性微分方程在物理学中有着广泛的应用,例如,它可以用来
描述振动系统中的动力学过程,如弹簧-质量系统,摆系统等。
它还可以用来描述
电路中的电流和电压的变化,以及电磁学中的磁场和电场的变化。
此外,二阶齐次常系数线性微分方程还可以用来描述热传导过程,如汽车发动
机冷却系统中的温度变化,以及水力学中的流体流动过程。
总之,二阶齐次常系数线性微分方程是一种重要的微分方程,它在物理学、电
路学、电磁学、热传导和水力学等领域都有着广泛的应用。
二阶常系数微分方程

一、二阶常系数齐次线性微分方程
由上面分析可知,要求二阶常系数齐次线性微分方程的通解,关 键是寻找它的两个线性无关的特解.为此,首先找一个函数y,使 y″+py′+qy=0(p,q为常数).而指数函数erx(r为常数)就具备这种性质, 因为erx的一阶、二阶导数都是erx的常数倍,也就是说,只要适当选取 r,就可以使erx满足方程y″+py′+qy=0.于是,设y=erx (r为待定常数) 为方程y″+py′+qy=0的特解,将y=erx,y′=rerx,y″=r2erx代入方程中得 erx(r2+pr+q)=0.
一、二阶常系数齐次线性微分方程
定理6 如果y*是非齐次方程(12-20)的一个特解,而Y是其对应齐 次方程的通解,则y=Y+y*是非齐次方程(12-20)的通解.
证 因y*是非齐次方程(12-20)的一个特解,所以 y*″+py*′+qy*=f(x).又因Y是其对应齐次方程的通解,所以 Y″+pY′+qY=0.于是,对y=y*+Y有
y″+py′+qy=(Y+y*)″+p(Y+y*)′+q(Y+y*) =Y″+pY′+qY+y*″+py*′+qy* =0+f(x)=f(x) 所以,y=Y+y是非齐次方程(12-20)的解.又因为Y中含有两个任意常数, 从而,y=Y+y中也含有两个任意常数,所以y=Y+y是非齐次方程(1220)的通解.
定理5
如果y1与y2是齐次方程y″+py′+qy=0的两个特解,而且y1/y2不等 于常数,则y=C1y1+C2y2是齐次方程的通解,其中C1,C2为任意常数.
文学研究一二阶线性微分方程解的结构课件

y* + p(x)y* + q(x)y* = f (x),
Y + p(x)Y + q(x)Y = 0 .
又因为 y = Y + y*, y = Y + y*,所以 y + p(x)y + q(x)y
= (Y + y* ) + p(x)(Y + y* ) + q(x)(Y + y*) = (Y + p(x) Y + q(x)Y) + ( y* + p(x) y*+ q(x)y*) = f (x).
例 1 求方程 y - 2y - 3y = 0 的通解.
解 该方程的特征方程为 r2 - 2r – 3 = 0, 它有两 个不等的实根 r1 = - 1, r2 = 3, 其对应的两个线性无 关的特解为 y1 = e- x 与 y2 = e3x, 所 以 方 程 的 通 解 为
y C1e x C2e3 x .
例 2 求方程 y - 4y + 4y = 0 的满足初始条件 y(0) = 1, y(0) = 4 的特解.
解 该方程的特征方程为 r2 - 4r + 4 = 0,它 有
重根 r = 2. 其对应的两个线性无关的特解为 y1 = e2x 与 y2 = xe2x,所以通解为
求得
y (C1 C2 x)e2x ,
由于erx 0,因此,只要 r 满足方程
r2 + pr + q = 0,
⑤
即 r 是上述一元二次方程的根时,y = erx 就是 ④式的解. 方程⑤称为方程④的特征方程. 特征方
程根称为特征根.
1 特征方程具有两个不相等的实根 r1 与 r2, 即
Y + p(x)Y + q(x)Y = 0 .
又因为 y = Y + y*, y = Y + y*,所以 y + p(x)y + q(x)y
= (Y + y* ) + p(x)(Y + y* ) + q(x)(Y + y*) = (Y + p(x) Y + q(x)Y) + ( y* + p(x) y*+ q(x)y*) = f (x).
例 1 求方程 y - 2y - 3y = 0 的通解.
解 该方程的特征方程为 r2 - 2r – 3 = 0, 它有两 个不等的实根 r1 = - 1, r2 = 3, 其对应的两个线性无 关的特解为 y1 = e- x 与 y2 = e3x, 所 以 方 程 的 通 解 为
y C1e x C2e3 x .
例 2 求方程 y - 4y + 4y = 0 的满足初始条件 y(0) = 1, y(0) = 4 的特解.
解 该方程的特征方程为 r2 - 4r + 4 = 0,它 有
重根 r = 2. 其对应的两个线性无关的特解为 y1 = e2x 与 y2 = xe2x,所以通解为
求得
y (C1 C2 x)e2x ,
由于erx 0,因此,只要 r 满足方程
r2 + pr + q = 0,
⑤
即 r 是上述一元二次方程的根时,y = erx 就是 ④式的解. 方程⑤称为方程④的特征方程. 特征方
程根称为特征根.
1 特征方程具有两个不相等的实根 r1 与 r2, 即
二阶微分方程

是线性非齐次方程的解, 这说明函数 y = Y + y* 是线性非齐次方程的解, 是二阶线性齐次方程的通解, 又 Y 是二阶线性齐次方程的通解,它含有两个任意常 数,故 y = Y + y* 中含有两个任意常数 即 y = Y + y* 中含有两个任意常数. 的通解. 是线性非齐次方程 y″ + p(x)y′ + q(x)y = f (x) 的通解 ″ ′ 求二阶线性非齐次方程通解的一般步骤为: 求二阶线性非齐次方程通解的一般步骤为: (1) 求线性齐次方程 y″ + p(x)y′ + q(x)y = 0 的线性 ) ″ ′ 无关的两个特解 y1 与 y2, 得该方程的通解 Y=C1 y1 + C2 y2. (2) 求线性非齐次方程 y″ + p(x)y′ + q(x)y = f (x) 的 ) ″ ′ 一个特解 y*. 那么,线性非齐次方程的通解为 y = Y + y*. 那么,
1.二阶常系数线性齐次方程的解法 .
④ 考虑到左边 p,q 均为常数, 我们可以猜想该方程 , 均为常数, ′ 形式的解, 为待定常数. 具有 y = erx 形式的解,其中 r 为待定常数 将 y′ = 代入上式, rerx, y″ = r2erx 及 y = erx 代入上式,得 ″ erx (r2 + pr + q) = 0 . ⑤ rx 是上述一元二次方程的根时, 即 r 是上述一元二次方程的根时, y = e 就是 式的解. 方程⑤称为方程④ 特征方程. ④式的解 方程⑤称为方程④的特征方程 特征方 程的根称为特征根 特征根. 程的根称为特征根 由于e 由于 rx ≠ 0,因此,只要 r 满足方程 ,因此, r2 + pr + q = 0, , 设二阶常系数线性齐次方程为 y″ + py′ + qy = 0 . ″ ′
二阶常系数线性微分方程的解法

1
二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x
;
Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,
二阶常系数齐次线性方程解的性质 回顾
一阶齐次线性方程 y P( x) y 0 (1)
1、方程(1)的任意两个解的和仍是(1)的解; 2、方程(1)的任意一个解的常数倍仍是(1)的解;
2
二阶常系数齐次线性方程解的性质 y ay by 0 (2)
1、方程(2)的任意两个解的和仍是(2)的解; 2、方程(2)的任意一个解的常数倍仍是(2)的解;
Q( x) Qm ( x) , 即 y Qm ( x) erx 情形2 若 r 是特征方程的单根, 即 r2 ar b 0 ,
而 2r a 0 , 则令 Q( x) xQm ( x) , 即
y xQm ( x)erx
14
Q (2r a)Q (r 2 ar b)Q Pm ( x) (*) 情形3 若 r 是特征方程的二重根, 即 r2 ar b 0 ,
2
2
此时原方程的通解为
y
(C1
C 2 x)e2x
1 2
x 2e2x
;
Q( x) Ax2 , Q Pm ( x) , 2 A 1
21
y 4 yAe x ,
代入原方程,得
A
(
1 2)2
,
即特解为
y
(
1 2)2
e
x
,
此时原方程的通解为
于是 y x( 1 x 1)e2x ,
2
2
原方程通解为
y
C1e x
C 2e2 x
x(1 2
x
1) e2 x
.
18
例6 求微分方程 y 6 y 9 y x e3x 的通解.
解 特征方程 2 6 9 0 , 特征根 1,2 3 ,
对应齐次方程通解 Y (C1 C2 x)e3x . 因为 r 3 是二重特征根,
2.2二阶常系数线性微分方程的解法

= Pm ( x)e αx ( 其中 pm ( x )是 x 的 m 次多项式 ) 1. f ( x)
这时方程② 这时方程②为 ay ′′ + by ′ + cy = Pm ( x )eαx 方程
可以设 y ∗ = Q( x )eαx ( 其中 Q( x ) 是多项式 ) 。
③
将 y = Q( x )e , y
10
2.2
二阶常系数线性微分方程的解法
特征方程的根
方程的通解中对应的项
给出一项 Ce
rx
单实根 r
k 重实根 r
一对单复根
r1, 2 = α ± iβ
给出 k 项 e rx (C 1 + C 2 x + L + C k x k −1 )
给出两项 eαx (C1 cos βx + C 2 sin βx )
ay′′ + by′ + cy = 0 ,
①
猜想方程① 形式的解, 猜想方程① 具有 y = e rx 形式的解, 其中 r 为待定常数 ,
′ = re rx , y′′ = r 2 e rx , y = e rx 代入方程①, 代入方程① 将y
e rx ≠ 0 , 故有 得 e (ar + br + c ) = 0 , 但
y
∗
∗
αx
∗
′
= e α x [ Q ′ ( x ) + α Q ( x )] ,
″
= eαx [Q′′( x ) + 2αQ′( x ) + α 2Q( x )] ,
代入③ 代入③后并 约去 eαx , 得:
aQ′′( x ) + ( 2aα + b)Q′( x ) + (aα 2 + bα + c )Q( x ) = Pm ( x )
一阶与二阶常系数线性微分方程及其解法

公式解法
公式法
通过求解特征方程p^2 - 4q = 0,得到通解y = C*exp(rx),其中C和r是常数,exp(rx)是自然指数函数。
初始条件
在给定初始条件y(x0) = y0时,可以通过公式法求得特解。
初始条件与特解
初始条件的重要性
初始条件决定了微分方程的特解,对于一阶常系数线性微分方程来说,初始条件通常是指 y(x0) = y0。
一阶与二阶常系数线性微分 方程及其解法
目录
• 一阶常系数线性微分方程 • 二阶常系数线性微分方程 • 对比与联系 • 扩展与应用
01
一阶常系数线性微分方程
定义与公式
定义
一阶常系数线性微分方程是形如y' + P(x)y = Q(x)的方程,其中P(x)和Q(x) 是已知函数。
公式
一阶常系数线性微分方程的标准形式 是y' + py = q,其中p和q是常数。
初始条件与特解
初始条件
给定初始条件y(x₀) = y₀和y'(x₀) = y'₀,可以求解微分方程得到特解。
特解
满足初始条件的解称为特解。通过代入初始条件,可以得到特解的具体形式。
03
对比与联系
一阶与二阶方程的异同
一阶方程
y' = f(x)
二阶方程
y'' = f(x, y', y'')
相同点
两者都是描述函数y与自变量x之间的导数关系。
实际应用场景与案例
一阶方程应用场景
01
描述物体运动、化学反应速率等。
二阶方程应用场景
02
描述波动现象、弹簧振动等。
案例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x C 2y
2 xy Cy 2 y2
2 xy x2 y2 2y2
2 xy x2 y2
例外)。不被通解囊括的以及通解中的 任意常数取特定值后所得出的对应解称 为方程的特解。
可见,给定的表达式是给定方程的解;
由于表达式中仅含一个任意常数,个数
明显与方程的阶数(一阶)相等,故此
解是方程的通解。
(6) y 3xy 3x
全为一次的方程称为线性方程,否则称 为非线性方程。易见,简例唯有 (2) 是 非线性方程,剩下的都是线性方程。
返回
退出
3. 常微方程的特解与通解 任何含自变量与因变量的表达式,若 能由之恒等地推出给定的常微方程时, 都称为该常微方程的解;解若含有任意
例1-1
验证方程
dy dx
e2xdy yd (e2x ) 0 ,
d ( ye2x ) 0 ,
故原方程的通解为
ye2x C 或者 y Ce2x . 12 y 15 y 0 的通解是?
5 x
Ans. y Ce 4 .
返回
退出
例2-5 求一阶线性微分方程 y 1 y e x 满足初始条件 y(1) e xx
(2) y y tan x 0, dy y tan xdx 0, cos xdy y sin xdx 0; cos xdy yd(cos x) 0;
cos
xdy yd(cos cos2 x
x)
dx,
y
d( x) 0;
cos x
故方程的通解为
y xC cos x
即 y x cos x C cos x.
Q( x)dx
;
x
u
x
u
d( yea P(t)dt ) d(
x
e a
P(t
)dt
Q(u)du)
;
d ( yea P(t )dt
x
e a
P (t )dt
Q(u)du)
0
;
a
a
故方程的通解为
x
u
yea P(t )dt
x
e a
P(t
)dt
Q(u)du
C
.
a
x
u
y
e a
P(t )dt
[
x ea P(t)dtQ(u)du C ] . 参考课本P237公式(6)
x2 d( ) dy ;
y x2 d( y) 0 . y
故原方程的通解为
x2 yC
即
y
x2 y2 Cy .
非线性方程的通解(包括特解)
往往用隐函数的形式书写比较简洁。
有些非线性方程偶尔可经变元代换化 成线性方程再求解(有兴趣者可参阅教材 P236之例4与例5),但转换过程琐碎,明 显不如凑微分法来得直接和明快。
历经曲折求原函数的过程。因此,被
求出的特解和通解又常常被分别称做 微分方程的积分曲线和积分曲线族(
我们知道,同时含有因变量和自变量 的等式在解析几何中表示平面曲线)
返回
退出
线性方程中不含未知函数及其导函数的项称为非齐次项。非齐次项为零的方程称为线性齐次方程
例2-4 解下列一阶线性齐次方程
(2) y 2 y 0,
ye x2 e x2 C 或者 y Cex2 1.
返回
退出
*例2-7 求一阶线性微分方程 y y tan x cos x与 y y tan x 0 的通解。
解 (1) y y tan x cos x, dy y tan xdx cos xdx, cos xdy y sin xdx cos2 xdx; cos xdy yd(cos x) cos2 xdx;
返回
退出
*例2-2 求一阶非线性微分方程
的通解。 解
dy
y2
dx xy x2
dy
y2
dx xy x2 ,
( xy x2 )dy y2dx ;
xydy y2dx x2dy ,
可见,
x2 xdy ydx dy ;
y
xdy ydx dy
x2
; y
d( y ) d(ln | y |) ; x
2 xy x2 y2
的通解
是 x2 y2 Cy .
证
x2 y2 Cy ,
2xdx 2 ydy Cdy ,
常数、且不能合并的任意常数的个数恰
(C 2 y)dy 2xdx ,
好等于方程的阶数时称为方程的通解。
常微方程的通解多数都能囊括方程的 所有可能存在的解(仅非线性方程鲜有
dy dx
Wisdom denotes the pursuing of the best ends by the best means.(智慧意味着以最佳手法获得最佳结果)
------ Francis Hutcheson(哈奇森)
退出
一 二 三
四
五
专题
退出
1. 何谓常微分方程
2. 常微方程分类命名法
含一元未知函数的导函数或因变量 常微方程按其内所含未知函数的最高
在一切理论成就中,未必有什么像十七世纪下 半叶微积分的发明那样,能被看做人类精神的卓 越胜利了。如果在某个地方我们有人类精神的、 纯粹和专有的功绩,那就正在这里。
─F. 恩格斯
英国数学家Newton 德国数学家 Leibniz
微积分学创始人
The one real object of education is to have a man in the condition of continually asking questions. (教育的真正目 的是使人处于不断发问的状态)
在极理想的情况下,原方程有可能被 重组成因变量与自变量全都各居一侧的形式,
人们常称其为已分离变量的形式。 这种方程的解几乎显而易见:
若 f ( x)dx g( y)dy,
则 d
x
f (t)dt d
y
g(t )dt ,
0
0
通解即
x
f (t)dt
y
g(t )dt C .
0
0
解微分方程的过程,本质上是
的特解。
解
y 1 y ex ,
xx
xy y e x ,
xdy ydx e xdx; d ( xy) d (e x ),
d( xy e x ) 0 ;
又 y(1) e, 亦即 e y(1) e C, C0,
故欲求的特解为 xy e x 0 或者 y 1 e x . x
cos
xdy yd(cos cos2 x
x)
0,
y
d( ) 0;
cos x
故方程的通解为 y C
cos x
即
y C cos x.
返回
退出
**例2-8 求一阶线性微分方程 y P( x) y Q( x) 的通解,其中P,Q 都是
x 的连续函数。
解
y P( x) y Q( x) , dy p( x) ydx Q( x)dx ,
积函数的某个原函数而非全体原函数。
显然,使用变积分上限的函数表示某指定函数的原函数,较之上述
采取将全体原函数声明混用于单个原函数的过于简单的做法要严谨。
返回
退出
**例2-9 求一阶线性微分方程
( y x)dy ( x y)dx 0 的通解。
解 ( y x)dy ( x y)dx 0 ,
的微分以及自变量的微分的等式称为 阶数来分类并命名。最高阶数是几,方
常微分方程;含多元未知函数的偏导 程就被称为几阶方程。
数或因变量的微分及其多个自变量的 显然,简例中阶数最高的方程是 (5),
的微分的等式称为偏微分方程。 为三阶方程;其次是(4),为二阶方程(
本章只讨论常微方程。简例如下: 它们统称为高阶方程)。剩下的方程全
------ Mandell Creighton(克莱顿)
Brevity is the soul of wit. (简洁是智慧的灵魂) ------ William Shakespeare(莎士比亚)
Wisdom denotes the pursuing of the best ends by the best means.(智慧意味着以最佳手法获得最佳结果)
(1) y 1 y 0 x
*(2) y 2 y 0
dy 2 ydx 0 , dy yd(2x) 0 ,
解 (1)
y 1 y 0 x
xy y 0 ,
xdy ydx 0 ,
d( xy) 0 ;
故原方程的通解为 xy C 或者
yC. x
方程两边同乘以 e2x得 e2xdy ye2xd (2x) 0 ,
(本例即教材P236之例4)
返回
退出
例2-3 求一阶线性微分方程
的通解。 解
1
x2dy e x dx
1
x2dy e x dx,
dy
1 x2
1
e x dx
e
1 x
d
(
1)
d
(e
1 x
),
x
1
d( y e x ) 0,
故
1
1
y e x C, y e x C.
凑微分法解一阶微分方程时, 只要可能,应坚持因变量按因变量凑, 自变量按自变量凑;然后再合并归总得通解。
e x2 dy yd(e x2 ) e x2d( x2 ); d( yex2 ) d(ex2 ), d( ye x2 e x2 ) 0;
又 y |x0 0, 即 0 y(0) C 1, C 1 , 故原方程欲求的特解为 ye x2 e x2 1 或者 y ex2 1.
故方程的通解为
故方程的通解为 xy e x C 亦即