八年级数学下册第十六章《分式》单元 填空题 大全 新课标人教版 (12)
人教版八年级下册数学单元测试卷(全册)

10.面积为4的矩形一边为 ,另一边为y,则y与x的变化规律用图象大致表示为( )
11.下列各点中,在函数 的图像上的是( )
A、(2,1) B、(-2,1) C、(2,-2) D、(1,2)
12.反比例函数y=- 的图象大致是( ).
二.填空题
1.已知反比例函数 的图象经过点(2,-3),则k的值是_______,图象在__________象限,当x>0时,y随x的减小而__________.
9..下列关于分式方程增根的说 法正确的 是( )
A.使所有的分母的值都为零的解是增根; B.分式方程的解为零就是增根
C.使分子的值为零的解就是增根; D.使最简公分母的值为零的解是增根
10.解分式方程 ,分以下四步,其中,错误的一步是( )
A.方程两边分 式的最简公分母是(x-1)(x+1)
B.方程两边都乘以(x- 1)(x+1),得整式方程2(x-1)+3(x+1)=6
A、扩大 倍;B、缩小 倍; C、保持不变;D、无法确定;
5.若分式 的值为零,那么x的值为( )
A.x= -1或x=2B.x=0
C.x=2D.x=-1
6.下列各式正确的是( )
A. B.
7.下列分式中,最简分式是( )
A. B. C. D.
8..下列关于x的方程是分式方程的是( )
A. ; B. ; C. ; D.
7.已知力F所做的功是15焦,则力F与物体在力的方向上通过的距离S的图象大致是如图中的( )
8.如图所示,点P是反比例函数y= 图象上一点,过点P分别作x轴、y 轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 ( )
初二数学分式习题(附答案)

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x xx x C D x x x-=-+=-+=--=+-2.如果分式2||55x x x-+的值为0,那么x 的值是( ) A .0 B .5 C .-5 D .±5 3.把分式22x yx y+-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍 4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++---- A .2个 B .3个 C .4个 D .5个 5.分式方程2114339x x x +=-+-的解是( ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为( ) A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为( ) A .3 B .0 C .±3 D .无法确定 8.使分式224x x +-等于0的x 值为( ) A .2 B .-2 C .±2 D .不存在 9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a b a b a b C D a ba ba b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a am n n xy xy C D xy x x ma a--=-÷-=-÷=÷=二、填空题 1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数.5.计算:1111x x++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______.9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1.10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________. 三、解答题 1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; (2)213(2)22x x x x x -÷-+-++,其中x=12. 3.解方程: (1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ②=x -3-(x+1)=2x -2, ③ ∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ; (3)请你写出正确的解答过程.6.小亮在购物中心用元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x xx x C D x x x-=-+=-+=--=+-2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±5 3.把分式22x yx y+-中的x ,y 都扩大2倍,则分式的值(A )A .不变B .扩大2倍C .扩大4倍D .缩小2倍 4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++---- A .2个 B .3个 C .4个 D .5个 5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A )A .3B .0C .±3D .无法确定 8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在 9.下列各式中正确的是(C )....a b a b a ba bA B a b a b a b a ba b a b a b a b C D a ba ba b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a am n n xy xy C D xy x x ma a--=-÷-=-÷=÷=二、填空题 1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x --的值为正数.5.1111x x ++-= 221x- . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x = 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 .9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1.10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a am n+)h . 三、解答题 1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x xx x x x x -+---÷==-----. 当x=-12时,原式=15.(2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43.3.解方程.(1)1052112x x +--=2; 解:x=74.(2)2233111xx x x +-=-+-.解:用(x+1)(x -1)同时乘以方程的两边得, 2(x+1)-3(x -1)=x+3. 解得 x=1. 经检验,x=1是增根. 所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12.由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,7+12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ②=x -3-(x+1)=2x -2, ③ ∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ; (3)请你写出正确的解答过程. 解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -= 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.初中数学分式方程同步练习题一、选择题(每小题3分,共30分) 1.下列式子是分式的是( )A .2x B .x 2 C .πx D .2y x + 2.下列各式计算正确的是( )A .11--=b a b aB .ab b a b 2=C .()0,≠=a ma na m nD .a m a n m n ++=3.下列各分式中,最简分式是( )A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +--4.化简2293mmm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m-3 5.若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍6.若分式方程xa xa x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—27.已知432c b a ==,则c b a +的值是( ) A .54 B. 47 D.458.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( )A .x x -=+306030100 B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
人教版数学第十六章分式单元检测卷

八年级数学《第十六章 分式》单元测试卷班级 姓名一、填空题(每小题3分,共30分)1、当χ 时,分式χ+13χ-2的值为1;2、若χ3 = y 4 = z 7,则3χ+y+z y= 。
3、已知χ=1时,分式χ+2b χ-a 无意义;χ=4时,分式的值为零,则a+b= 。
4、等式a+1a-2 = (a+1)(a-3)(a-2)(a-3) 成立的条件是 。
5、分式方程χ3χ-7 + a3-2χ= 1的解为χ= 0,则a = 。
6、若χ=2012,y=2013,则(χ+ y ).4422yx y x -+= 。
7、如果方程1χ+1 + 2χ-1 =142-x 有增根,那么增根是 。
8、若χ+1χ=3,则2x +χ+ 1χ + 21x = 。
9、若a χ+2 与bχ-2的和为442-x x ,则a + b= 。
10、若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________。
二、选择题:(每小题3分,共30分)11、下列各式:()3222,5 ,1,2 ,34 ,151-+---x xx x x y x x x π其中)个。
A 、2B 、3C 、4D 、512、分式222222,,,a c ab xy y xz a b a b x y ----,22y x y x ++中,最简分式有 ( ) A .1个 B .2个 C .3个 D .4个13、化简323234242()()()x xz z y z y xy-÷-⨯的结果是 ( )A .-x 2B .-x 3C .-x 2y 4D .-4z x14、若分式xx -22有意义 ,则χ应满足条件为 ( ) A 、χ≠1 B 、χ≠0 C 、χ≠1或χ≠0 D 、χ≠1且χ≠015、如果χ>y >0,那么y+1χ+1 - yχ的值是 ( )A .零B .正数C .负数 D.无法确定16、如果xy y x 2322=- (χ>0,y >0),那么χ+2yχ-y的值 ( )A .52B .- 52C .14 D.- 7217、若把分式xyyx 2+中的x 和y 都扩大6倍,那么分式的值 ( ) A 、扩大6倍 B 、不变 C 、缩小6倍 D 、缩小12倍18、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A 、9448448=-++x x B 、9448448=-++x x C 、9448=+x D 、9496496=-++x x 19、若χy χ+y =1,yz y+z =2,z χz+χ =3,则χ的值是 ( )A .1B .125C .512D.-1 20、已知ba ba b a ab b a -+>>=+则且,0622的值为 ( ) A 、2 B 、2± C 、2 D 、2±三、化简求值(每小题6分,共12分)21、 ( 1χ - 22x )÷(1- 2χ), 其中χ= 322、 1,2,1)(222222==+--+÷+-b a ba ab a a b ab a ab 其中四、解方程(每小题6分,共12分) 23、132321+-=+-x x x x 24、13132=-+--xx x五、解答题(每小题8分,共16分) 25、 已知 1a + 1b = 7a+b , 求 b a + ab 的值.26、 若,0258622=+--+y x y x 求分式y χ - χy 的值.六、应用题(每小题10分,共20分)27、某车间有甲、乙两组,甲组的工作效率比乙组的高25%,因此甲组加工2000个零件所用的时间比乙组加工1800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件? 解:28、某一工程队,在工程招标时,接到甲、乙工程队的投标书;每施工一天,•需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案.(1)甲队单独完成此项工程刚好如期完工; (2)乙队单独完成此项工程要比规定工期多用5天;(3)若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工. 你觉得哪一种施工方案最节省工程款? 解:(1)。
人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
湖北省麻城市集美学校八年级数学下册《第十六章 分式》单元综合测试题(3)(无答案) 新人教版

湖北省麻城市集美学校八年级数学下册《第十六章 分式》单元综合测试题(3)(无答案) 新人教版一、选择题(共30分)1、使分式2x x +有意义的x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x >-D .2x < 2、如果分式2x x-的值为0,那么x 为( ). A 、-2B 、0C 、1D 、2 3、化简分式2b ab b +的结果为( ) A.1a b + B.11a b + C.21a b + D.1ab b+ 4、如果2a b =,则2222a ab b a b-++= ( ) A . 45B . 1C . 35D . 2 5、计算a b a b b a a +⎛⎫-÷⎪⎝⎭的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+ 6. 若分式34922+--x x x 的值为零,则x 的值为( ) A.0 B. -3 C.3 D.3或-37. 李刚同学在黑板上做了四个简单的分式题:①()130=-;②a a a =÷22;③()()235a a a =-÷-;④22414m m =-.其中做对的题的个数有( ) A.1个 B.2个 C.3个 D.4个8. 如果方程333-=-x m x x 有增根,那么m 的值为( ) A.0 B.-1 C.3 D.19. 若023=-y x ,则1+yx 等于( )A.32B.23C.35D.-35 10. 甲班与乙班同学到离校15千米的公园秋游,两班同时出发,甲班的速度是乙班同学速度的1.2倍,结果比乙班同学早到半小时,求两个班同学的速度各是多少?若设乙班同学的速度是x 千米/时,则根据题意列方程,得( ) A.21152.115-=x x B. 21152.115+=x x C. 30152.115-=x x D. 30152.115+=x x 二、填空题(共30分)11、要使分式231x x +-有意义,则x 需满足的条件为 .12、当x = 时,分式x x11-无意义.13、若分式242--x x 的值为0,则x 的值为 . 14.分式xx -+212中,当____=x 时,分式没有意义,当____=x 时,分式的值为零。
人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)、判断题:(每小题1分,共5分)1. .............................................................. . (-2)2ab = - 2 ab (… )2. - 3 — 2的倒数是 3 + 2.( )3. , (x -1)2 = ( . x 一厅.…( )4. ab 、1a¥、-2 a是同类二次根式.••-()3x 壯5. 78x ,电,j 9+x 2都不是最简二次根式.()、填空题:(每小题2分,共20分) 16 .当x _________ 时,式子 一有意义.寸x _37 .化简一15. 210十—电= _____________________ .8 V 27 Y 12a 8. a - J a 2 _1的有理化因式是 ______________ .9 .当 1v x v 4 时,|x — 4| + J x 2 _2x+1 = ___________________ . 10 .方程曇(x - 1) = x + 1的解是 _________________13. ________________________________________________ 化简:(7 - 5 - 2 )2018 (- 7 - 5・2)2017 = ______________________________________________14 .若.x 1 + ■ ^3 = 0,则(x - 1)2+ (y + 3)2= __________________ 15. x ,y 分别为8 - 11的整数部分和小数部分,则2xy - y 2= ____________三、选择题:(每小题3分,共15分)11.已知a 、b 、c 为正数,d 为负数,化简ab -c 2d 2 .ab 、•c 2d 212.比较大小:-1 2,71 4-316. ............................................................................... 已知x3 3x2=- x • x—3,则… )(A) x W0(B) x<- 3 (D)— 30W0—3化简.—(a v 0)得a(A) •. Ta( B )— . a(C )- •.二(D ) •. a20.当a v 0, b v 0时,一a + 2 ab — b 可变形为 ........................... ………) (A ) ( a .了(B )— ( a -(C ) ( -a. -b/(D ) (. -a -.商四、计算(每小题6分,共24分)21. ( 5 - 32) ( .5 -3 2);18. (A) 2x(B ) 2y(C )— 2x(D )— 2y若 O v x v 1, (A) 2x则{(x —£)2 +4 - J (X V )2—4 等于(B )— 2x(C )— 2x(D ) 2x(…)19. 22.5 4—114 11 — -72—b - ab a .24.( &a + ) F(—+ —J a (ab +b #ab —a a_b) (a M b). .ab五、求值:(每小题7分,共14分)25.已知x= 2, y= ^2,求■j3-y/273+72x3 2—xyx4y 2x3y2 x2y3的值.r+宀的值.26.当x= 1- 2时,求x2d-xL + —六、解答题:(共20 分)3 、.4 .99 、10027. (8 分)计算(2 .5 + 1)(1 +•••+_ 1—).28 . (12 分)若x, y 为实数,且y = 1-4x + 4x-12 V y x参考答案(一) 判断题:(每小题1分,共5 分) 1、 【提示】.,口产=| - 2| = 2•【答案】X.2、 【提示】—〔―=3 2=-(3 + 2) .【答案】X拓—23 _43、 【提示】.(x 一 1)2 = |x - 1| ,(.d)2= x - 1(x 》).两式相等,必须x 》1但等式左边x 可取任何数.【答案】X4、 【提示】-a ^b 、-2 a化成最简二次根式后再判断.【答案】“3 x 壯 5、 9 x 2是最简二次根式.【答案】X (二) 填空题:(每小题2分,共20分)6、 【提示】.x 何时有意义? x >0分式何时有意义?分母不等于零. 【答案】x >0且 x ^97、 【答案】—2a ^.[点评】注意除法法则和积的算术平方根性质的运用. &【提示】(a — >/a ____________ ~) ( )= a—(7a —1) . a + 驚a —1 .【答案】a +~—1 .9、 【提示】x 2- 2x + 1=( ) 2, x - 1 .当1 v x v 4时,x - 4, x - 1是正数还是负数?x - 4是负数,x - 1是正数.【答案】3 .10、 【提示】把方程整理成 ax = b 的形式后,a 、b 分别是多少? 2 -1 , 2 1.【答案】x = 3+ 2・2.11、【提示】 c 2d 2 = |cd| =- cd .【答案】 掐b + cd .【点评】T ab = (Vab)2(ab > 0),二 ab - c 2d 2=(V Ob + cd ) (J b).12、【提示】2 7 = ■■ 28 , 4 3 = - 48 .的大小. 13、【提示】(—7 - 50)2001 = (- 7 - 5 逅严0( _______________ ) [ - 7-5© .](7 - 5 ■ 2 ) •(-7-5,2 )=? [1 .]【答案】—7- 5 2 . 【点评】注意在化简过程中运用幕的运算法则和平方差公式.【答案】 V.【点评】先比较 28 , 48的大小,再比较14、【答案】40.【点评】>0 >Q 当7^1 +7^3 = 0 时,x+ 1= 0, y —3 = 0.15、【提示】T 3< 尿V 4 ,••• ___________ V 8 —7T? V _________ .[4 , 5].由于8 —浙1介于4与5之间,则其整数部分x=?小数部分y=? [x= 4, y= 4 —. iT]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算•在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】T x V y v 0,「. x—y V 0, x+ y V 0..x2-2xy y2= . (x _y)2= | x—y| = y—x.x22xy y2= (x y)2= | x + y| = —x—y.【答案】C.【点评】本题考查二次根式的性质 .孑=|a| .18、【提示】(x—1)2+ 4 = (x+ 丄)2, (x+ 丄)2—4= (x—1 )2.又T 0 V X V 1,x x x x1 1•x+ 1> 0, x—1V 0.【答案】D.x x【点评】本题考查完全平方公式和二次根式的性质. (A)不正确是因为用性质时没有注意当0 V X V 1时,x—1V 0.x19、【提示】.-a =、. -a a = V a • a = | a| . -a = —a . -a .【答案】C.20、【提示】T a V 0, b v0,•—a>0, —b>0.并且—a =(二)2, —b= C^b)2, ab = . (-a)(-b).【答案】C.【点评】本题考查逆向运用公式(需)2= a (a>0和完全平方公式.注意(A)、(B)不正确是因为a V 0, b V0时,. b都没有意义.(四)计算题:(每小题6分,共24分)21、【提示】将.^ 3看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(.5 _ .3)2—( 2)2= 5 —2 15 + 3-2 = 6-2 .15 .【提示】先分别分母有理化,再合并同类二次根式.4(冇7)—2(3 - 7)= 4 +. 11—11 —. 7 — 3 +11—7 9—7【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=a十JOb +b —俪亠a苗(苗―Jb)—b T b&a十応)—(a+b)(a—b)八掐十a b .a2 -a、一ab -b ab -b2 - a2 b2a .b 一ab( . a . b)( a -、b)ab( a - b)(、a b)-^/5F(a +b)【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14 分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.)丄7 2 2 a bn mm ma2b2 nn•从而使求值的过2 、a —x).22、【解】原式=54 n)16—1124、【解】x=-^4 = ( 3 迁)2= 5+ 2 ,6 ,1 1------ — ------------ )—( 2 2 2 -x , x a=(2 5 + 1) [ ( .2 -1 ) + (、3 - . 2 ) + ( . 4 —「3 )+•••+( .100 - 99 )] =(2 .5 + 1) ( . 0 1 -) =9 (2 ■ 5 + 1).本题第二个括号内有 99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化 从而使每一项转化成两数之差,然后逐项相消•这种方法也叫做裂项相消法.【解】 原式=_==^= --------- — ---- L ---------- +J x 1 2 +a 2(J x 2 +a 2 -x) x(J x 2 +a 2 -x)1 •.x^x 2 _ ,x 2 亠a 2(2x - x 2 亠a 2)亠x(、x 2 亠a 2x)x , x 2 a 2 ( x 2 a 2「x)x 2 -2x x 2 亠a 2 亠(_x 2 亠a 2)2 亠X 、x 2 亠a 2 -x 2 ( ,x 2 亠a 2)2 -x j x 2 +a 2 = J x 2 +a 2 (J x 2 +a 2 一 x) x L x 2 a 2 ( x 2 a 2_ x)x 、x 2 a 2 (. x 2 a 2 _x)—.当x = 1 —、. 2时,原式=x1_ =— 1— 2 .【点评】本题如果将前两个 分式”分拆成两个 分式”--2之差,那么化简会更简便•即原式=--222x j 、:x a x 2 a 2( . x 2a 2「x) x( . x 2荷—x) +占六、 解答题: (共 22 分)27、 (8 分) 【提示】先将每个部分分母有理化后,再计算.【解】原式=(2 5 + 1)(—・+3- 2+ 4- 3 +…+ 2—13—24—3.而-99 ) 100—9928、 (14 分) 【提示】要使y 有意义,必须满足什么条件?1 _ 4x _0[2 ]你能求出x , y 的值吗? [g4x -1 _0. f1x 二一 4] yw又•••【解】要使时,=(.x 2a【点评】 为整数,6.在 Rt A ABC 中,/ C=90°,AC=9,BC=12则点 C 到 AB 的距离是()第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分) 1. 已知一个直角三角形的两边长分别为 3和4,则第三边长的平方是( )A. 25B. 14C. 7D . 7 或 2512. 直角三角形的一条直角边长是另一条直角边长的 -,斜边长为10,则它的面积为()3D.30144,正方形C 的面积为169,那么正方形 C.169 D.254、 下列说法中正确的是( )2 2 2A.已知a,b,c 是三角形的三边,则 a b ^c B •在直角三角形中,两边的平方和等于第三边的平方'■222C. 在 Rt A ABC 中, C =90,所以 a b =C°oooD. 在 Rt A ABC 中, B =90,所以 a b C5. 如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是 ( )原式=2【点评】解本题的关键是利用二次根式的意义求出 x 的值,进而求出y 的值.A 的面积是(A.10B.15C.20A. 8 cmB.5、、2cmC.5.5 cmD.1 cm6.在Rt A ABC 中,/ C=90°,AC=9,BC=12则点C 到AB 的距离是()68. 如图,一圆柱高8 cm ,底面半径为 一cm ,n36 A.—5 12 B.—— 259C.— 4 7.如图,在△ ABC 中,/ C=90° AC=2,点 D 在BC 上,/ ADC=2/ B , AD=・ 5,贝U BC 的长为( A. .3-1 B. ,3+1 C. ,5-1 D. 5+1的最短路程是( )cm. A.6 B.8 C.10D.129.三角形三边长分别是 6,8,10,则它的最短边上的高为()A.6B." 2C.RD.8ABCD 折叠,使边DC 落在对角线 AC 上,折痕为CE 且D 点落在对角线上D'处若10.如图,将长方形纸片 )B.3C.14D.—2二、填空题(每题4分,共20分)11.在△贮佻佻『卫讹V T点『则仏 中,若三边长分别为 9、12、15,则以两个这样的三角形拼成的长方形的面积为 12.在厶 13.如果一梯子底端离建筑物 9 m 远,那么15 m 长的梯子可达到建筑物的高度是 m. 14.三角形一边长为10,另两边长是方程X 2-14X +48=0的两实根,则这是 三角形,面积为 15.如图,从点A (0,2)发出的一束光,经X 轴反射,过点B (4,3),则这束光从点 A 到点B 所经过路径的长为要爬行吃食, 一只蚂蚁从点;爬到点:•处16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17. (8分)一副直角三角板如图放置,点C在FD的延长线上,AB// CF/F=/ ACB=90°, / E=45: /A=60:AC=10, 试求CD的长.F D C18. (8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C测得/ CAD=30°;小丽沿河岸向前走30 m选取点B,并测得/ CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.20. (12分)如图,将竖直放置的长方形砖块 ABCD 推倒至长方形 A'BCD'的位置,长方形ABCD 的长和宽分别 为a,b,AC 的长为c.(1)你能用只含a,b 的代数式表示S\ABC ,S A C 'A 'D 和S直角梯形ADBA吗?能用只含c的代数式表示S ^ACA '吗?C(L) ”21.( 12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C 周围200 m 范围内为原始森林保护区,在 MN 上的点A 处测得C 在A 的北偏东45方向上,从 A 向东走600 m 到达B 处,测得C 在点BN(2)若修路工程顺利进行,要使修路工程比原计划提前 5天完成,需将原定的工作效率提高 25%,则原计划完成 这项工程需要多少天?19. (10分)如图,折叠长方形的一边(2)■I 的长•J(1)MN 是否穿过原始森林保护区 ⑵利用⑴的结论,你能验证勾股定理吗? rA DB 的北偏西60。
初二八年级数学下册:分式测试题24

遵义市天义学校八年级数学单元水平测试第十六章 分 式(完成时间45分钟,满分100分)八年级( )班 姓名: 评分:一、 填空题:(每小题5分,共30分)1、当x 时,分式2134x x +-无意义. 2、甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是 .3、当x 时,分式2212x x x -+-的值为零. 4、当x 时,分式435x x +-的值为1; 5、计算222a ab a b+-= . 6、已知a+b =3,ab =1,则a b +b a的值等于 .二、 选择题:(每小题5分,共30分)7、下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 8、(-3a b)÷6ab 的结果是( ) A .-8a 2 B .-2a b C .-218a b D .-212b9、下列公式中是最简分式的是( )A .21227b a B .22()a b b a -- C .22x y x y ++ D .22x y x y --10、不改变分式2323523x xx x-+-+-的值,使分子、分母最高次项的系数为正数,正确的是(•)A.2332523x xx x+++-B.2332523x xx x-++-C.2332523x xx x+--+D.2332523x xx x---+11、根据分式的基本性质,分式aa b--可变形为()A.aa b--B.aa b+C.-aa b-D.aa b+12、化简1x+12x+13x等于()A.12xB.32xC.116xD.56x三、解答题:(每小题5分,共20分)13、已知y=123xx--,x取什么值时:(1)y的值是正数;(2)y的值是零;14、计算:22696x x x x -+--÷229310x x x ---·3210x x +-.15、已知x+1x=3,求2421x x x ++的值.16、先化简,再求值:232282x x x x x +-++÷(2x x -·41x x ++).其中x =-45.四、应用题:(每小题10分,共20分)17、冯明英到桂头集市买了5千克香蕉,用了9元钱,又买了3千克鲜橙,•也用了9元钱。
八年级数学下册第十六章《分式》单元 应用题大全 新课标人教版 (20)

八年级数学下册第十六章《分式》单元应用题大全新课标人教版1. 乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地.求甲、乙的速度.2. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?3.4. 比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。
蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达。
已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度。
5. 某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理.6. 大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?7. 某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?8. 在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?9. 两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成. 乙队单独完成这项工程要多少天?10. 超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?11. 某花店老板用400元购买一批花瓶,途中不慎打碎了2个,他把余下的以每个高出成本30%的价格售出,一共获利68元,问:他购买了多少个花瓶?12. 某地决定新修一条公路,甲、乙两工程队承包此项工程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册第十六章《分式》单元 填空题 大全 新课标人教版1. 已知20)1(-3x 2x --+++x )(有意义,则x 的取值范围是____________. 2. 若13+a 表示一个整数,则整数a =______________. 3. 已知322(2)(5)25x a bx x x x -=-+-+-,则a =________.b =________.4. 则=a __________,=b _____________.5. 化简的结果是_________.化简:⎪⎭⎫ ⎝⎛+-111x ÷12-x x=__________。
6. 已知2+,,15441544,833833,32232222 ⨯=+⨯=+⨯=若10+b a ba b a ,(102⨯=为正整数) 7. 关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围是________.8. 计算:(1)22255(2)3a b a b --=_________; (2)42321()()x y x y y--÷=_________ 9. 要使2415--x x 与的值相等,则x =__________;方程x x 527=-的解是____________. 10.化简:a b a b b a a -⎛⎫-÷= ⎪⎝⎭_________;化简:b a aa b a -⋅-)(2=____________. 11. 若方程322x mx x-=--无解,则m =____________________.12. 已知31=+x x ,分式221xx +=________; 13.计算:222a a bb b a ⎛⎫-÷= ⎪⎝⎭_________. 14. 当x ____________时,分式7253-+÷-+x x x x 有意义; 15. 已知分式的值为零,那么x 的值是___________.16.已知2242141x y y x y y +-=-+-,则24y y x ++= ______.计算:xx -++1111=__________.17. 若分式21-x 无意义,则实数x 的值是_________________.18. 当x___________时,分式33+-x x 的值为0.19. 方程的根是___________.20. 若0234x y z ==≠,则23x yz+=______;已知2a=3b ,则ab=___________ 21. 若x 2-4x +1=0,则分式221x x +=________;2421x x x ++=________;22. 分式方程22111xx x +=--,去分母时两边同乘以_________,可化整式方程________ 23. 代数式11x -有意义时,x 应满足的条件是_____________. 24. 已知1=ab ,2=+b a 则式子b a a b +=________;2211b a +=________;25. 当x ________时,分式x-51的值为正。
26. 观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,……猜想并写出第n 个等式 27. 当x=_______时,分式x-51与x 3210-互为相反数. 28.当x ______时分式x x2121-+有意义;当x ________时,x--11的值为负数。
29. 若关于x 的分式方程3132--=-x mx 有增根,则m=_______30.当a=____________时,关于x 的方程23ax a x+-=54的解是x=1 31. 化简21(1)x --2(1)x x -的结果是_________;化简21(1)x --2(1)xx -的结果是________。
32. 计算:=+-+3932a a a __________. 33.计算:2933a a a -=--_________. 34. 化简ba a ab a -⋅-)(2的结果是____________;化简:2111x xx x -+=++________ 35.分式,21x xyy 51,212-的最简公分母为________________;36. 化简aa a -+-111=________; 化简(x -x 1-x 2)÷(1-x1)=________. 37. 分式方程2x=53x +的解是___________.方程x3-22-x =0的解是______. 38. 若分式2242x x x ---的值为零,则x 的值是__________.39. 若234a b c ==,则325a b ca b c-+++=___________;40. 某油库有汽油m 升,计划每天用去n 升,实际用油每天节约了d 升,这些油可以用 _________天,比原计划多用_________天 41. 计算: ①3921()______243a a bb b a÷÷⨯=;②222222221_______()a b a ab b a b ab ab b a --+÷⋅=+-42. 当x =________时,分式2||22x x x ---的值为零.43. 计算:20130﹣2﹣1=___________. 44.化简12122+--x x x •xx x +-21 +x 2的结果是________;方程060366=-+xx 的根是________ 45. 计算ab bb a a -+-=_____; 46.当x ____时,分式x x -52的值为正数. 当x =___时,分式121+-x x 的值为1.47. 观察下列各式:11111323⎛⎫=- ⎪⨯⎝⎭,111135235⎛⎫=- ⎪⨯⎝⎭,…,观察计算:1111133557(21)(21)n n ++++⨯⨯⨯-+=______. 48. 若分式242--x x 的值为0,则x 的值为__________.49.计算22()ab a b-的结果是__________;分式方程3131=---xx x 的解是_____________.50. 若关于x 的方程212x a x +=--的解是非负数,则a 的取值范围是___________.51. 一种病菌的直径为0.0000036m ,用科学记数法表示为_____________. 52.计算:32)23(a b -=_____. 8、分式方程0112=--x x的根是___________. 53. 已知1=ab ,设11+++=b b a a M ,1111+++=b a N ,则M 和N 的大小关系是________. 54.化简22112111x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭的结果是________. 方程43-=0-2x x 的解为______. 55. 当x _________时,分式11x x +-的值为正数. 56. 如果分式211x x -+的值为0,那么x 的值为___________57. 若代数式4321++÷++x x x x 有意义,则x 的取值范围是________. 58. 观察下面一列有规律的数:31,82,153,244,355,486,……根据规律可知第n 个数应是________(n 为正整数). 59.21111a a a ⎛⎫+÷ ⎪--⎝⎭=__________. 60.化简11122-÷⎪⎪⎭⎫⎝⎛+-+a a a a a ,并选择一个你认为合适的数作为a 的值代入求值.61. 在正数范围内定义一种运算“※”,其规则为a ※b =11ab+,如2※4113244=+=.根据这个规则,则方程x ※(2x -)=1的解为 _________ 。
62. 化简:222692693x x x x x x-+-÷-+=________计算:2111x xx x -+=++________ 63. 已知11m n -=3,那么2322m mn nm mn n+---的值为_____________. 64. 用科学记数法表示:-0.00002008=_______。
65. 若分式方程a x ax =-+1无解,则a 的值为_________; 66.计算022005121⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--= ____________.67. 计算:2933a a a -=--_________. 68. 若关于x 的分式方程311x a x x--=-无解,则a =________;若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 69. 用科学记数法表示:-0.0003085=__________________(保留两个有效数字) 70.已知:0112222=-++⎪⎭⎫ ⎝⎛-++b x x a x x ,则a,b 之间的关系式是_____________71. 设0a b >>,2260a b ab +-=,则a bb a+-的值等于___.计算:()3322232n mn m --⋅_.72. 已知23x y =,则222222222x y xy y x xy y x xy -+÷-+-的值为__________ 73. 分式24xx -,当x___________时,分式有意义.74. 若关于x 的方程1101ax x ++=-有增根,则a 的值为_________ 75. 某玩具厂要加工x 只2008奥运吉祥物“福娃”,原计划每天生产y 只,实际每天生产(y+z)只,(1)该厂原计划__________天完成任务(2)该厂实际用_________天完成任务 76. 当x =__________时,分式132x x +-的值为1. 77. 计算:(1)322016xy y x - =_____ (3)nm m n --22 =_____ (3)6222---+x x x x =____________78. 在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为_____________________. 79. 若果2ab =a -b ,则分式11a b-的值是____. 若3,111--+=-baa b b a b a 则的值是____. a 、 b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P ________Q (填“>”、“<”或“=”).80. 在下列三个不为零的式子x 2-4,x 2-2x ,x 2-4x +4中,任选两个你喜欢的式子组成一个分式是___________,把这个分式化简所得的结果是_________________________. 81. 已知ba ba+=+511,则b aa b +=________________.82. 下列各式中:x 23,32x ,,231x -πx, 有( )个分式。