各配分函数的计算共97页文档
08-4 配分函数的计算

e,0
kT
)[1
e,1 e,0
kT
电子能级间隔也很大, (e,1 e,0 ) 400 kJ mol-1 , 除F, Cl 少数元素外,方括号中第二项也可略去。虽然温度很高时,电 子也可能被激发,但往往电子尚未激发,分子就分解了。所以 通常电子总是处于基态,则:
1 (v ) v / T 2
qv
e
1 (v ) v / T 2
ev / 2T (1 ev / T )1
e vv / T (1 ev / T )
n0 基态分子分数 f 0 1 ev / T N
300 K 时
激发态 fex 1 f0 ev / T
物理化学II
7
统计热力学基础
配分函数的计算
2 h2 nx qt, x exp( 2) 8mkT a nx 1
exp( n )
nx 1 2 x
h (设 ) 2 8mkTa
2
因为 是一个很小的数值,所以求和号用积分号代替, 得:
2 qt,x exp( nx )dnx 0
配分函数的计算
配分函数的分离
t r q [ g t exp( )] [ g r exp( )] k BT k BT v e [ g v exp( )] [ g e exp( )] k BT k BT n [ g n exp( )] k BT
qt qr qv qe qn qt q内
平动, 转动,振动,电子,核运动
简并度 g i = gt •gr • gv • ge • gn
i / kBT
则
分子配分函数

0 ∞
= ∫ e −Θ r y / T dy
0
∞
T −Θ r y / T ∞ T T |0 = − =− ⋅e ⋅ (0 − 1) = Θr Θr Θr
T 8π 2 IkT ∴qr = = 2 Θr h
用欧拉-麦克劳林公式对 进行变换, 用欧拉 麦克劳林公式对qr进行变换 可以得到配分函数更精确 麦克劳林公式对 的表达式. 的表达式
∴ qt=(2πmkT/h2)3/2·a·b·c π
=(2πmkT/h2)3/2 ·V abc=V π
(7)
1.0
y=f(nx)
0
N
平动对热力学函数的贡献: 平动对热力学函数的贡献:
1. U: : U=NkT2 [∂lnq/∂T]N,V =NkT2{∂/∂Tln[(2πmk/h2)3/2 ·V·(T)3/2]}N,V π = NkT2 · 3/2·1/T = 3/2nRT Um= 3/2RT (8) 2. CV,m: CV,m=(∂U/∂T)V=3/2R (9) 单原子分子只有平动, 单原子分子只有平动 CVm= 3/2R. 与统计力学推出的结果完全一致. 与统计力学推出的结果完全一致 3. F: F= -NkT·ln(eq/ N) (10) = -nRT·ln[(e/N)( 2πmkT /h2 )3/2·V] π
q = qn.qe.qt.qr.qv
形式对热力学函数贡献值的加和: 加和:
(1)
因为热力学函数与q的对数相关 因为热力学函数与 的对数相关, 故热力学函数值是各分运动 的对数相关 F=-NkT㏑q=-NkT㏑qn-NkT㏑qe-NkT㏑qt-NkT㏑qr-NkT㏑qv ㏑ ㏑ ㏑ ㏑ ㏑ ㏑
各配分函数的求法及其对热力学函数的贡献

号代替,得:
qt,x0exp(2nx2)dnx
引用积分公式: eax2dx 1 则上式得:
0
2a
24.10.2022
qt,x 1 2(2hm2kT)12a
10
q t , y 和 q t , z 有相同的表示式,只是把a换成 b或 c,故
qt 0exp(8m h kT 2a2nx 2)dnx 0exp(8mhkT 2b2ny2)dny
exp(i,r )
kT
J(J1)h2
(2J1)exp(
)
J0
82IkT
令r
h2
8 2Ik
24.10.2022
r称为转动特征温度,因等式右边 项具有温度的量纲,将r代入qr 表达式,得:
23
qr (2J1)e
J0
xpJ((J1)r) T
从转动惯量 I求 得r
除H2外,大多数分子的 r很小
在常温下 r , 1,因此用积分号号 代替 T
A kkTT[[ggen,0,0eexxpp((kekT,0nT,)0])N]N
N k T ln (2m h k 3 T )32 N k T ln V N k T ln N N k T
(N n ,0 N e ,0 ) N k T ln g n ,0 g e ,0
(2m k T )3 2
kT
如将核基态能级能量选为零,则上式可简化为:
qn gn,0 2sn1
即原子核的配分函数等于基态的简并度,它来源
于核的自旋作用,式中 sn 是核的自旋量子数,
24.10.2022
3
对于多原子分子,核的总配分函数等于各原子的 核配分函数的乘积
q n ,总 2 s n 12 s n ' 12 s n '' 1
配分函数的分析与计算

2014届本科毕业论文配分函数的分析与计算姓名:张坤系别:物理与电气信息学院专业:物理学学号:100314025指导教师:王保玉2014年4月12日目录摘要 (I)0 引言 (1)1 配分函数的分析 (1)1.1 配分函数体现的粒子在各个能级上的分配性质 (1)1.2 配分函数表示的是所有的可能量子态相对的概率之和 (1)1.3 配分函数表示粒子离开基态的程度大小的量度 (2)1.4 配分函数是状态函数 (3)1.5 配分函数属于特性函数 (3)2 配分函数的计算 (4)2.1 统计系综的几率分布与配分函数 (5)2.2 近独立系统的配分函数 (6)2.2.1 近独立系统的经典统计 (6)2.2.2 近独立系统的量子统计 (6)结束语 (9)参考文献 (10)致谢 (10)配分函数的分析与计算摘要配分函数在统计物理中占有非常重要的地位,它是一个非常重要并且也比较难理解的物理量,本文将从配分函数的定义出发,阐述其物理意义,阐释其在统计物理中的重要作用,全面分析配分函数,进而研究了常见的各种系综的配分函数的相关计算,并讨论其应用。
关键词:配分函数;物理意义;作用;系统;系综Analysis and calculation of partition functionAbstractPartition function plays an important role in statistical physics, It is a very important and also difficult to understand the physical quantity. This article will begin with the definition of partition function, expatiate it’s physical meaning and illustrate the important role in statistical physics, then give a comprehensive analysis of the partition function. and then study Calculation of partition function in various common ensemble:Classical statistical and Quantum statistics in Near independent system, finally make a comprehensive study of the partition function.Key word: Partition function The physical significance System Ensemble0 引言热力学的宏观理论和微观理论统称为热现象的基本理论,即热力学和统计物理学。
§ 各配分函数的求法及其对热力学函数的贡献

原子核配分函数 电子配分函数
平动配分函数
单元子理想气体的热力学函数
转动配分函数
振动配分函数
20.03.2020
1
原子核配分函数
q ng n ,0e x p (k n T ,0) g n ,1e x p (k n T ,1)
g n ,0ex p (k n T ,0)[1g g n n ,,0 1ex p (n ,1 k Tn ,0) ]
kTlnkTkTlnp
对1 mol气体分子而言,各项均乘以阿伏伽
德罗常数 L, Lk R, 则1 mol气体化学势为
20.03.2020
19
(5)化学势
L(n,0e,0)RTlngn,0ge,0RTln(2m hk3T)32)
RTlnkTRTlnp
当处于标准态时,p p ,则:
L(n,0e,0)RTlngn,0ge,0RTln(2m hk3T)32)
2sn
1 i
i
由于核自旋配分函数与温度、体积无关,所以
对热力学能、焓和等容热容没有贡献。
但对熵、Helmholtz自由能和Gibbs自由能有相 应的贡献。
从化学反应的角度看,一般忽略核自旋配分函
数的贡献,仅在计算规定熵时会计算它的贡献。
20.03.2020
4
电子配分函数
q eg e ,0ex p (k e T ,0)g e ,1ex p (k e T ,1)
设分子作只有一种频率 的简谐振动,振
动是非简并的,g i ,v 1 ,其振动能为:
v(v1 2)h v0,1,2,
式中v为振动量子数,当v=0时, v , 0 称为零点振动能
§7.4 配分函数资料

2018/11/28 10
定位系统配分函数与热力学函数的关系 由上列公式可见,U,H 和CV的表达式在定 位和非定位系统中是一样的;
1 而A,S 和 G的表达式中,定位系统少了与 N!
有关的常数项,而这些在计算函数的变化值时是可 以消去的。 本章主要讨论非定位系统
2018/11/28 11
配分函数的分离
先讨论粒子数为N的非定位系统的热力学函数 (1)Helmholz自由能A
A非定位 kT ln
( g i e
i
i / kT
)
N
N!
N
q kT ln N!
2018/11/28 4
配分函数与热力学函数的关系
(2)熵 S
A ( )V , N S T
dA SdT pdV
i,t i,r i,v i,e i,n
2018/11/28 13
配分函数的分离
各不同的能量有相应的简并度
简并度的乘积,即:
gi,t , gi ,r , gi ,v , gi ,e , gi ,n 当总能量为 i 时,总简并度等于各种能量
gi gi,t gi,内
gi ,t gi ,r gi ,v gi ,e gi ,n
根据配分函数的定义将 i 和 gi 的表达式代入,得
2018/11/28 14
q gi exp(
i
i
i
kT
)
i ,t i ,r i ,v i ,e i ,n
kT )
gi ,t gi ,r gi ,v gi ,e gi ,n exp(
q 称为分子配分函数,或配分函数(partition function) 配分函数是量纲一的量,单位为1 求和项中
分子配分函数

转动配分函数可表达为:
qr (2J 1)eJ (J 1)r /T J 0
在通常条件下, 转动能级很密集, 加合可以积分代替:
令:
y=J2+J
dy=(2J+1)dJ
代入转动配分函数的表达式:
q r
(2J 1)e rJ(J1) / T dJ
0
e ry / T dy 0
pV=nRT p=nRT/V=NkT/V 此式与上式相等: NkT/V=N/(V) ∴ kT = 1 /β
∴ β= 1/kT
例:求298.15K,1Pθ下,Ar的Smθ。MAr =39.92
解:St,m = R(3/2lnM + 5/2lnT – lnP/Pθ–1.165) = 8.314(3/2ln39.92 + 5/2ln298.15 – ln1–1.165) = 154.7 J·K-1·mol-1
分子的运动形式除了平动, 转动和振动之外, 还有 内转动. 内转动是分子内部基团间绕某对称因素 的相互转动, 是一种介乎转动和振动之间运动形 式.
内转动一般存在于结构较复杂的有机分子.
如乙烷分子:
C2H6, 其分子结构如图:
乙烷分子的两甲基可以绕C-C单键旋转, 两甲基的位置 可相互转动, 当位置不同时, 内转动运动的能垒不同.
T r
ery / T
|0
T r
(0 1)
T r
T 82IkT qr r h2
用欧拉-麦克劳林公式对qr进行变换, 可以得到配分函数更精确 的表达式.
q r e0 3e 2r / T 5e 6r / T 7e 12r / T
∵ i>>kT ∴ e-i /kT ≈ 0
各配分函数的计算

3、统计体系的分类
(2)独立粒子体系和相依粒子体系:按粒子间有无作用力 独立粒子体系(assembly of independent particles) 粒子之间的相互作用非常微弱,因此可以忽略不计, 所以独立粒子体系严格讲应称为近独立粒子体系。这种体 系的总能量应等于各个粒子能量之和,即:
U n11 n22 nii
例如,某宏观体系的总微态数为 ,则每一种微观状
态 P出现的数学概率都相等,即:
P 1
7.2 Boltzmann 统计
1、定位体系的微态数和最概然分布 2、Boltzmann公式的讨论:非定位体系的最概然分布 3、Boltzmann公式的其它形式
4、熵和亥氏自由能的表达式
1、定位体系的微态数和最概然分布
i
-
1 kT
Ni* N
ei / kT ei / kT
i
max
N! Ni* !
i
2、非定位体系的最概然分布
(1)简并度(degeneration) 能量是量子化的,但每一个能级上可能有若干个不同
的量子状态存在,反映在光谱上就是代表某一能级的谱线 常常是由好几条非常接近的精细谱线所构成。
量子力学中把能级可能有的微观状态数称为该能级的
经典热力学是宏观方法,经典热力学具有高度的可靠性, 这对于推动生产和科研起到了很大作用。由于经典热力学不是从物质 微观结构来考虑问题,所以在处理热力学问题时不受人们对物质结构 认识的影响,这是它的优点。 但同时也表现了局限性。
1、经典热力学的优点与局限性
经典热力学的局限性:经典热力学不能给出系统的微观 性质与宏观性质之间的联系,统计热力学恰好在系统的 微观性质与宏观性质之间架起了联系的桥梁:
i