九年级数学上册 1.3《正方形的性质与判定》教案2 (新版)北师大版
九年级数学上册1.3.2正方形的性质与判定教案新版北师大版

1.3.2正方形的性质与判定教学目标:1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题.2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明,进一步发展学生演绎推理的能力.3.经历“探索—发现—猜想—证明”的过程,掌握正方形的判定定理,发现决定中点四边形形状的因素,并能综合运用特殊四边形的性质和判定解决问题.4.通过师生互动、合作交流以及多媒体软件的使用,进一步发展学生合作交流的能力和数学表达能力,并使学生发现数学中蕴涵的美,激发学生学习的自觉性、积极性,提高学习数学的兴趣.教学重点与难点:重点:形成判定正方形的基本思路难点:综合应用菱形、矩形、正方形的性质定理和判定定理探索中点四边形形状课前准备:多媒体课件.教学过程:一、创设情境导入新课活动内容:回答下列问题.问题1:我们学习了平行四边形、矩形、菱形、正方形,那么请思考一下,它们之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流.问题2:如图,将一张长方形纸对折两次,然后剪下一个角,打开.怎样剪才能剪出一个正方形?问题3:议一议:满足什么条件的矩形是正方形?满足什么条件的菱形是正方形?与同伴交流一下.处理方式:问题1由学生尝试画出平行四边形、矩形、菱形、正方形之间的关系图,目的是让学生理清它们之间的联系和区别.对于问题2先让学生折纸,然后用剪刀剪出一个正方形,并引导学生思考怎样判定一个图形是正方形. 这也为新课的学习做好铺垫.设计意图:(1)以问题串的形式引入新课,让学生明确本节课所要解决的问题。
(2)让学生回忆平行四边形、矩形、菱形、正方形之间的关系,正方形性质和判定的探索过程及其得出的结论,目的是启发引导学生体会探索结论和证明结论的相互关系,即合情推理与演绎推理的相互依赖和相互补充的辨证关系。
二、探究学习,感悟新知学生活动:四人一组进行讨论研究,老师巡回其间,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法。
《正方形的性质与判定》第2课时示范课教学设计【数学九年级上册北师大】

《正方形的性质与判定》教学设计第2课时一、教学目标1.理解并掌握正方形的判定定理,并会用正方形的判定定理进行证明和计算;2.经历正方形判定定理及中点四边形的探索过程,进一步发展合情推理能力.3.能够用综合法证明正方形的判定定理,进一步发展演绎推理能力.4.体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重难点重点:理解并掌握正方形的判定定理,会用正方形的判定定理进行证明和计算.难点:探究证明正方形的判定定理,探究并证明中点四边形.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:先提出问题让学生观察,然后再动画演示.问题:观察下列实物中的正方形,说一说什么是正方形?预设答案:一组邻边相等且有一个角是直角的平行四边形叫做正方形.追问:正方形具有哪些性质呢?预设答案:正方形的四个角都是直角,四条边相等.正方形的对角线相等并且互相垂直平分.【想一想】你是如何判断一个四边形是矩形、菱形?预设答案:追问:怎样判定一个四边形是正方形呢?【操作】如图,将一张长方形纸片对折两次,然后剪下一个角打开,只要剪口线与折痕成45°角,展开后的图形就是正方形.你知道这样做的道理吗?【合作探究】教师活动:研究正方形的判定方法,准备了两个探究活动,活动1是从矩形的基础上探究,活动2是从菱形的基础上探究,最后得出正方形的4种判定方法.活动1准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证.满足怎样条件的矩形是正方形?预设答案:【猜想1】当矩形的一组邻边相等时,会变成一个正方形.【猜想2】当矩形的对角线互相垂直时,会变成一个正方形. 【证明】猜想1:有一组邻边相等的矩形是正方形. 已知:四边形ABCD 是矩形,AB =BC . 求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是矩形∵∵A =90°,四边形ABCD 是平行四边形 又∵ AB =BC ,∵四边形ABCD 是正方形.猜想2:对角线互相垂直的矩形是正方形.已知:四边形ABCD 是矩形,对角线AC 与BD 相交于点O ,AC ∵BD .求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是矩形∵OA =OC =OB =OD ,∵BAD =90°. 又∵ AC ∵BD ,∵∵AOB ∵ ∵AOD (SAS ). ∵AB = AD .∵四边形ABCD 是正方形.(正方形的定义).DAB C【归纳】正方形的判定定理1:有一组邻边相等的矩形是正方形.符号语言:∵四边形ABCD是矩形,AB=BC,∵四边形ABCD是正方形.正方形的判定定理2:对角线互相垂直的矩形是正方形.符号语言:∵四边形ABCD是矩形,AC∵BD,∵四边形ABCD是正方形.活动 2 把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状,量量看是不是正方形.满足怎样条件的菱形是正方形?预设答案:【猜想3】当菱形的有一个角是直角时,会变成一个正方形.【猜想4】当菱形的对角线相等时,会变成一个正方形. 【证明】猜想3:有一个角是直角的菱形是正方形. 已知:四边形ABCD 是菱形,∵A =90°. 求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是菱形∵AB =BC ,四边形ABCD 是平行四边形 又∵ ∵A =90°,∵四边形ABCD 是正方形.猜想4:对角线相等的菱形是正方形. 已知:四边形ABCD 是菱形,对角线AC 与BD 相交于点O ,AC =BD .求证:四边形ABCD 是正方形.证明:∵四边形ABCD 是菱形 ∵OA =OC ,OB =OD ,AC ∵BD . 又∵ AC =BD ,∵OA =OC =OB =OD ,∵AOB =∵BOC = ∵COD =∵AOD =90°.∵∵AOB 、∵AOD 、∵BOC 、∵COD 都DAB C是等腰直角三角形.∵∵BAD=90°∵四边形ABCD是正方形(正方形的定义).【归纳】正方形的判定定理3:有一个角是直角的菱形是正方形.符号语言:∵四边形ABCD是菱形,∵A=90°,∵四边形ABCD是正方形.定理4:对角线相等的菱形是正方形.符号语言:∵四边形ABCD是矩形,AC=BD,∵四边形ABCD是正方形.【典型例题】思考:任意画一个正方形,以四边的中点为顶点可以组成一个怎样的图形呢?预设答案:猜想:正方形你能尝试证明吗?【证明】已知:如图,点A1,B1,C1,D1 分别是正方形ABCD各边的中点.求证:四边形A1B1C1D1 为正方形.证明:连接AC,BD,∵A1,B1分别是AB和BC边中点,∴A1B1∥AC且A1B1=12 AC,同理可证C1D1∥AC且C1D1 =12 AC,A1D1∥BD且A1D1 =12 BD,B1C1∥BD且B1C1 =12 BD.∴四边形A1B1C1D1 为平行四边形.又∵四边形ABCD是正方形,∴AC = BD(正方形的对角线相等)AC⊥BD(正方形的对角线互相垂直),∴A1B1= A1D1 =B1C1= C1D1,∠1 = 90°.∴四边形A1B1C1D1 是菱形,∠2 = 90°.∴四边形A1B1C1D1 为正方形.归纳:以正方形的四边中点为顶点可以组成一个正方形.【议一议】教师活动:做一做环节从任意的四边形和正方形角度探究了中点四边形,议一议主要从矩形和菱形的角度探究,得出猜想并证明,最后得出决定中点四边形的形状的主要因素是:原四边形的对角线的长度和位置关系.问题1:菱形的中点四边形会是什么形状?预设答案:猜想:菱形的中点四边形是矩形.问题2:矩形的中点四边形会是什么形状?预设答案:猜想:矩形的中点四边形是菱形.请尝试证明这两个猜想?【证明】已知:如图,点E,F,G,H分别是菱形ABCD各边的中点.求证:四边形EFGH为矩形.证明:连接AC,BD,∵E,F分别是AB和BC边中点,∴EF∥AC,同理可证HG∥AC,EH∥BD,FG∥BD.∴EF∥HG,EH∥FG,∴四边形EFGH,PFQO为平行四边形.又∵四边形ABCD是菱形∴AC⊥BD(菱形的对角线互相垂直),∴∠1 = 90°. ∴四边形PFQO 为矩形.∴∠2=90°.∴四边形EFGH是矩形(矩形的定义)归纳:以菱形的四边中点为顶点可以组成一个矩形.已知:如图,点E,F,G,H分别是矩形ABCD各边的中点.求证:四边形EFGH为菱形.证明:连接AC,BD,∵E,F分别是AB和BC边中点,∴EF∥AC且EF = 12AC,同理可证HG∥AC且HG =12 AC,EH∥BD且EH=12BD,FG∥BD且FG=12BD.∴四边形EFGH为平行四边形.又∵四边形ABCD是矩形∴AC=BD(矩形的对角线相等),∴EF =EH∴四边形EFGH是菱形(菱形的定义)归纳:以矩形的四边中点为顶点可以组成一个菱形.追问:决定中点四边形形状的关键因素是什么?预设答案:决定中点四边形的形状的主要因素是:原四边形的对角线的长度和位置关系.教师给出练习,随时观察学生完成情况并相应H分别在它的四条边上,且AE= BF = CG = DH. 四边形EFGH是什么特殊四边形?你是如何判断的?答案:1.证明: 在正方形ABCD中,BE=DF,易证∵CEB∵∵AEB∵∵AFD∵∵CFD,即CE=AE=AF=FC,∵四边形AECF是菱形.2. 解:四边形EFGH是正方形.∵在正方形ABCD中,AE=BF=CG=DH,易证∵AEH∵∵DHG∵∵CGF∵∵BFE,即EH=HG=GF=FE,且∵AHE=∵DGH.∵∵DGH+∵DHG=90°,∵∵EHG=180°-(∵AHE+∵DHG)=90°,∵四边形EFGH是正方形.思维导图的形式呈现本节课的主要内容:教科书第25页。
北师大版数学九年级上册1.3.1正方形的性质与判定教学设计

3.互相批改:鼓励学生相互批改,交流解题心得,提高自我纠错和反思的能力。
(五)总结归纳
在这一环节中,我们将对本节课所学内容进行总结归纳。
1.师生共同总结正方形的性质与判定方法,强化学生对知识点的记忆。
2.引导学生总结学习方法,培养学生的自主学习能力和终身学习意识。
2.讨论内容:
-各小组针对正方形的性质进行讨论,总结出正方形的特点。
-各小组探讨正方形的判定方法,并尝试举例说明。
3.交流分享:各小组将讨论成果在班级内进行分享,其他小组可提出疑问或补充。
(四)课堂练习
在这一环节中,我们将设计不同类型的练习题,帮助学生巩固所学知识。
1.基础练习:针对正方形的性质,设计一些基础题目,让学生在课堂上即时巩固。
-讲解正方形对角线互相垂直、平分且相等的性质,结合图形进行演示。
2.正方形的判定方法:
-介绍正方形的三种判定方法,结合具体例子进行讲解。
-分析各种判定方法之间的联系与区别,帮助学生构建知识体系。
(三)学生小组讨论
在这一环节中,我们将组织学生进行小组讨论,共同探讨正方形的性质与判定方法。
1.分组:将学生分成若干小组,每个小组推选一名组长负责组织讨论。
-完成课本习题1.3.1中的第4、5题,运用正方形的判定方法解决问题。
-尝试运用正方形的性质和判定方法解决实际问题,如测量正方形瓷砖的面积等。
3.拓展思维训练:
-探讨正方形与其他图形(如矩形、菱形)的性质之间的联系与区别。
-研究正方形对角线性质的应用,如求正方形对角线长度、分割正方形等。
4.小组合作任务:
作业布置要求:
最新北师大版九年级数学上册《正方形的性质与判定》教学设计(精品教案)

1.3 正方形的性质与判定第1课时【教学目标】了解正方形的有关概念,理解并掌握正方形的性质定理.【教学重难点】重点:探索正方形的性质定理.难点:掌握正方形的性质的应用方法,把握正方形既是矩形又是菱形这一特性来学习本节课内容.【教学过程】一、探究导入【显示投影片】显示内容:展示生活中有关正方形的图片,幻灯片(多幅).【活动方略】教师活动:操作投影仪,边展示图片,边提出下面的问题:1.同学们观察显示的图片后,有什么联想?正方形四条边有什么关系?四个角呢?正方形是矩形吗?是菱形吗?为什么?正方形具有哪些性质呢?学生活动:观察屏幕上所展示的生活中的正方形图片.进行联想.易知:1.正方形四条边都相等(小学已学过);正方形四个角都是直角(小学学过).实验活动:教师拿出矩形按左图折叠.然后展开,让学生发现:只要矩形一组邻边相等,这样的矩形就是正方形;同样,教师拿出活动菱形框架,运动中让学生发现:只要菱形有一个内角为90°,这样的特殊菱形也是正方形.教师活动:组织学生联想正方形还具有哪些性质,板书画出一个正方形,如下图:学生活动:观察、联想到它是矩形,所以具有矩形的所有性质;它又是菱形,所以它又具有菱形的一切性质,归纳如下:正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 正方形性质:(1)边的性质:对边平行,四条边都相等.(2)角的性质:四个角都是直角.(3)对角线的性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角.(4)对称性:是轴对称图形,有四条对称轴.【设计意图】采用合作交流、发现、归纳的方式来解决重点问题,突破难点.二、探究新知【课堂演练】(投影显示)演练题1:如图,已知四边形ABCD是正方形,对角线AC与BD相交于0,MN//AB,且分别与OA、OB相交于M、N.求证:(1)BM=CN;(2)BM⊥CN.分析:本题是证明BM=CN,根据正方形性质,可以证明BM、CN所在ΔBOM 与ΔCON是否全等.(2)在(1)的基础上完成,欲证BM⊥CN.只需证∠5 + ∠CMG= 90°就可以了.【活动方略】教师活动:操作投影仪.组织学生演练,巡视,关注“学困生”;等待大部分学生练习做完之后,再请两位学生上台演示,交流.学生活动:课堂演练,相互讨论,解决演练题的问题.证明:(1) ∵四边形ABCD是正方形,∴∠COB=∠BOM= 90°,OC=OB.∵MN//AB,∴∠1=∠2, ∠ABO= ∠3,又∵∠1= ∠ABO= 45°,∴∠2=∠3,∴OM =ON,∴ΔCON≌ΔBOM,∴BM=CN.(2)由(1)知ΔBOM ≌ΔCON,∴∠4= ∠5,∵∠4+∠BMO=90°,∴∠5+∠BMC=90° , ∴∠CGM=90°, ∴BM ⊥CN.演练题2:如图,正方形ABCD 中,点E 在AD 边上,且AE= AD ,F 为AB 的中点,求证: ΔCEF 是直角三角形.分析:本题要证∠EFC= 90°,从已知条件分析可以得到只要利用勾股定理逆定理,就可以解决问题.这 里应用到正方形性质.【活动方略】教师活动:用投影仪显示演练题2,组织学生应用正方形和勾股定理逆定理分析,并请同学上讲台分析思路,板演.学生活动:先独立分析,找到证明思路是利用勾股定理的逆定理解决问题. 证明:设AB = 4a ,在正方形ABCD 中,DC=BC=4a ,AF=FB = 2a ,AE=a ,DE=3a.∵∠B=∠A=∠D=90°,由勾股定理得:EF2 +CF2= (AE2 +AF2) + (CB2 +BF2)= (a2 + 4a2) + (16a2+4a2)=25a2, CE2=CD2+DE2= (4a)2 + (3a)2=25a2,∴EF2 +CF2=CE2.由勾股定理的逆定理可知ΔCEF 是直角三角形.【设计意图】补充两道关于正方形性质应用的演练 题,提高学生的应用能力. 41三、范例点击例:已知:如图,四边形ABCD是正方形,矩形PECF的顶点P在正方形ABCD 的对角线BD上,E在BC上,F 在CD 上,连接AC、AP、PC、EF,若EC= 4,CF=3,求PA的长.分析:本题运用矩形对角线相等的性质可得EF=PC,运用正方形的性质可得AP=PC,进而可得AP=EF.因此,只要求出EF的值即可.解:∵四边形PECF是矩形,∴PC=EF.在RtΔEFC中,EC=4,CF=3, ∴EF='∴PC=5. ∵四边形ABCD是正方形,∴BD⊥AC且BD平分AC,即BD是AC的垂直平分线. ∵点P在BD 上,∴PA=PC=5.【方法归纳】与矩形对角线有关的计算问题,主要运用矩形的对角线相等和正方形的对角线的性质,借助第三条线段作“媒介”求线段的长.四、巩固练习教材P21随堂练习五、课堂小结本节课应掌握:正方形的概念:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.正方形的性质正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.正方形既是轴对称图形,也是中心对称图形.六、布置作业教材P22习题1.7第1、2、3题第2课时【教学目标】1.知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算.2.经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.3.理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.【教学重难点】重点:掌握正方形的判定条件.难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.【教学过程】―、创设情境,引入新课我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.通过填写让学生形象地看到正方形是特殊的矩形,也是特殊的菱形,还是特殊的平行四边形;而正方形、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.1.怎样判断一个四边形是平行四边形?2.怎样判断一个四边形是矩形?3.怎样判断一个四边形是菱形?4.怎样判断一个平行四边形是矩形、菱形?议一议:你有什么方法判定一个四边形是正方形?二、探究新知1.探索正方形的判定条件:学生活动:四人一组进行讨论研究,老师巡回其间,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法. (1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,那么就可以判定这个平行四边形是正方形;(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;(3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.后两种判定均要用到矩形和菱形的判定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:有一个角是直角,且有一组邻边相等的四边形是正方形;有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.上述三种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断.2.正方形判定条件的应用例1:判断下列命题是真命题还是假命题?并说明理由.(1)四条边相等且四个角也相等的四边形是正方形;⑵四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形.师生共析:是真命题,因为四条边相等的四边形是菱形,又四个角相等,根据四边形内角和定理知每个角为90°,所以由有一个角是直角的菱形是正方形可以判定此命题是真命题.⑵真命题,由四个角相等可知每个角都是直角,是矩形,由对角线互相垂直可判定这个矩形是菱形,所以根据是既是矩形又是菱形的四边形是正方形,可判定其为真.(3)假命题,对角线平分的四边形是平行四边形,对角线垂直的四边形是菱形,所以它不一定是正方形. 如下图①,满足.AO=CO,BO=DO且AC⊥BD但四边形ABCD不是正方形(4)假命题,它可能是任意四边形.如上图②,AC⊥BD 且AC=BD,但四边形ABCD不是正方形.方法一:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线垂直的平行四边形是菱形,所以是矩形又是菱形的四边形是正方形.可判定其为真.方法三:由对角线互相垂直平分可知是菱形,由对角线平分且相等可知是矩形,而既是菱形又是矩形的四边形就是正方形.总结:通过辨析,掌握判定正方形的各种方法和思路,从题中所给各种不同条件出发,寻找命题成立的判定依据,以便灵活应用.例2:如图,E、F分别在正方形ABCD的边BC、CD 上,且∠AFE= 45°,试说明EF=BE+DF.师生共析:要证EF=BE+DF,如果能将DF移到EB延长线或将BE移到FD延长线上,然后就能证明两线段长度相等。
北师大版数学九年级上册1.3正方形的性质与判定(第一课时)教学设计

二、学情分析
九年级学生在经过前两年的数学学习后,已经具备了一定的几何图形认知基础和逻辑思维能力。在本章节学习正方形的性质与判定前,学生已经掌握了矩形、菱形的基本性质和判定方法,这为学习正方形打下了良好的基础。然而,正方形作为一种特殊的矩形和菱形,其性质和判定方法具有一定的特殊性,学生在理解上可能存在一定难度。此外,学生在解决实际问题时,可能会遇到将理论知识与实际情境相结合的挑战。ቤተ መጻሕፍቲ ባይዱ此,在教学过程中,教师应关注以下几点:
1.充分调动学生的已有知识经验,引导他们发现正方形与矩形、菱形的联系与区别,降低学习难度。
2.注重培养学生的空间想象力,通过实际操作、观察和思考,提高学生对正方形性质的理解。
3.针对学生个体差异,给予个性化指导,使每位学生都能在原有基础上得到提高。
4.创设丰富的教学情境,激发学生的学习兴趣,鼓励他们积极思考、主动探究,提高解决问题的能力。
注意事项:
1.作业量适中,难度由浅入深,以培养学生的自信心和挑战意识。
2.鼓励学生独立完成作业,培养其自主学习能力。
3.注重作业反馈,及时发现并纠正学生的错误,提高学生的学习效果。
4.针对不同学生的个体差异,适当调整作业难度和类型,使每位学生都能在作业中收获成长。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正方形的定义、性质、判定方法及其在实际问题中的应用。
2.难点:正方形性质的理解与运用,特别是正方形与矩形、菱形性质的异同;正方形判定方法的灵活运用。
(二)教学设想
北师大版九年级数学上册1.3节正方形的性质与判定教学设计

-结合生活实际,设计一个与正方形有关的艺术图案,要求美观、富有创意。
-请同学们思考:正方形在生活中还有哪些应用?请举例说明。
作业要求:
1.请同学们按时完成作业,保持字迹清晰,书写规范。
2.基础作业要求所有同学必须完成,提高作业和拓展作业可根据自己的实际情况选择完成。
3.作业完成后,要进行自我检查,确保答案正确,如有疑问,及时向同学或老师请教。
(三)情感态度与价值观
1.使学生感受到数学与生活的紧密联系,体会数学在实际生活中的应用价值。
2.培养学生勇于探究、积极思考的良好学习习惯,增强学生解决问题的自信心。
3.培养学生的审美观念,让学生在欣赏正方形的美感中,体会数学的简洁与和谐。
4.培养学生的集体荣誉感,让学生在团队协作中,学会尊重他人、关爱他人,共同为集体的发展贡献力量。
-设计意图:让学生感知数学与生活的联系,为后续性质的学习做好铺垫。
2.新课导入:在学生已有知识基础上,引导学生自主探究正方形的性质,如四边相等、四角为直角等,并通过数学证明来强化理解。
-设计意图:培养学生的探究精神和几何直观能力,提高逻辑推理能力。
3.性质应用:通过典型例题,让学生运用正方形的性质解决实际问题,如求正方形的周长、面积等,并引导学生总结解题规律。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.学生互评练习题,分享解题思路和经验。
4.教师针对学生的练习情况进行点评,强调解题方法和技巧。
(五)总结归纳
1.教师引导学生回顾本节课所学的正方形性质、判定方法及应用。
2.学生用自己的话总结正方形的性质和判定方法,加深理解。
3.教师强调正方形在实际生活中的应用,激发学生的学习兴趣。
北师大版数学九年级上册1.3.2正方形的性质与判定优秀教学案例

3.教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维能力、团队协作等方面的发展,给予积极的反馈和指导。
四、教学内容与过程
(一)导入新课
1.利用实物模型、图片等展示正方形的实际应用场景,如正方形桌面、正方形瓷砖等,让学生感受到正方形在生活中的存在。
北师大版数学九年级上册1.3.2正方形的性质与判定优秀教学案例
一、案例背景
本节课的主题是北师大版数学九年级上册1.3.2正方形的性质与判定,这是学生在学习了矩形、菱形的基础上的进一步拓展。学生在日常生活中对正方形有了一定的认识,但如何从数学的角度去定义它、理解它,以及如何运用它的性质解决实际问题,这是本节课需要解决的核心问题。
2.设计具有挑战性的任务,如“探究正方形对角线的性质”,让学生在合作中解决问题,提高他们的实践能力。
3.引导学生运用已学的知识,如矩形、菱形的性质,解决小组讨论中的问题,增强学生的知识运用能力。
(四)总结归纳
1.让学生回顾本节课所学的内容,引导他们总结正方形的性质、判定方法以及如何解决实际问题。
2.强调正方形在实际生活中的应用,让学生认识到学习正方形性质的重要性。
3.小组合作的学习方式:组织学生进行小组讨论,培养学生的团队协作能力,让学生在合作中解决问题,提高实践能力。同时,通过小组合作,促进学生之间的交流与分享,拓宽学生的视野。
(三)小组合作
1.组织学生进行小组讨论,鼓励他们分享自己的观点,培养学生的团队协作能力。
2.设计具有挑战性的任务,如“探究正方形对角线的性质”,让学生在合作中解决问题,提高他们的实践能力。
3.通过对小组合作过程的观察和评价,了解学生的学习情况,及时给予指导和鼓励。
1.3正方形的性质与判定第2课时正方形的判定(教案)2022秋九年级上册初三数学北师大版(安徽)

1.教学重点
-正方形定义及其性质的理解与应用。
-正方形判定方法的掌握与运用。
-运用判定方法解决实际问题时,对正方形性质的应用能力。
举例:
a.通过正方形的定义,引导学生理解正方形与其他四边形(如矩形、菱形)的区别与联系。
b.强调正方形判定方法的条件,如直角、对角线垂直平分等,并让学生通过实际操作加深理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“正方形的判定”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个图形是否为正方形的情况?”(如设计海报时需要确定正方形尺寸)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正方形判定的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调“有一个角是直角的菱形是正方形”和“对角线互相垂直平分且相等的四边形是正方形”这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正方形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过测量对角线长度和角度来判断一个四边形是否为正方形。
c.通过典型例题,让学生学会在解决问题时,如何将正方形的性质与判定方法有机结合,提高解题效率。
2.教学难点
-对正方形判定方法的理解与运用,特别是对角线垂直平分且相等的判定。
-在解决实际问题时,如何从复杂图形中识别出正方形,并运用其性质简化问题。
-对正方形性质与判定方法的综合运用,尤其是在几何证明题中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 正方形的性质与判定
教学目标:
1、知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关
的论证和计算.
2、经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,
逐步掌握说理的基本方法.
3、理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.
教学重点:掌握正方形的判定条件.
教学难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.
教学过程:
一、创设问题情景,引入新课
我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.
通过填写让学生形象地看到正方形是特殊的矩形,也是特殊的菱形,还是特殊的平行四边形;而正方形、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.
1、怎样判断一个四边形是矩形?
2、怎样判断一个四边形是菱形?
3、怎样判断一个四边形是平行四边形?
4、怎样判断一个平行四边形是矩形、菱形?
议一议:你有什么方法判定一个四边形是正方形?
二、讲授新课
1.探索正方形的判定条件:学生活动:四人一组进行讨
论研究,老师巡回其间,进行引导、质疑、解
惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形
的基本方法.
(1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,那么就可以判定这个平行四边形是正方形;
(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;
(3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.
后两种判定均要用到矩形和菱形的判定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:有一个角是直角,且有一组邻边相等的四边形是正方形;有一组
邻边相等的矩形是正方形;有一个角是直角的菱形是正方形. 上述三种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断
2.正方形判定条件的应用
【例1】判断下列命题是真命题还是假命题?并说明理由.
(1) 四条边相等且四个角也相等的四边形是正方形;
(2) 四个角相等且对角线互相垂直的四边形是正方形;
(3) 对角线互相垂直平分的四边形是正方形;
(4) 对角线互相垂直且相等的四边形是正方形;
(5) 对角线互相垂直平分且相等的四边形是正方形.
师生共析:
(1) 是真命题,.因为四条边相等的四边形是菱形,又四个角相等,根据四边形内
角和定理知每个角为90°,所以由有一个角是直角的菱形是正方形可以判定
此命题是真命题.
(2) 真命题,由.四个角相等可知每个角都是直角,是矩形,由对角线互相垂直可
判定这个矩形是菱形,所以根据是矩形又是菱形的四边形是正方形,可判定
其为真.
(3) 假命题,对角线平分的四边形是平行四边形,对角线垂直的四边形是菱形,
所以它不一定是正方形.如下图,满足AO=CO ,BO=DO 且AC ⊥BD 但四边形ABCD
不是正方形
.
(4) 假命题,它可能是任意四边形.如上图,AC ⊥BD 且AC=BD ,但四边形ABCD 不
是正方形.
(5) 真命题。
方法一:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线垂直的平行四边形是菱形,所以是矩形又是菱形的四边形是正方形.可判定其为真.
方法二:对角线平分 平行四边形 对角线垂直
平行四边形
对角线相等
方法三:由对角线互相垂直平分可知是菱形,由对角线平分且相等可知是矩形,而既是菱形又是矩形的四边形就是正方形.
总结:通过辨析,掌握判定正方形的各种方法和思路,从题中所给各种不同条件出发,寻找命题成立的判定依据,以便灵活应用.
【补充例题】如下图,E 、F 分别在正方形ABCD 的边BC 、CD 上,且∠
EAF=45°,试说明EF=BE+DF.
形 形 正方形
师生共析:要证EF=BE+DF,如果能将DF移到EB延长线或将BE移到FD延长线上,然后就能证明两线段长度相等。
此时可依靠全等三角形来解决.
像这种在EB上补上DF或在FD补上BE的方法叫做补短法.
解:将△ADF旋转到△ABC,则△ADF≌△ABG
∴AF=AG,∠AD F=∠BAG,DF=BG
∵∠EAF=45°且四边形是正方形,
∴∠ADF﹢∠BAE=45°,
∴∠GAB﹢∠BAE=45°,
即∠GAE=45°,
∴△AEF≌△AEG(SAS),
∴EF=EG=EB﹢BG=EB﹢DF。
讨论:你能从一张彩色纸中剪出一个正方形吗?说出你的做法.
你怎么检验它是一个正方形呢?小组讨论一下.
三、随堂练习
教材P24
通过练习进一步巩固正方形的判定方法的应用.
四、课时小结
师生共同总结,归纳得出正方形的判定方法,同时展示下图,通过直观感受进一步加深理解正方形判定方法的应用.
五、课后作业
习题 1.8的 1-3题.
六、板书设计:
(课题)
复习:判定方法:讨论:
例1.
正方形与矩形例2. 补例.
正方形与菱形。