陶瓷材料的热压烧结实验

合集下载

热压烧结法制造陶瓷技术

热压烧结法制造陶瓷技术

热压烧结法制造陶瓷技术热压烧结法是一种常用的陶瓷制造技术,通过将陶瓷粉末在高温高压下进行烧结,使其形成致密的结构和良好的力学性能。

本文将详细介绍热压烧结法的原理、工艺流程以及在陶瓷制造中的应用。

一、热压烧结法的原理热压烧结法是利用高温下的扩散作用和陶瓷粉末的塑性变形,使粉末颗粒之间发生结合,形成致密的陶瓷体。

在高温下,粉末颗粒表面的氧化膜被破坏,使颗粒之间发生固相扩散,形成晶界,从而提高陶瓷的致密性和力学性能。

二、热压烧结法的工艺流程1. 原料制备:选择适宜的陶瓷粉末作为原料,进行粉末的筛分和混合,保证原料的均匀性和稳定性。

2. 预成型:将混合好的粉末放入模具中,进行压制,形成所需的初型。

3. 热压烧结:将初型放入高温高压的烧结装置中,进行热压烧结处理。

在此过程中,需要控制好烧结温度、压力和时间,以确保陶瓷体的致密性和力学性能。

4. 后处理:待烧结完成后,还需要进行后处理,如研磨、抛光等工艺,以提高陶瓷的表面光滑度和精度。

三、热压烧结法在陶瓷制造中的应用热压烧结法广泛应用于陶瓷制造的各个领域,如电子陶瓷、结构陶瓷、功能陶瓷等。

1. 电子陶瓷:热压烧结法可以制备出具有良好电气性能的陶瓷材料,用于电子元器件的制造,如电容器、压电器件等。

2. 结构陶瓷:热压烧结法可以制备出高硬度、高强度的陶瓷材料,用于制造刀具、轴承等机械零件,具有良好的耐磨性和耐腐蚀性。

3. 功能陶瓷:热压烧结法可以制备出具有特殊功能的陶瓷材料,如氧化铝陶瓷用于高温热障涂层,氧化锆陶瓷用于人工关节等医疗器械。

四、热压烧结法的优势和不足热压烧结法具有以下优势:1. 可以制备出高密度的陶瓷材料,具有良好的力学性能和耐磨性。

2. 工艺稳定,可重复性好,能够生产大批量的陶瓷制品。

3. 可以制备出复杂形状的陶瓷制品,满足不同应用的需求。

然而,热压烧结法也存在一些不足之处:1. 设备成本较高,需要较大的投资。

2. 对原料的要求较高,需要选择适合的粉末和添加剂。

陶瓷烧结

陶瓷烧结

目前,微波烧结技术已经被广泛用于多种陶瓷复合 材料的试验研究材料直接耦合导致整体加热。
(2)微波烧结升温速度快,烧结时间短。 (3)安全无污染。 (4)能实现空间选择性烧结。
材料与微波场的作用类型
材料与微波的作用方式示意图
微波烧结系统
5 )反应烧结
反应烧结(reaction-bonded sintering)是让原料混合 物发生固相反应或原料混合物与外加气(液)体发生 围—气(液)反应,以合成材料,或者对反应后的反应 体施加其它处理工艺以加工成所需材料的一种技术 。
是将粉末压坯或装入包套的粉料装入高压容器中,使粉 料经受高温和均衡压力的作用,被烧结成致密件。
其基本原理是:以气体作为压力介质,使材料(粉 料、坯体或烧结体)在加热过程中经受各向均衡的压力, 借助高温和高压的共同作用促进材料的致密化。 目前,热等静压技术的主要应用有:金属和陶瓷的 固结,金刚石刀具的烧结,铸件质量的修复和改善,高 性能磁性材料及靶材的致密化。
(2)具备快熔快冷性,有利于保持粉末的优异特性;
(3)可以使 Si3N4,SiC 等非热熔性陶瓷在无需添加
烧结助剂的情况下 发生烧结。
间接法爆炸烧结装置(a.单面飞片; b.单活塞;c.双活塞)
直接法爆炸烧结装置
谢谢大家!
1)热压烧结
热压烧结(hot pressing)是在烧结过程中同时对
坯料施加压力,加速了致密化的过程。所以热压 烧结的温度更低,烧结时间更短。
热压技术已有70年历史,最早用于碳化钨和钨粉致密件的 制备。现在已广泛应用于陶瓷、粉末冶金和复合材料的生 产。
热压烧结的优点
(1)所需的成型压力仅为冷压法的1/10
烧结装置
烧结系统大致由 四个部分组成:真空 烧结腔(图中6), 加压系统(图中3), 测温系统(图中7) 和控制反馈系统。图 中1示意石墨模具,2 代表用于电流传导的 石墨板,4是石墨模 具中的压头,5是烧 结样品。

层状强界面硼化锆陶瓷高温力学性能的研究--毕业论文

层状强界面硼化锆陶瓷高温力学性能的研究--毕业论文

摘要毕业论文层状强界面硼化锆陶瓷高温力学性能的研究.Abstract摘要强界面硼化锆陶瓷在高温下具有优良的性能,在较高的温度下具有足够高的强度以及抗氧化性能,是一种性能优异的高温陶瓷材料,广泛应用于可回收式航空航天飞行器领域中。

将强界面ZrB2-SiC材料抛光后置于不同温度下进行高温力学性能测试,在到达测试温度后进行保温30分钟后对其施加应力直到材料试样完全断裂为止,可以获得材料相应施加的最大力及其对应强度,并通过扫描电镜照片对测试后的试样表面和断口进行分析。

结果表明:在平行和垂直两个方向上,材料的弯曲强度是不同的,首先在平行方向上随着温度的升高而降低;在垂直方向上随着温度升高而降低,其强度在1200℃时有396.78MPa和435.90MPa,1500℃时强度达到最小值,为220.7MPa 和195.15MPa。

通过分析可得,垂直方向的弯曲强度高于平行方向,随温度升高弯曲强度会下降,但在1300℃时出现了一个最小值,是因为B2O3受热分解和材料本身受高温引起的缺陷共同作用引起的,垂直方向高于平行方向是由于材料的各向异性,垂直时强度比较大。

关键词:强界面陶瓷;热压烧结;弯曲强度;高温力学性能AbstractIt has excellent performance at high temperature, high strength or high oxidation resistance at relatively high temperature with the ceramic of strong interface and was a kind of high performance ceramic material with excellent performance. It is widely used in the field of recyclable .There was no doubt that the material was polished and placed at different temperatures.It can help us to test the high temperature mechanical properties. After the temperature was reached for 30 minutes, the test temperatuerwas reached, the stress was applied to the material until the material sample was completely broken. The maximum applied force. And the corresponding intensity will through the scanning electron microscope samples on the test after the sample surface and fracture analysis.The results showed that the bending strength of the material is different in both parallel and vertical directions, first decreases in the parallel direction .with increasing temperature,decreases of increasing temperature in the vertical direction, and its strength is at 1200 ℃, there are 396.78MPa and 435.90MPa two peaks, when the intensity reaches the minimum, 220.7MPa and 195.15MPa in 1500 ℃. With the analysis, the bending strength in the vertical direction was higher than the parallel direction, and the bending strength decreases with the temperature. However, there is a minimum value at 1300 ℃because B2O3was decomposed by heat and the defects caused by the high temperature of the material itself Caused by the vertical direction above the parallel direction. It is due to the anisotropy of the material, the vertical strength was relatively larged.Key words: strong interface of ceramics; sintering in hot pressing ; bending strength; the mechanical properties in high temperature摘要 (2)Abstract (3)第一章引言 (5)1.1本课题研究的背景与意义 (5)1.2 强界面ZrB2-SiC陶瓷原料的基本性质 (6)1.2.1 二硼化锆(ZrB2)的基本性质 (6)1.2.2 碳化硅(SiC)基本性质 (8)1.2.3 层状强界面硼化锆陶瓷中SiC的作用 (9)1.3 强界面ZrB2-SiC基陶瓷国内外研究现状 (9)1.4 强界面ZrB2-SiC 陶瓷性能的相关研究 (12)1.5 ZrB2基陶瓷增韧机理 (12)1.5.1 弥散增韧 (12)1.5.3 纤维增韧 (13)1.6 层状强界面硼化锆陶瓷的制备 (13)1.6.1 层状强界面硼化锆陶瓷的制备方法 (13)1.6.2强界面ZrB2-SiC陶瓷的烧结工艺 (14)1.7 ZrB2基陶瓷抗氧化研究 (16)1.8 本课题的主要研究内容 (17)第二章实验内容 (18)2.1实验原料及试剂 (18)2.2 实验仪器及设备 (18)2.3 层状强界面硼化锆陶瓷的制备 (19)2.3.1料浆的制备 (19)2.3.2 基体片的制备 (20)2.3.3 陶瓷的成型与烧结 (20)2.4 样品的分析与性能测试 (20)2.4.1 SEM微观结构观察 (20)2.4.2 高温弯曲强度测试 (21)第三章结果与讨论 (22)3.1 层状强界面硼化锆陶瓷的力学性能分析 (22)3.2 层状强界面硼化锆陶瓷的形貌 (23)3.3层状强界面硼化锆陶瓷试样SEM照片 (24)3.4 层状强界面硼化锆陶瓷试样表面观察 (25)3.6层状强界面硼化锆陶瓷载荷位移变化分析 (26)3.7高温测试后层状强界面硼化锆陶瓷的形貌 (28)第四章结论 (31)致谢 (35)第一章引言1.1本课题研究的背景与意义超高温材料[1]由于在极端环境中具有优异的物理化学性能,能够适应超高音速飞行,是作为可重复使用运载飞船领域最具有前途的候选材料之一。

热压烧结原理

热压烧结原理

热压烧结原理热压烧结是一种常见的粉末冶金工艺,广泛应用于陶瓷、金属和塑料等材料的制备过程中。

它通过高温和高压的作用,将粉末颗粒紧密结合,形成致密的块状材料。

本文将介绍热压烧结的原理及其应用。

首先,热压烧结的原理是利用高温和高压使粉末颗粒之间产生扩散和结合。

在热压烧结过程中,首先需要将粉末颗粒在模具中进行成型,然后通过加热和施加压力使其结合成块状材料。

在高温下,粉末颗粒表面会产生液相,使得颗粒之间产生扩散,从而实现颗粒之间的结合。

同时,施加的压力可以使得颗粒之间更加紧密地结合,最终形成致密的块状材料。

其次,热压烧结的原理可以分为两个关键步骤,扩散和结合。

在高温下,粉末颗粒表面会产生液相,使得颗粒之间的扩散更加容易。

扩散过程中,颗粒之间会发生原子间的迁移,从而使得颗粒之间的结合更加牢固。

同时,施加的压力可以使得颗粒之间更加紧密地结合,从而提高材料的密度和强度。

热压烧结具有许多优点,首先是可以制备出高密度、高强度的材料。

由于热压烧结过程中颗粒之间的结合非常牢固,因此制备出的材料具有很高的密度和强度。

其次,热压烧结可以制备出复杂形状的材料。

通过设计不同形状的模具,可以制备出各种复杂形状的材料,满足不同工程需求。

此外,热压烧结还可以实现多种材料的复合制备,例如金属与陶瓷的复合材料,从而拓展了材料的应用领域。

总之,热压烧结是一种重要的粉末冶金工艺,通过高温和高压的作用,实现了粉末颗粒之间的紧密结合,制备出高密度、高强度的材料。

它在陶瓷、金属和塑料等材料的制备过程中具有重要的应用价值,为材料制备领域的发展提供了重要支持。

希望本文对热压烧结原理及其应用有所帮助,谢谢阅读。

陶瓷材料工艺学--第五章 陶瓷材料的烧结

陶瓷材料工艺学--第五章 陶瓷材料的烧结
③ 气氛对坯的颜色和透光度以及釉层质量的影响
a. 影响铁和钛的价态; b. 使SiO2和CO还原; c. 形成氮化合物。
结论:气氛的影响有好有坏,关键是看坯体的组成。
(4)升温与降温速度对产品性能的影响
75%Al2O3瓷的升温速率与性能的关系曲线 1―抗折强度;2―温度系数;3―介质损耗角
(4)升温与降温速度对产品性能的影响
全部组元都转变为液相,而烧结是在低于主要组分的熔点下进
行的。

这两个过程均在低于材料熔点或熔融温
度之下进行的。并且在过程的自始至终都至少有一相是固态。
固相烧结一般可分为三个阶段:初始阶段,主要表现为颗粒形状 改变;中间阶段,主要表现为气孔形状改变;最终阶段,主要表现为 气孔尺寸减小。
烧结过程
收缩
降温速率对坯体的白度和性能都有影响。特别是 含玻璃相多的陶瓷,应采取高温快冷和低温慢冷的制 度。
高温快冷可避免泛黄、釉面析晶,提高光泽;低 温慢冷可减少应力,避免开裂等。
影响陶瓷材料烧结的工艺参数:
(1)烧成温度 (2)保温时间 (3)烧成气氛 (4)升温与降温速率
本节小结
1、 烧结的定义和烧结的方法 2、 烧结的类型
接触部位 颈部 颈部 颈部 颈部 颈部 颈部 颈部
相关参数 晶格扩散率,Dl 晶界扩散率,Db
粘度,η 表面扩散率,Ds 晶格扩散率,Dl 蒸汽压差,Δp 气相扩散率,Dg
5.3.2 晶粒过渡生长现象
晶粒的异常长大是指在长大速度较慢的细晶基体内有少部分区域快 速长大形成粗大晶粒的现象。
在烧结过程中发生异常长大与以下主要因素有关: ① 材料中含有杂质或者第二相夹杂物 ② 材料中存在高的各向异性的界面能,例如固/液界面
三、气孔排除

陶瓷烧结方法

陶瓷烧结方法
特点
马弗炉是一种传统的陶瓷烧成设备,具有结构简单、操作方便、加 热速度快等优点。
应用范围
适用于各种陶瓷材料的烧成、烧结和熔融等工艺过程,特别适合于 大规模生产。
使用注意事项
使用马弗炉时应注意安全,避免烫伤和火灾事故;同时应注意炉温的 控制和炉内气氛的调节,以保证烧成效果。
真空炉
特点
真空炉是在真空环境下进行加热的设备,具有高温、高真 空的特点,可以有效地去除材料中的气体和杂质,提高产 品的纯度和性能。
02
烧结方法的分类
固相烧结
01
02
03
定义
固相烧结是陶瓷材料在完 全或部分熔融状态下获得 致密化的过程。
特点
固相烧结过程中不出现液 相,致密化主要依靠颗粒 重排、扩散传质和颗粒表 面能的驱动。
应用
适用于制备高熔点、低导 热系数、低塑性的陶瓷材 料,如氧化铝、氮化硅等。
液相烧结
定义
01
液相烧结是通过添加可熔性组分(如金属、玻璃或其它陶瓷材
在复合材料中的应用
树脂基复合材料
通过烧结方法制备树脂基复合材料,提高材料的强度、刚度和耐 腐蚀性。
碳纤维复合材料
通过烧结方法制备碳纤维复合材料,实现材料的轻量化和高性能 化。
玻璃纤维复合材料
通过烧结方法制备玻璃纤维复合材料,提高材料的强度和耐热性。
感谢您的观看
THANKS
瓷材料的致密度和力学性能。
应用
适用于制备形状复杂、细孔结构的陶 瓷制品,如蜂窝陶瓷、多层陶瓷电容
器等。
03
烧结工艺参数
温度
低温烧结
低温烧结通常在1000℃以下进行,适用于对热敏感的材料,如某些玻璃或陶瓷。低温烧结可以减少材料内部的热应力, 降低烧结温度对材料性能的影响。

热压烧结法

热压烧结法

陶瓷基复合材料的制备方法—热压烧结法姓名:李丹材料学院学号:2220110378热压烧结又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常烧结温度或更低一些,经过较短时间烧结成致密而均匀的制品。

热压造成颗粒重新排列和塑性流动、晶界滑移、应变诱导孪晶、蠕变以及后阶段体积扩散与重结晶相结合等物质迁移机理。

热压烧结将压力的影响和表面能一起作为烧结驱动力,因此通过热压可以降低陶瓷的烧结温度,提高烧结体的致密度。

与常压烧结相比,热压烧结的特点是在高温下粉末塑性得到改善,变形阻力小,成形能力得到提高,产品密度高,晶粒细小,结合紧密,显微组织优良。

从热力学角度解释,烧结致密化的驱动力主要是固气界面消除所导致的粉末表面积减小和表面自由能的降低,以及能量更低的新的固.固界面的形成所引起的烧结过程中自由能的变化。

在烧结过程中,物质的传递一般以表面张力作为动力,有时外加的压力和其它的物化因素也能起到推到这个进程的作用。

通常物质致密化过程包含流动传质、扩散传质、气相传质以及溶解、沉淀机制等几种机理。

流动传质:是指在表面张力或者外加压力的作用下粒子发生变形、断裂,产生塑性流动,引起物质的流动和颗粒重排。

这种流动传质机制是烧结初期致密化的主要因素。

扩散传质:它是指质点(或空位)借助于浓度梯度推动界面迁移的过程。

扩散过程可以通过物体的表面(或界面)进行,也可以在内部进行,一般认为,空位消失于颗粒表面或界面。

不同的扩散途径对扩散系数的影响很大,一般晶界扩散比较容易进行。

气相传质:即蒸发冷凝机制。

颗粒表面各处的曲率半径是不同的,表面各处蒸汽压的大小也各不相同,质点会从高能表面尖端蒸发,在低能颈部凝聚,这就是气相传质过程。

这个过程并不能消除材料内部的孔隙,对致密化影响不大。

溶解—沉淀机制:此机制是在液相参与的烧结中出现的。

其传质机理与气相传质类似,但其对致密化有较大的影响。

根据Cobble的定义,烧结可以分为三个阶段:烧结初期、烧结中期和烧结末期。

陶瓷材料的烧结与晶粒生长

陶瓷材料的烧结与晶粒生长

陶瓷材料的烧结与晶粒生长烧结和晶粒生长是陶瓷材料制备过程中非常重要的步骤。

通过烧结和晶粒生长的控制,可以改善材料的性能、提高其致密性和强度。

本文将就陶瓷材料的烧结和晶粒生长进行探讨,并介绍一些常见的烧结方法和晶粒生长机制。

1. 烧结方法烧结是指将陶瓷粉末在一定的温度和压力下进行加热处理,使粒子间发生相互结合和扩散,形成致密的块体材料。

常见的烧结方法有以下几种:(1)热压烧结:将陶瓷粉末放入模具中,在高温和高压的条件下进行烧结。

热压烧结可以获得致密的陶瓷材料,具有较高的强度和硬度。

(2)微波烧结:通过微波加热的方式进行烧结。

微波烧结的优点是加热速度快,能够在较短的时间内完成烧结过程,适用于一些高温敏感的材料。

(3)等离子体烧结:通过等离子体的作用,加快粒子之间的扩散和结合,从而实现快速烧结。

等离子体烧结可以得到致密度较高的陶瓷材料,并能够控制晶粒尺寸和分布。

2. 晶粒生长机制晶粒生长是指陶瓷材料在烧结过程中晶粒尺寸的增大。

晶粒尺寸的大小和分布对陶瓷材料的性能有着重要的影响。

常见的晶粒生长机制包括以下几种:(1)一维生长:晶粒沿着某个方向生长,呈现出棒状或柱状的形态。

一维生长机制适用于一些具有纤维状结构的陶瓷材料。

(2)表面扩散:晶粒表面发生扩散,并与周围的颗粒结合。

表面扩散是晶粒生长的主要机制之一,通过控制晶粒表面的扩散速率,可以调控晶粒尺寸和形态。

(3)体内扩散:晶粒内部的原子通过扩散运动,使晶粒尺寸增大。

体内扩散主要取决于材料的化学成分和温度条件。

3. 影响烧结和晶粒生长的因素烧结和晶粒生长受到多种因素的影响,下面介绍其中几个重要的因素:(1)温度:温度是烧结和晶粒生长的关键因素之一。

适当的温度可以促进晶粒的结合和生长,但过高的温度可能引起过烧,导致晶粒长大过快。

(2)压力:压力可以提高粒子的结合程度和致密性,对烧结效果有重要影响。

不同材料和形状的陶瓷,适宜的压力范围也有所不同。

(3)时间:烧结时间影响烧结程度和晶粒生长的速率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陶瓷材料的热压烧结实验
一、实验目的
1.掌握热压烧结的基本原理和特点以及热压烧结适用的范围;
2.了解热压炉的基本构造;
3.掌握热压炉的基本操作要领;
4.了解影响热压烧结的主要因素。

二、实验原理
热压烧结是区别于常规烧结的特种烧结方法之一,它是在陶瓷或金属粉体加热的同时施加压力。

装在耐高温的磨具中的粉体颗粒在压力和温度的双重作用下,逐步靠拢、滑移、变形并依靠各种传质机制(如蒸发凝聚、扩散、粘塑性流动、溶解沉淀,视组分不同而以不同的机制为主),完成致密化过程,形成外部轮廓与模腔形状一致的致密烧结体。

因此,热压烧结可将压制成型和烧结一并完成。

由于在高温下持续有压力的作用,扩散距离缩短,塑性流动过程加快,并影响到其他传质过程的加速,热压烧结致密化的温度(烧结温度)要比常规烧结低150~200℃,保温时间也短的多(有时仅需20~30min)。

与常规烧结相比,热压烧结体的气孔率低,相对密度高;烧结温度低、保温时间短,晶粒不易长大,所以热压烧结体的力学性能高。

原则上,凡能用常规烧结的陶瓷材料或金属材料均可用热压烧结来获得更为致密的坯体,但热压烧结更适用于一些用常规方法难以烧结致密的材料,如各种非氧化物陶瓷、难熔金属、金属-无机复合材料等。

热压烧结的主要优点在于:成型压力小,烧结温度低,烧结时间短,制品密度高、晶粒细小。

存在的缺点是:制品形状简单、表面较粗糙,尺寸精度低,一般需后续清理和机械加工,单件生产、效率低,对模具材料要求高,耗费大。

三、热压炉的基本结构
热压炉的基本构造可分为两部分:一为炉体和加热系统,一为加压系统。

炉体通常为圆柱形双层壳体,用耐热性好的合金钢制成,夹层内通冷却水对炉壁、底、盖进行冷却,以保护炉体金属;加热常用高纯石墨的电阻发热,由于石墨电阻小,需用变压器以低电压、大电流加在石墨发热元件上;在发热元件与炉体之间,设置有隔热层,以防止炉内的高温散失,同时也保护炉体;为防止石墨氧化,热压时必须在真空或非氧化气氛下进行,所以,炉体需具有很好的密封性,符合真空系统要求,并带有机械真空泵、扩散泵。

根据烧结的材料不同,也可通入惰性气体(如氩气)或氮气、氢气等;温度通过控制电压、电流来改变加于发热元
件上的输出功率而实现。

加压系统常为电动液压式单轴上下方向加压,在发热元件围成的炉腔中部放有高强度石墨制成的压模,压模有模套、上下压头组成,上(或下)压头能在模套内运动,以实现对粉体材料的压制。

四、实验仪器设备
1.热压炉;
2.高强石墨磨具及石墨衬套、垫片;
3.h-BN粉,酒精;
4.烧杯、小毛刷;
4.气氛烧结时需备有保护气体。

五、实验步骤
1.粉体准备
2.模具准备
在烧杯中以无水酒精、h-BN粉配成悬浮液,用小毛刷将其涂刷与模具的模套内壁、上压头四周及下接触面、下压头上接触面以及衬套的内外表面、垫片的全部表面,以防止热压时粘模而便于脱模。

3.装粉、装模
将模套衬套装配在一起,再将下压头装入模腔,放入一保护垫片,将粉体适量装入模腔,表面刮平,再放一保护垫片后将上压头插入,并轻轻旋之无卡滞现象。

将装好粉料的磨具装在炉内中央下面的下压头座上,保证平稳;其上放加压压头,盖好隔热垫,安装好炉盖,上紧螺栓,装炉完成。

4.抽气
抽真空至要求的真空度。

如气氛烧结,也要先抽真空,真空度可不要求太高。

5.升温、通保护气体
升温时需打开各冷却水进出口阀。

开启加热按钮,按事先确定好的升温速率加热。

如气氛烧结,保护气体可开始升温时即通气。

6.烧结保温、加压
达到所需烧结温度时开始计算保温时间,同时加压至所需烧结压力,并保压至所需时间。

加压也可分段进行。

7.烧结结束工作
保温结束后,即可关闭加热系统电源,让炉子内各物件自然冷却,但冷却水(及保护气体)仍通。

加压系统关闭电源。

冷至室温后,通水、通气结束,关闭进水阀、通气阀、气瓶等。

8.脱模、取样
炉内温度冷至室温即可打开炉盖,取出模具,压出衬套、垫片及试样。

六、注意事项
1.实验前务必认真阅读指导书,在指导老师讲解下结合实物,了解炉子结构和各控制按钮、阀的作用。

2.热压炉为大型贵重设备,必须在老师指导下多人协作才能使用,禁止随便乱动按钮、控制阀和温度仪表等。

3.石墨磨具和炉内其他石墨件均为易碎品,价值较高,不得敲击,要轻拿轻放。

4。

烧结时注意冷却水温度不可太高,以有效保护炉体。

七、实验报告要求
1.实验目的及基本原理
2.热压烧结过程的纪录,包括各阶段的电压、电流、温度、压力、气氛情况(气氛烧结时)。

3.实验体会。

4.思考题:
(1)热压烧结与常规烧结相比有何优缺点?
(2)热压烧结为什么能获得力学性能更高的材料?。

相关文档
最新文档