压缩因子计算
AGA8—92DC计算方法天然气压缩因子计算(最漂亮的)

AGA8—92DC计算方法天然气压缩因子计算摘要:按照GB/T 17747.2—1999《天然气压缩因子的计算第2部分:用摩尔组成进行计算》,采用AGA8—92DC计算方法,用VB编程计算了天然气压缩因子。
用二分法求解状态方程,精度满足工程需要。
关键词:压缩因子;AGA8—92DC计算方法;二分法1概述工作状态下的压缩因子是天然气最重要的物性参数之一,涉及到天然气的勘探、开发、输送、计量和利用等各个方面。
实测天然气压缩因子所需的仪器设备价格高,不易推广,因此计算方法发展很快,主要为经验公式和状态方程计算方法。
1992年6月26日,国际标准化组织(ISO)天然气技术委员会(TC193)及分析技术分委员会(TC193/SC1)在挪威斯泰万格(Stavanger)召开了第四次全体会议,会上推荐了两个精度较高的计算工作状态下天然气压缩因子的方程,目PAGA8-92DC方程、SGERG-88方程[1]。
随后,国际标准化组织于1994年形成了国际标准草案[2]。
AGA8-92DC方程来自美国煤气协会(AGA)。
美国煤气协会在天然气压缩因子和超压缩因子表的基础上,开展了大量研究,于1992年发表了以状态方程为基础计算压缩因子的AGA No.8报告及AGA8-92DC方程[2]。
1994年,四川石油管理局天然气研究所遵照中国石油天然气总公司技术监督局的指示,对国际标准化组织1992年挪威斯泰万格会议推荐的AGA8-92DC 方程、SGERG-88方程进行验证研究,于1996年底基本完成[2]。
1999年,四川石油管理局天然气研究院(前身为四川石油管理局天然气研究所)起草的《天然气压缩因子的计算》GB/T 17747.1~3—1999被批准、发布。
《天然气压缩因子的计算》GB/T 17747.1~3—1999包括3个部分:《天然气压缩因子的计算第1部分:导论和指南》GB/T 17747.1—1999,《天然气压缩因子的计算第2部分:用摩尔组成进行计算》GB/T 17747.2—1999,《天然气压缩因子的计算第3部分:用物性值进行计算》GB/T 17747.3—1999。
压缩因子

mRT 3.011g 0.082atm l mol 1 K 1 288K V 0.9356l 1 pM 1atm 76 g mol
因此混合物中CS2的分压,即CS2的饱和蒸气压可由下式求出
pB VB yB pB VB
B B
式中 pB 1atm B
(1)Z(怎么求?) 既然临界压缩因子相近,那 么是不是可以将真实状态与 临界态相比较,从而反映真 实状态偏离理想态的程度?
真实状态
理想状态
(3)怎么比较? 通过对应状态临界状态
优点:临界态是真实的,临界参数可测, 临界Zc可求。从而将不可求转化为可求
§1.5 对应状态原理及 普遍化压缩因子图
• 5.1 压缩因子Z
(2)临界压缩因子Zc
将压缩因子概念应用于临界点,可得出临界压缩因子
Zc
pcVm,c RTc
实验测得大多数物质的Zc值大致在 0.26~0.29范围内,见P.308附录六
(3)分析
① 引入压缩因子Z,得到一种简单、准确、适用的真实气体状态方程
pVm ZRT
确立方程的关键是求出压缩因子Z,虽然Z反映的是真实气体行为偏离 理想态的程度,但由于理想状态是不存在的,便无具体的实验数据, 因而难以从Z的物理意义方面求出Z值
(2)对应状态
不同的气体如果有相同的对比压力和对比温度,就 称这些气体处于相同的对比状态,或称对应状态
思考:处于对应状态的 真实气体在偏离临界态 程度相同的情况下,偏 离理想态的程度是否会 相同呢?
§1.5 对应状态原理及 普遍化压缩因子图
• 5.2 对应状态原理
(3)对应状态原理
“各种不同的气体,只要有两个对比参数相同,则第三个对比参数 也大致相同”。这个经验规律即是对应状态原理 对应状态原理的确立,说明各气体处于对应状态时,其压缩因 子具有相似的值。
天然气基本压缩因子计算方法

天然气基本压缩因子计算方法编译:阙洪培(西南石油大学审校:刘廷元这篇文章提出一个简便展开算法:任一压力-温度的基本压缩因子的输气监测计算。
这个算法中的二次维里系数来源于参考文献1。
计算的压缩因子接近AGA 8状态方程值[2]。
1 测量在天然气工业实用计量中,压力、温度变化作为基本(或标准条件,不仅地区间有差别,而且在天然气销售合同也有不同。
在美国,通常标准参考条件是60°F和14.73 psia。
欧洲常用的基本条件是0 ℃和101.325 kPa,而标准条件是15 ℃和101.325 kPa。
阿根廷也用15 ℃和101.325 kPa,而墨西哥则用的是20 ℃和1kg/ sq cm(绝对。
计算真实气体的热值、密度、基本密度、基本体积、以及沃贝指数时要求已知基本条件的压缩因子。
表1是理想气体值。
表1中的理想气体值不能用于密闭输气,必须计算相应基本条件的压缩因子。
参考文献提供的一些数据表和获取基本条件压缩因子方法,基本条件只能是60°F,14.73或14.696 psia。
计算其它基本条件的压缩因子可用AGA 8 程序,但代数计算较复杂,计算机编程共有三组软件,比较耗时。
本文提出了一个展开算法,计算密闭输气基本条件(基本条件可是任何压力温度的压缩因子。
2 压缩因子接近外界条件时,即压力小于16 psia,截断维里状态方程(方程组中的方程1较好地描述了天然气的体积性质。
方程1中,各符号的物理意义是:Z = 基本条件下压缩因子B = 二次维里系数R = 气体常数P = 基本条件的绝对压力T = 温度条件的绝对压力天然气基本压缩因子接近1,如0.99,B必然为负(图1方程2是混合物的二次维里系数,式中B ij = B ji为组分i和j的二次交互维里系数,B ii为纯组分i 的二次维里系数。
二次维里系数是温度的函数。
也可用方程3求B,便于手工计算。
比较适合密闭输气计算,方程3中B i的平方根为总因子,参见参考文献1,3,4。
天然气压缩因子计算

1.天然气相关物性参数计算密度计算: TZR PM m =ρ ρ——气体密度,Kg/m 3;P ——压力,Pa ;M ——气体千摩尔质量,Kg/Kmol ;Z ——气体压缩因子;T ——气体温度,K ;R m ——通用气体常数,8314.4J/Kmol·K 。
2.压缩因子计算:已知天然气相对密度∆时。
96.28M =∆ M ——天然气的摩尔质量。
∆+=62.17065.94pc T510)05.493.48(⨯∆-=pc P ;pc pr P P P = pcpr T T T =; P ——工况下天然气的压力,Pa ;T ——工况下天然气的温度,k ;P Pc —临界压力;T Tc ——临界温度。
对于长距离干线输气管道,压缩因子常用以下两式计算:668.34273.01--=prpr T P Z 320107.078.068.110241.01prpr pr pr T T T P Z ++--=对于干燥天然气也可用经验公式估算: 15.1117.0100100P Z +=标况流量和工况流量转换。
为了控制Welas 的5L/min 既 0.3立方米每小时的工况流量。
Q 2------流量计需要调节的流量值P 2------0.1MpaT 2------293.15K (20℃ )Z 2------标况压缩因子Q 1------0.3m 3/hP 1------ 工况压力(绝对压力MPa )T 1------开尔文KZ 1-------工况压缩因子转换公式为12221211p T Z Q Q p T Z。
GB T 17747.2-1999 天然气压缩因子的计算 第2部分:用摩尔组成进行计算

0 a 镇6 MP MP<p 5 a 25 <30 2K <T 5 K 2 MJ m- 0 ・ ' <4 MJ ' <H, 8 " m-
注 2 将本条中的高位发热量和相对密度换算为我国石油气体标准参 比条件下 的高位发热量和相对密度 , : 则高位 发热1 范围为 79 -4. " , 2. 19 MJ '相对密度范围为 050 -. , 1 5 3 m- . -080 5 0
天然气中各组分 的摩尔分数应在 以下范围以内:
— 第3 部分: 用物性值进行计算。
附录 A、 附录B 附录C 附录D是标准的附录。附录E 附录 F 附录G是提示的附录。 、 、 、 、
中华 人 民共 和 国国 家标 准
天然气压缩因子的计算 第2 部分: 用摩尔组成进行计算
N t a gs ac a o o o rsi fco- rl -C l l in cmpes n tr au a ut f o a P r 2C l l inபைடு நூலகம்ig lr o p sin a s at a u t u n m a- m oio a l i : c ao s o c t n ys
似法是否会使计算结果变差.
摩尔分数大于 000 .0 0 5的所有组分都必须在计算中考虑。痕量组分( C 等) 如 M; 应按表 1中指定 的赋值组分处理。所有组分的摩尔分数之和为 1 . 1 士000 0 ,
如果已知体积分数组成, 则应将其换算成摩尔分数组成, 具体换算方法见 G / 102 B T 6 0 1
c / 1772 99 S T 4 .-19 7
绝对压力:
热力学温度 :
0 a -1 MP MP <p 2 a <
2 3 6 K镇T蕊3 8 3 K
气体压缩因子计算 化工热力学-第二章

2.1 纯物质的P-V-T关系
一.P-T图
P
密 流 区
1-2线 汽固平衡线(升华线) 2-c线 汽液平衡线(汽化线) 2-3线 液固平衡线(熔化线) C点临界点,2点三相点 P<Pc,T<Tc的区域,属汽体 P<Pc,T>Tc的区域,属气体 P=Pc,T=Tc的区域,两相 性质相同 P>Pc,T>Tc的区域,密流区 具有液体和气体的双重性质, 密度同液体,溶解度大;粘度 同气体,扩散系数大。
根据状态方程式的形式、结构进行分类可分为两类:
立方型:具有两个常数的EOS 精细型:多常数的EOS
二. 立方型(两常数)EOS
1. VDW Equation (1873) 形式: RT
a P - 2 V-b V
a/V2 —
分子引力修正项。
由于分子相互吸引力存在,分子撞击器壁的力减小,造成压
V V dV dT dP T P P T
容积膨胀系数
等温压缩系数
1 V = V T P
1 V k= V P T
dV dT - kdP V
当温度和压力变化不大时,流体的容积膨胀系
8.314
J/mol· (kJ/kmol· K K)
三.
多常数状态方程
P13 式(2-34) 8个常数
(一).B-W-R Eq 1.方程的形式 式中B0、A0、C0、a、b、c、α、
运用B-W-R Eq时,首先要确定式中的8个常数, 至少要有8组数据,才能确定出8个常数。
关于两常数(立方型)状态方程,除了我们介绍的
AGA8—92DC计算方法天然气压缩因子计算(最漂亮的)

AGA8—92DC计算方法天然气压缩因子计算摘要:按照GB/T 17747.2—1999《天然气压缩因子的计算第2部分:用摩尔组成进行计算》,采用AGA8—92DC计算方法,用VB编程计算了天然气压缩因子。
用二分法求解状态方程,精度满足工程需要。
关键词:压缩因子;AGA8—92DC计算方法;二分法1概述工作状态下的压缩因子是天然气最重要的物性参数之一,涉及到天然气的勘探、开发、输送、计量和利用等各个方面。
实测天然气压缩因子所需的仪器设备价格高,不易推广,因此计算方法发展很快,主要为经验公式和状态方程计算方法。
1992年6月26日,国际标准化组织(ISO)天然气技术委员会(TC193)及分析技术分委员会(TC193/SC1)在挪威斯泰万格(Stavanger)召开了第四次全体会议,会上推荐了两个精度较高的计算工作状态下天然气压缩因子的方程,目PAGA8-92DC方程、SGERG-88方程[1]。
随后,国际标准化组织于1994年形成了国际标准草案[2]。
AGA8-92DC方程来自美国煤气协会(AGA)。
美国煤气协会在天然气压缩因子和超压缩因子表的基础上,开展了大量研究,于1992年发表了以状态方程为基础计算压缩因子的AGA No.8报告及AGA8-92DC方程[2]。
1994年,四川石油管理局天然气研究所遵照中国石油天然气总公司技术监督局的指示,对国际标准化组织1992年挪威斯泰万格会议推荐的AGA8-92DC 方程、SGERG-88方程进行验证研究,于1996年底基本完成[2]。
1999年,四川石油管理局天然气研究院(前身为四川石油管理局天然气研究所)起草的《天然气压缩因子的计算》GB/T 17747.1~3—1999被批准、发布。
《天然气压缩因子的计算》GB/T 17747.1~3—1999包括3个部分:《天然气压缩因子的计算第1部分:导论和指南》GB/T 17747.1—1999,《天然气压缩因子的计算第2部分:用摩尔组成进行计算》GB/T 17747.2—1999,《天然气压缩因子的计算第3部分:用物性值进行计算》GB/T 17747.3—1999。
c3h2f6 临界压缩因子

c3h2f6 临界压缩因子一、前言c3h2f6是一种有机化合物,也称为1,1,1,2,3,3-hexafluoropropane。
它是一种无色气体,具有低毒性和良好的电气性能。
在工业生产中,c3h2f6广泛用于替代CFCs和HCFCs等对臭氧层有害的氟利昂类物质。
在化学工程领域,研究c3h2f6的临界压缩因子是非常重要的。
本文将从以下几个方面来详细介绍c3h2f6的临界压缩因子。
二、什么是临界压缩因子临界压缩因子(reduced compressibility factor)是描述气体状态的一个重要参数。
它是实际气体体积与理论气体体积之比与理论等温线上相应点处的实际体积与理论体积之比之差,即:Z = PV/RT - 1其中,P为气体压力,V为气体容积,T为气体温度,R为普适气体常数。
当Z=1时,表示气体处于临界状态。
在这种状态下,液态和气态没有明显区别,并且密度达到了最大值。
因此,临界压缩因子是一个重要的状态参数,对于研究气体的物理性质和工程应用具有重要意义。
三、c3h2f6的物理性质1. 分子式:C3H2F62. 分子量:170.03 g/mol3. 熔点:-155℃4. 沸点:-16.4℃5. 密度:1.25 g/cm³(液态)6. 临界温度:91.9℃7. 临界压力:4.07 MPa根据以上物理性质,可以看出c3h2f6是一种易挥发的无色气体,具有较高的密度和较低的沸点。
同时,它的临界温度和临界压力也比较高,表明它在高温高压下仍然保持气态。
四、c3h2f6的临界压缩因子计算方法在计算c3h2f6的临界压缩因子时,需要先计算出其临界温度和临界压力。
根据Van der Waals方程:(P + a/V²)(V - b) = RT其中,a和b分别为Van der Waals常数。
将该方程化简为:P = RT/(V - b) - a/V²当P等于临界压力Pc,V等于临界体积Vc时,可以得到:Pc = a/(27b²)Vc = 3b将以上两个式子带入Van der Waals方程,可以得到:Zc = PcVc/RT其中,Zc为临界压缩因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然气压缩因子的计算
气田上大多数在高压下生产,为控制其流动需要安装节流阀。
当气流经过节流阀时,气体产生膨胀,其温度降低。
如果气体温度变得足够低,将形成水合物
(一种固体结晶状的冰雪物质)。
这就会导致管道和设备的堵塞。
【1】从而,在天
然气的集输过程当中,不管对天然气或天然气管道进行怎样的处理,都离不开气体的三个状态参数:压力P 、体积V、温度T。
而根据真实气体状态方程PV ZnRT =可知,在确定某个状态参数的时候需要先计算一个压缩因子Z。
如果能够更精确的确定压缩因子,从而确定气体的状态参数,对于研究天然气的收集、预处理和输送等问题具有重要意义。
下面简要介绍下压缩因子及其计算方法。
真实气体是实实在在的气体,它是为了区别于理想气体而引人的。
真实气体占有一定空间,分子之间存在作用力,因此真实气体性质与理想气体性质就有偏离。
压缩因子就是反映这种真实气体对理想气体的偏离程度大小。
在温度比临界温度高的多、压力很小时,偏离不太显著;反之偏离就很显著。
下面将介绍一种计算压缩因子的方法(Dranchuk-Purvis-Robinson 法)。
压缩因子的关系式如下:
563521437383
1()()()(1)exp()pr pr pr pr pr A A A A A Z A A T T T T A A A T =++++++++-52pr pr pr 222
pr
pr pr ρρρρρρ (1)
式中A 1到A 8都是常数,具体数据可到参考文献上查阅,ρ
pr 为无因次拟对比密
度,它和压缩因子满足关系式: 0.27pr
pr pr p ZT ρ= (2)
其中p pr 和T pr 分别为拟对比压力和拟对比温度。
由于式(2)为非线性方程,欲计算Z ,可采用牛顿迭代法(Newton-Raphson )。
在已知p pr 和T pr 的情况下,需经过迭代过程求解ρpr ,其公式如下:
(
)(
1)()'(
)()
()i pr i i pr pr i pr f f ρρρρ+=- (3)
迭代求得拟对比密度ρpr ,即可易求得压缩因子。
【2】
参考文献:
[1] 曾自强,张育芳.天然气集输工程.北京:石油工业出版社,2001.1
[2] 严铭卿,廉乐明.天然气输配工程.北京:中国建筑工业出版社,2005.32。