年高中数学-第三章空间向量与立体几何3.2.1直线的方向向量与直线的向量方程课件新人教B版选修2-1

合集下载

高二数学 3.2.1 直线的方向向量与直线的向量方程(二)

高二数学  3.2.1 直线的方向向量与直线的向量方程(二)

3.2.1 直线的方向向量与直线的向量方程(二) 1.用向量运算证明两条直线垂直或求两条直线所成的角设两条直线所成的角为θ,v1和v2分别是l1和l2的方向向量则l1⊥l2⇔________,cos θ=________________.2.求两直线所成的角应注意的问题:在已知的两条直线上(或同方向上)取两条直线的方向向量v1,v2,所以cos〈v1,v2〉=v1·v2|v1||v2|.但要注意,两直线的夹角与〈v1,v2〉并不完全相同,当〈v1,v2〉为钝角时,应取________作为两直线的夹角.探究点一两条直线垂直问题怎样利用向量证明两直线垂直?例1 已知正方体ABCD—A′B′C′D′中,点M、N分别是棱BB′与对角线CA′的中点.求证:MN⊥BB′;MN⊥A′C.跟踪1在棱长为a的正方体OABC—O1A1B1C1中,E、F分别是AB、BC上的动点,且AE =BF,求证:A1F⊥C1E.例2 已知三棱锥O—ABC(如图),OA=4,OB=5,OC=3,∠AOB=∠BOC=60°,∠COA =90°,M,N分别是棱OA,BC的中点.求直线MN与AC所成角的余弦值.跟踪2长方体ABCD—A1B1C1D1中,AB=4,BC=BB1=2,E,F分别是面A1B1C1D1与面B1BCC1的中心,求异面直线AF与BE所成角的余弦值.探究点三探索性问题例3已知正三棱柱ABC—A1B1C1的各棱长都为1,M为底面BC边的中点,N为侧棱CC1上的点.(1)当CNCC1为何值时,MN⊥AB1;(2)在棱A1C1上是否存在点D,使MD∥平面A1B1BA,若存在,求出D的位置;若不存在,说明理由跟踪3 如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .问当CD CC 1的值等于多少时,A 1C ⊥BD 且 A 1C ⊥BC 1?【达标检测】1. 若直线l 1、l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2),则 ( )A .l 1∥l 2B .l 1⊥l 2C .l 1、l 2相交但不垂直D .不能确定2.设l 1的方向向量a =(1,3,-2),l 2的方向向量b =(-4,3,m ),若l 1⊥l 2,则m 等于( )A .1B .52C .12D .33. 在正四面体ABCD 中,点E 为BC 中点, 点F 为AD 中点,则异面直线AE 与CF 所成角的余弦值为( )A. 13B. 12C. 23D. 634.如图所示,三棱柱OAB —O 1A 1B 1中,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3,求异面直线A 1B 与AO 1所成角的余弦值.【课堂小结】用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量.共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.2.1 直线的方向向量与直线的向量方程(二)一、基础过关1.若直线l 1的方向向量与l 2的方向向量的夹角是150°,则l 1与l 2这两条异面直线所成的角等于( )A .30°B .150°C .30°或150°D .以上均错 2.如图,在正方体ABCD —A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于 ( )A .ACB .BDC .A 1D D .A 1A3.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成角的大小为( )A .60°B .90°C .105°D .75°4.已知A (3,0,-1)、B (0,-2,-6)、C (2,4,-2),则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .以上都不对5.A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( ) A.3010 B.12 C.3015 D.1510 6.在△ABC 中,已知AB →=(2,4,0),BC →=(-1,3,0),则∠ABC =________.二、能力提升7.设ABCD 、ABEF 都是边长为1的正方形,F A ⊥平面ABCD ,则异面直线AC 与BF 所成的角为________.8.已知空间三点A (0,0,1),B (-1,1,1),C (1,2,-3),若直线AB 上一点M ,满足CM ⊥AB ,则点M 的坐标为________.9.已知两点A (1,-2,3),B (2,1,-1),则AB 连线与xOz 平面的交点坐标是____________.10.在正方体ABCD —A 1B 1C 1D 1中,M 是棱DD 1的中点,O 为正方形ABCD 的中心,证明OA 1⊥AM .11.如图所示,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,N是A1A的中点.(1)求BN的长;(2)求异面直线BA1与CB1所成角的余弦值.12.直四棱柱ABCD—A1B1C1D1中,底面ABCD是矩形,AB=2,AD=1,AA1=3,M是BC的中点.在DD1上是否存在一点N,使MN⊥DC1?并说明理由.三、探究与拓展13.已知△ABC,∠C=90°,SA⊥面ABC,且AC=2,BC=13,SB=29,求异面直线CS与AB所成角的余弦值.。

教学设计4:3.2.1 直线的方向向量与直线的向量方程

教学设计4:3.2.1 直线的方向向量与直线的向量方程

3.2.1直线的方向向量与直线的向量方程教学目标 1.知识与技能(1)会求空间直线的方向向量和向量参数方程;(2)会用向量方法证明直线与直线平行、直线与平面平行、平面与平面平行; (3)会用向量运算证明两条直线垂直或求两条直线所成的角. 2.过程与方法理解、体会用向量方法解决立体几何中的平行问题及两条直线所成角的问题的思想及过程. 3.情感、态度与价值观引导学生用联系与转化的观点看问题,体验在探索问题的过程中的受挫感和成功感,培养合作意识和创新精神,同时感受数学的形式美与简洁美,从而激发学习兴趣.教学重点:用向量方法判断有关直线和平面平行关系及用向量运算求两条直线所成的角. 教学难点:空间直角坐标系的正确建立,空间向量的运算及其坐标表示;用向量语言证明立体几何中有关平行关系的问题.知识点1用向量表示直线或点在直线上的位置 问题导思1.如图,直线l ∥m ,在直线l 上取两点A 、B ,在直线m 上取两点C 、D ,向量AB →与CD →有怎样的关系?【答案】 AB →∥CD →.2.给定一个定点A 和向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,当t 取遍全体实数时,P 点的轨迹是什么? 【答案】 一条直线. 1.直线的方向向量与直线平行或共线的非零向量,叫做此直线的方向向量. 2.空间直线的向量参数方程点A 为直线l 的定点,a 为直线l 的一个方向向量,点P 为直线l 上任一点,t 为一个任意实数.3.线段中点的向量表示式设点M 是线段AB 的中点,则OM →=12(OA →+OB →).知识点2:用向量方法证明直线与直线平行、直线与平面平行、平面与平面平行1.设直线l 1和l 2的方向向量分别为v 1和v 2,则由向量共线的条件,得l 1∥l 2(或l 1与l 2重合)⇔ v 1∥v 2 .2.①已知两个不共线向量v 1、v 2与平面α共面,一条直线l 的一个方向向量为v ,则由共面向量定理,可得l ∥α或l 在α内⇔存在两个实数x 、y ,使v =x v 1+y v 2.②如果A 、B 、C 三点不共线,则点M 在平面ABC 内的充要 条件是存在一对实数x 、y ,使向量表达式AM →=xAB →+yAC →成立.3.已知不共线的向量v 1和v 2与平面α共面,则由两平面平行的判定与性质,得α∥β或α与β重合⇔v 1∥β且v 2∥β .知识点3:用向量运算证明两条直线垂直或求两条直线所成的角 .设直线l 1和l 2的方向向量分别为v 1和v 2,则有l 1⊥l 2⇔v 1⊥v 2 ,cos θ=|cos 〈v 1,v 2〉| . 例题解析例1 已知点A (2,4,0),B (1,3,3),如图,以AB →的方向为正向,在直线AB 上建立一条数轴,P ,Q 为轴上的两点,且分别满足条件: (1)AP ∶PB =1∶2; (2)AQ ∶QB =-2. 求点P 和点Q 的坐标.解 (1)由已知,得PB →=2AP →, 即OB →-OP →=2(OP →-OA →), OP →=23OA →+13OB →.设点P 坐标为(x ,y ,z ),则上式换用坐标表示,得 (x ,y ,z )=23(2,4,0)+13(1,3,3),(2) 因为AQ ∶QB =-2,所以AQ →=-2QB →,OQ →-OA →=-2(OB →-OQ →), OQ →=-OA →+2OB →,设点Q 的坐标为(x ,y ,z ),则上式换用坐标表示, 得(x ,y ,z )=-(2,4,0)+2(1,3,3)=(0,2,6), 即x =0,y =2,z =6. 因此,Q 点的坐标是(0,2,6).例2 如图,已知正方体ABCD —A ′B ′C ′D ′,点M ,N 分别是面对角线A ′B 与面对角线A ′C ′的中点.求证:MN ∥侧面AD ′;MN ∥AD ′,并且MN =12AD ′.证明 设AB →=a ,AD →=b ,AA ′→=c , 则AM →=12(a +c ),AN →=c +12(a +b ),因此MN →=AN →-AM →=12(b +c ).因为M 不在平面AD ′内,所以MN ∥平面AD ′. 又因为b +c =AD ′→,所以MN →=12AD ′→,因此MN ∥AD ′,MN =12AD ′.例3 已知正方体ABCD —A ′B ′C ′D ′中,点M 、N 分别是棱BB ′与对角线CA ′的中点. 求证:MN ⊥BB ′;MN ⊥A ′C .证明 不妨设已知正方体的棱长为1,如图, 以A 为坐标原点O 建立空间直角坐标系.由已知, 得M ⎝⎛⎭⎫1,0,12,B (1,0,0),C (1,1,0), A ′(0,0,1),N ⎝⎛⎭⎫12,12,12,B ′(1,0,1),MN →=⎝⎛⎭⎫-12,12,0,A ′C →=(1,1,-1),BB ′→=(0,0,1), ∵MN →·A ′C →=⎝⎛⎭⎫-12,12,0·(1,1,-1)=0, MN →·BB ′→=⎝⎛⎭⎫-12,12,0·(0,0,1)=0. ∴MN ⊥A ′C ;MN ⊥BB ′.例4 已知三棱锥O —ABC (如图),OA =4,OB =5,OC =3,∠AOB =∠BOC =60°, ∠COA =90°,M ,N 分别是棱OA ,BC 的中点. 求直线MN 与AC 所成角(精确到0.1°).解 设OA →=a ,OB →=b ,OC →=c ,直线MN 与AC 所成的角为θ,则 MN →=ON →-OM →=12(b +c )-12a =12(b +c -a ),AC →=c -a .∴|MN →|2=14(b +c -a )2=14(|a |2+|b |2+|c |2+2b·c -2a·b -2a·c ) =14(42+52+32+15-20-0)=454, |AC →|2=(c -a )2=|a |2+|c |2-2a·c =42+32-02=25, MN →·AC →=12(b +c -a )·(c -a )=12(b·c +|c |2-a·b -2a·c +|a |2) =12⎝⎛⎭⎫152+9-10-0+16=454. cos θ=|cos 〈MN →,AC →〉| =|MN →·AC →|MN →||AC →||=454454×5=3510. ∴直线MN 与AC 所成角的余弦值为3510.课堂练习1.已知O 为坐标原点,四面体OABC 中,A (0,3,5)、B (1,2,0)、C (0,5,0),直线AD ∥BC ,并且AD 交坐标平面xOz 于点D ,求点D 的坐标. 解 ∵O 为坐标原点,∴O (0,0,0). ∵AD 交xOz 于D ,∴D (x,0,z ). ∵AD ∥BC ,∴AD →=λBC →, 即:(x ,-3,z -5)=λ(-1,3,0). ∴⎩⎪⎨⎪⎧x =-λ-3=3λz -5=0,即⎩⎪⎨⎪⎧x =1z =5.∴D 点坐标为(1,0,5).2.在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点.证明:P A ∥平面EDB .证明 建立如图所示的空间直角坐标系. 连接AC 交BD 于G ,连接EG .设DC =a , 依题意得A (a,0,0),P (0,0,a ),E (0,a 2,a2).∵底面ABCD 是正方形, ∴G 是此正方形的中心, 故点G 的坐标为(a 2,a2,0).∴P A →=(a,0,-a ),E G →=(a 2,0,-a 2).∴P A →=2EG →,∵A ∉EG ,∴P A ∥EG . 又∵EG ⊂平面EDB 且P A ⊄平面EDB , ∴P A ∥平面EDB .3.如图,在长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1,C 1D 1的中点, 且AA 1=2,AB =AD =1. (1)求证:EF ⊥A 1C ;(2)求直线A 1C 1与DF 所成角的余弦值.解 建立如图所示空间直角坐标系.∴A (1,0,0),D 1(0,0,2),C (0,1,0),A 1(1,0,2),F ⎝⎛⎭⎫0,12,2, E ⎝⎛⎭⎫12,1,2,C 1(0,1,2). (1)EF →=⎝⎛⎭⎫-12,-12,0,A 1C →=(-1,1,-2), ∴EF →·A 1C →=0. ∴EF ⊥A 1C .(2)A 1C 1→=(-1,1,0),DF →=⎝⎛⎭⎫0,12,2, ∴cos 〈A 1C 1→,DF →〉=122×4+14=3434, ∴异面直线A 1C 1与DF 所成角的余弦值为3434. 课堂小结1.利用向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)进行向量运算,研究点、直线、平面之间的关系(距离和夹角等); (3)根据运算结果的几何意义来解释相关问题.2.证明线面平行问题,可以转化为线线平行,利用向量共线来证明.3.证明两直线垂直,要根据具体的立体几何环境,合理选择已知向量来表示待求的向量,然后证明其数量积为零.。

高中数学空间向量与立体几何直线的方向向量与直线的向量方程

高中数学空间向量与立体几何直线的方向向量与直线的向量方程

典例导航(dǎoháng)
题型三:利用(lìyòng)向量证明线面平行
例3 如图所示,四棱锥(léngzhuī)P—ABCD中,AB⊥AD,CD⊥AD, PA⊥底面ABCD,PA=AD=CD=2AB=2,M为PC中点. 求证:BM∥平面PAD.
12/8/2021
第十七页,共二十六页。
3.如图变,式在训多练面体(xùnAliàBn)CDEF中,四边形ABCD是正方形,EF∥AB,EF⊥FB,AB
第九页,共二十六页。
自主(zìzhǔ)练习
3.已知直线(zhíxiàn)l1的一个方向向量为(-7,3,4), 直线l2的一个方向向量为(x,y,8),且l1∥l2, 则x=____-1_4___,y=_____6___.
12/8/2021
第十页,共二十六页。
典例导航(dǎoháng)
题型一:由方向(fāngxiàng)向量判断线线关系
P
O
12/8/2021
第三页,共二十六页。
走进教材(jiàocái)
2.直线(zhíxiàn)的方向向量
空间中任意一条直线l的位置可以由 l上一个定点A以及(yǐjí)一个定方向确定.
P
B
A
12/8/2021
第四页,共二十六页。
走进教材(jiàocái)
与平行 3.向量(xiàngliàng)
(1)设直线l1和l2的方向向量分别为v1和v2,则由向量共线的条件, 得l1∥l2(或l1与l2重合)⇔v1∥v2 . (2)①已知两个(liǎnɡ ɡè)不共线向量v1、v2与平面α共面,一条直线l的 一个方向向量为v,则由共面向量定理,可得l∥α或l在α内 ⇔存在两个实数x、y,使v=xv1+yv2.

高中数学第三章空间向量与立体几何3.2.1直线的方向向量与直线的向量方程b21b高二21数学

高中数学第三章空间向量与立体几何3.2.1直线的方向向量与直线的向量方程b21b高二21数学

D.不能确定
解析(jiě xī) ∵a·b=1×(-2)+2×3+(-2)×2=0, ∴a⊥b,∴l1⊥l2.
12/10/2021
123 45
第二十七页,共三十六页。
2.设l1的方向(fāngxiàng)向量a=(1,3,-2),l2的方向向量b=(-4,3,m),若l1⊥l2,则m等 于
A.1
√B.25
1.设直线l1和l2的方向向量分别为v1和v2,则由向量共线的条件,得l1∥l2或l1与l2重
合⇔
v. 1∥v2
2.已知两个不共线向量v1,v2与平面α共面,一条直线l的一个方向向量为v,则由共
面向量定理,可得
l∥α或l在α内⇔ 存在(cúnzài)两个实数x,y,使v=xv1+yv2 . 3.已知两个不共线向量v1,v2与平面α共面,则由两平面平行的判定与性质,得
共面定理. (2)利用直线的方向向量证明直线与直线平行、直线与平面平行时,要注意向量所在的
直线与所证直线或平面无公共点.
12/10/2021
第十七页,共三十六页。
跟踪训练2 在长方体ABCD—A1B1C1D1中,AB=3,AD=4,AA1=2.点M在棱BB1上, 且BM=2MB1,点S在DD1上,且SD1=2SD,点N,R分别为A1D1,BC的中点(zhōnɡ , diǎn) 求证:MN∥RS.
上面三个向量等式都叫做空间直线的
向量参.向数量(cānash称ù)方为程(chēnɡ wéi)该直线的方向向量.
2.线段 AB 的中点 M 的向量表达式O→M= 12(O→A+O→B) .
12/10/2021
第五页,共三十六页。
知识点二 用向量(xiàngliàng)方法证明直线与直线平行、直线与平面平行、平面与平 面平行

高中数学第三章空间向量与立体几何321直线的方向向量与直线的向量方程322平面的法向量与平面的向量表

高中数学第三章空间向量与立体几何321直线的方向向量与直线的向量方程322平面的法向量与平面的向量表

题型三
题型四
题型五
解:∵AD,AB,AS 是三条两两垂直的线段,∴以 A 为原点,以
, , 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系
如图所示,则 A(0,0,0),D(1,0,0),C(2,2,0),S(0,0,2).
∴ = (1,0,0)是平面SAB 的法向量.
(1)直线的方向向量.
给定一个定点A和一个向量a,再任给一个实数t,以A为起点
作 向量 = a ,这时点P的位置被t的值完全确定.当t在实数集R中
取遍所有值时,点P的轨迹是通过点A且平行于向量a的一条直线l,
向量a称为该直线的方向向量.
名师点拨一条直线有无数个方向向量.
知识梳理
(2)空间直线的向量参数方程.
设平面 SCD 的法向量为 n=(1,y,z),
则 n· = (1, , )·(1,2,0)=1+2y=0,
1
∴y=− .
2
又 n· = (1, , )·(-1,0,2)=-1+2z=0,
1
2
∴z= .
1 1
2 2
∴n= 1,- ,
即为平面SCD 的法向量.
典例透析
题型一
题型二
题型三
向量为(
)
A.(1,2,3)
B.(1,3,2)
C.(2,1,3)
D.(3,2,1)
答案:A
名师点拨若空间三点 P,A,B 满足 = + , 且m+n=1,
则 P,A,B 三点共线.
知识梳理
2.用向量方法证明直线与直线平行、直线与平面平行、平面与
平面平行
(1)直线与直线平行
设直线l1和l2的方向向量分别为v1和v2,则l1∥l2或l1与l2重合

数学选修2-1苏教版:第3章 空间向量与立体几何 3.2.1-3.2.2

数学选修2-1苏教版:第3章 空间向量与立体几何 3.2.1-3.2.2

§3.2 空间向量的应用3.2.1 直线的方向向量与平面的法向量 3.2.2 空间线面关系的判定(一)——平行关系学习目标 1.掌握空间点、线、面的向量表示.2.理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.3.能用向量法证明直线与直线、直线与平面、平面与平面的平行问题.知识点一 直线的方向向量与平面的法向量思考 怎样用向量来表示点、直线、平面在空间中的位置?答案 (1)点:在空间中,我们取一定点O 作为基点,那么空间中任意一点P 的位置就可以用向量OP →来表示.我们把向量OP →称为点P 的位置向量.(2)直线:①直线的方向向量:和这条直线平行或共线的非零向量.②对于直线l 上的任一点P ,在直线上取AB →=a ,则存在实数t ,使得AP →=tAB →.(3)平面:①空间中平面α的位置可以由α内两条相交直线来确定.对于平面α上的任一点P ,a ,b 是平面α内两个不共线向量,则存在有序实数对(x ,y ),使得OP →=x a +y b . ②空间中平面α的位置还可以用垂直于平面的直线的方向向量表示. 梳理 (1)用向量表示直线的位置:(2)用向量表示平面的位置:①通过平面α上的一个定点O和两个向量a和b来确定:②通过平面α上的一个定点A和法向量来确定:(3)直线的方向向量和平面的法向量:知识点二利用空间向量处理平行问题思考(1)设v1=(a1,b1,c1),v2=(a2,b2,c2)分别是直线l1,l2的方向向量.若直线l1∥l2,则向量v1,v2应满足什么关系.(2)若已知平面外一直线的方向向量和平面的法向量,则这两向量满足哪些条件可说明直线与平面平行?(3)用向量法处理空间中两平面平行的关键是什么?答案(1)由直线方向向量的定义知若直线l1∥l2,则直线l1,l2的方向向量共线,即l1∥l2⇔v1∥v2⇔v1=λv2(λ∈R).(2)可探究直线的方向向量与平面的法向量是否垂直,进而确定线面是否平行.(3)关键是找到两个平面的法向量,利用法向量平行来说明两平面平行.梳理(1)空间中平行关系的向量表示:的法向量分别为μ,v,则设直线l,m的方向向量分别为a,b,平面α,β(2)利用空间向量解决平行问题时,第一,建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;第二,通过向量的运算,研究平行问题;第三,把向量问题再转化成相应的立体几何问题,从而得出结论.1.若两条直线平行,则它们的方向向量方向相同或相反.(√)2.平面α的法向量是唯一的,即一个平面不可能存在两个不同的法向量.(×) 3.两直线的方向向量平行,则两直线平行.(×)4.直线的方向向量与平面的法向量的方向相同或相反时,直线与平面垂直.(√)类型一 求直线的方向向量、平面的法向量例1 如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.AB =AP =1,AD =3,试建立恰当的空间直角坐标系,求平面ACE 的一个法向量.解 因为P A ⊥平面ABCD ,底面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系A -xyz ,则D (0,3,0),E ⎝⎛⎭⎫0,32,12,B (1,0,0),C (1,3,0),于是AE →=⎝⎛⎭⎫0,32,12,AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎨⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3). 引申探究若本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量. 解 由例1解析图可知,P (0,0,1),C (1,3,0), 所以PC →=(1,3,-1), 即为直线PC 的一个方向向量. 设平面PCD 的法向量为 n =(x ,y ,z ).因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +3y -z =0,3y -z =0,所以⎩⎨⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的一个法向量为n =(0,1,3). 反思与感悟 利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两个不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1).(6)得结论:得到平面的一个法向量.跟踪训练1 如图所示,在四棱锥S -ABCD 中,底面是直角梯形,∠ABC =90°,SA ⊥底面ABCD ,且SA =AB =BC =1,AD =12,建立适当的空间直角坐标系,求平面SCD 与平面SBA的一个法向量.解 如图,以A 为坐标原点,以AD →,AB →,AS →分别为x ,y ,z 轴的正方向建立空间直角坐标系A -xyz ,则A (0,0,0),D ⎝⎛⎭⎫12,0,0, C (1,1,0),S (0,0,1), 则DC →=⎝⎛⎭⎫12,1,0, DS →=⎝⎛⎭⎫-12,0,1. 易知向量AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量. 设n =(x ,y ,z )为平面SDC 的法向量, 则⎩⎨⎧n ·DC →=12x +y =0,n ·DS →=-12x +z =0,即⎩⎨⎧y =-12x ,z =12x .取x =2,则y =-1,z =1,∴平面SDC 的一个法向量为(2,-1,1). 类型二 证明线线平行问题例2 已知直线l 1与l 2的方向向量分别是a =(2,3,-1),b =(-6,-9,3). 证明:l 1∥l 2.证明 ∵a =(2,3,-1),b =(-6,-9,3),∴a =-13b ,∴a ∥b ,即l 1∥l 2.反思与感悟 两直线的方向向量共线时,两直线平行;否则两直线相交或异面.跟踪训练2 已知在四面体ABCD 中,G ,H 分别是△ABC 和△ACD 的重心,则GH 与BD 的位置关系是________. 答案 平行解析 设E ,F 分别为BC 和CD 的中点,则GH →=GA →+AH →=23(EA →+AF →)=23EF →,所以GH ∥EF ,所以GH ∥BD .类型三 利用空间向量证明线面、面面平行问题例3 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .证明 (1)以D 为坐标原点,以DA →,DC →,DD 1—→的方向为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1—→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1). 设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA →,n 1⊥AE →,即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1—→·n 1=-2+2=0,所以FC 1—→⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)因为C 1B 1—→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量.由n 2⊥FC 1—→,n 2⊥C 1B 1—→,得⎩⎪⎨⎪⎧n 2·FC 1—→=2y 2+z 2=0,n 2·C 1B 1—→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .反思与感悟 利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.跟踪训练3 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1,问在棱PD 上是否存在一点E ,使CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,请说明理由.解 以A 为坐标原点.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,如图所示.∴P (0,0,1),C (1,1,0),D (0,2,0), 设存在满足题意的点E (0,y ,z ), 则PE →=(0,y ,z -1), PD →=(0,2,-1), ∵PE →∥PD →,∴y ×(-1)-2(z -1)=0,①∵AD →=(0,2,0)是平面P AB 的法向量, 又CE →=(-1,y -1,z ),CE ∥平面P AB , ∴CE →⊥AD →,∴(-1,y -1,z )·(0,2,0)=0.∴y =1,代入①得z =12,∴E 是PD 的中点,∴存在点E ,当点E 为PD 中点时,CE ∥平面P AB .1.若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(填序号)①(-1,0,1);②(1,4,7);③(2,4,6). 答案 ③解析 显然AB →=(2,4,6)可以作为直线l 的一个方向向量.2.已知a =(2,4,5),b =(3,x ,y )分别是直线l 1,l 2的方向向量.若l 1∥l 2,则x =________,y =________. 答案 6152解析 由l 1∥l 2得,23=4x =5y ,解得x =6,y =152.3.已知向量n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是________.(填序号)①n 1=(0,-3,1);②n 2=(-2,0,4); ③n 3=(-2,-3,1);④n 4=(-2,3,-1). 答案 ④解析 由题可知只有④可以作为α的法向量.4.已知向量n =(-1,3,1)为平面α的法向量,点M (0,1,1)为平面内一定点.P (x ,y ,z )为平面内任一点,则x ,y ,z 满足的关系式是________. 答案 x -3y -z +4=0解析 由题可知MP →=(x ,y -1,z -1). 又因为n ·MP →=0,故-x +3(y -1)+(z -1)=0,化简, 得x -3y -z +4=0.5.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,则m 为________. 答案 -8解析 ∵l ∥α,平面α的法向量为⎝⎛⎭⎫1,12,2, ∴(2,m,1)·⎝⎛⎭⎫1,12,2=0, ∴2+12m +2=0,∴m =-8.1.应用向量法证明线面平行问题的方法: (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任意两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法:设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).一、填空题1.已知l 1的方向向量为v 1=(1,2,3),l 2的方向向量为v 2=(λ,4,6),若l 1∥l 2,则λ=________. 答案 2解析 ∵l 1∥l 2,∴v 1∥v 2,则1λ=24,∴λ=2.2.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则μ的值为________. 答案 12解析 因为a ∥b ,故2μ-1=0,即μ=12.3.直线l 的方向向量s =(-1,1,1),平面α的一个法向量为n =(2,x 2+x ,-x ),若直线l ∥α,则x 的值为________. 答案 ±2解析 易知-1×2+1×(x 2+x )+1×(-x )=0, 解得x =±2.4.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k 的值为________. 答案 4解析 因为α∥β,所以平面α与平面β的法向量共线, 所以(-2,-4,k )=λ(1,2,-2), 所以⎩⎪⎨⎪⎧-2=λ,-4=2λ,k =-2λ,解得⎩⎪⎨⎪⎧λ=-2,k =4.所以k 的值是4.5.已知平面α内两向量a =(1,1,1),b =(0,2,-1)且c =m a +n b +(4,-4,1).若c 为平面α的法向量,则m ,n 的值分别为________. 答案 -1,2解析 c =m a +n b +(4,-4,1)=(m ,m ,m )+(0,2n ,-n )+(4,-4,1)=(m +4,m +2n -4,m -n +1),由c 为平面α的法向量,得⎩⎪⎨⎪⎧ c ·a =0,c ·b =0,得⎩⎪⎨⎪⎧m =-1,n =2.6.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x 的值为________. 答案 11解析 ∵点P 在平面ABC 内, ∴存在实数k 1,k 2, 使AP →=k 1AB →+k 2AC →,即(x -4,-2,0)=k 1(-2,2,-2)+k 2(-1,6,-8),∴⎩⎪⎨⎪⎧ 2k 1+6k 2=-2,k 1+4k 2=0,解得⎩⎪⎨⎪⎧k 1=-4,k 2=1.∴x -4=-2k 1-k 2=8-1=7, 即x =11.7.已知l ∥α,且l 的方向向量为m =(2,-8,1),平面α的法向量为n =(1,y,2),则y =________.答案 12解析 ∵l ∥α,∴l 的方向向量m =(2,-8,1)与平面α的法向量n =(1,y,2)垂直,∴2×1-8×y +2=0,∴y =12. 8.若平面α的一个法向量为u 1=(-3,y,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.答案 -3解析 ∵α∥β,∴u 1∥u 2,∴-36=y -2=2z. ∴y =1,z =-4.∴y +z =-3.9.已知平面α与平面β平行,若平面α与平面β的法向量分别为μ=(5,25,5),v =(t,5,1),则t 的值为________.答案 1解析 ∵平面α与平面β平行,∴平面α的法向量μ与平面β的法向量v 平行,∴5t =255=51,解得t =1. 10.已知平面α内的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量为n =(-1,-1,-1),且β与α不重合,则β与α的位置关系是________.答案 α∥β解析 AB →=(0,1,-1),AC →=(1,0,-1),n ·AB →=(-1,-1,-1)·(0,1,-1)=-1×0+(-1)×1+(-1)×(-1)=0,n ·AC →=(-1,-1,-1)·(1,0,-1)=-1×1+0+(-1)·(-1)=0,∴n ⊥AB →,n ⊥AC →.∴n 也为α的一个法向量.又α与β不重合,∴α∥β.11.若平面α的一个法向量为u 1=(m,2,-4),平面β的一个法向量为u 2=(6,-4,n ),且α∥β,则m +n =________.答案 5解析 ∵α∥β,∴u 1∥u 2.∴m 6=2-4=-4n∴m =-3,n =8.∴m +n =5.二、解答题12.如图,在正方体ABCD -A 1B 1C 1D 1中,求证:AC 1—→是平面B 1D 1C 的法向量.证明 如图,以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D 1(0,0,1),A (1,0,0),C (0,1,0),B 1(1,1,1),C 1(0,1,1).所以AC 1—→=(-1,1,1),D 1B 1—→=(1,1,0),CB 1—→=(1,0,1),所以AC 1—→·D 1B 1—→=(-1,1,1)·(1,1,0)=0,AC 1—→·CB 1—→=(-1,1,1)·(1,0,1)=0,所以AC 1—→⊥D 1B 1—→,AC 1—→⊥CB 1→,又B 1D 1∩CB 1=B 1,且B 1D 1,CB 1⊂平面B 1D 1C ,所以AC 1⊥平面B 1D 1C ,AC 1—→是平面B 1D 1C 的法向量.13.已知A ⎝⎛⎭⎫0,2,198,B ⎝⎛⎭⎫1,-1,58,C ⎝⎛⎭⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),求x ∶y ∶z 的值.解 AB →=⎝⎛⎭⎫1,-3,-74,AC →=⎝⎛⎭⎫-2,-1,-74, 由⎩⎪⎨⎪⎧ a ·AB →=0,a ·AC →=0,得⎩⎨⎧ x -3y -74z =0,-2x -y -74z =0, 解得⎩⎨⎧x =23y ,z =-43y , 则x ∶y ∶z =23y ∶y ∶⎝⎛⎭⎫-43y =2∶3∶(-4). 三、探究与拓展14.已知O ,A ,B ,C ,D ,E ,F ,G ,H 为空间的9个点(如图所示),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面;(2)AC →∥EG →.证明 (1)由AC →=AD →+mAB →,EG →=EH →+mEF →,知A ,B ,C ,D 四点共面,E ,F ,G ,H 四点共面.(2)∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →)=k (OD →-OA →)+km (OB →-OA →)=kAD →+kmAB →=k (AD →+mAB →)=kAC →,∴AC →∥EG →.15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面P AO?解 如图所示,以点D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,在CC 1上任取一点Q ,连结BQ ,D 1Q .设正方体的棱长为1,则O ⎝⎛⎭⎫12,12,0,P ⎝⎛⎭⎫0,0,12, A (1,0,0),B (1,1,0),D 1(0,0,1),则Q (0,1,z ),则OP →=⎝⎛⎭⎫-12,-12,12, BD 1→=(-1,-1,1),∴OP →∥BD 1—→,∴OP ∥BD 1.AP →=⎝⎛⎭⎫-1,0,12,BQ →=(-1,0,z ), 当z =12时,AP →=BQ →, 即当AP ∥BQ 时,有平面P AO ∥平面D 1BQ , ∴当Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .。

2019_2020学年高中数学第三章空间向量与立体几何3.2.1直线的方向向量与直线的向量方程课件新人教B版选修2_1


提示:(1)×.两直线可能重合. (2)√.直线的斜率为-1. (3)×.一条直线的单位方向向量有2个,它们是相反向 量.
2.若A(1,0,-1),B(2,1,2)在直线l上,则直线l的一个方
向向量是 ( )
A.(2,2,6)
B.(-1,1,3)
C.(3,1,1)
D.(-3,0,1)
【解析】选A.因为 AuuB=ur (2,1,2)-(1,0,-1)=(1,1,3), 直线l的方向向量应平行于 AuuB.ur
3.2 空间向量在立体几何中的应用 3.2.1
直线的方向向量与直线的向量方程
【自我预习】 1.直线的方向向量:与直线_平__行__或__者__共__线__的非零向量, 叫做此直线的方向向量.
2.空间直线的向量参数方程:点A为直线l上的定点,a为
直线l的一个方向向量,点P为直线l上任一点,t为一个任
3.直线l1,l2的方向向量分别为v1=(3,0,1,),v2=(-1,
0,m),若l1∥l2,则m等于 ( )
A.1
B.3
C. 1
D.- 1
3
3
【解析】选D.因为l1∥l2,所以
3 1
1 m
,
所以m=-
1 3
.
4.若 AuuBur
uuur aCD
bCuuEur (a,b为实数),则直线AB与平面CDE的
位置关系为
.
【解析】因为
uuur AB
uuur aCD
uuur bCE,
所以
uuur uuur uuur AB与CD,CE
共面,所
以AB∥平面CDE或AB⊂平面CDE.
答案:AB∥平面CDE或AB⊂平面CDE

3.2.1直线的方向向量与直线的向量方程【公开课】


谢谢!
x
A
例1
(2)因为AQ : QB 2, 所以 AQ 2QB, OQ OA 2(OB OQ), OQ OA 2OB,
l z Q B P
O
x
A
y
设点Q的坐标为( x, y, z ),则上式换用坐标表示, 得 ( x, y, z ) 2(2,4,0) 2(1,3,3) (0,2,6) 即x 0, y 2, z 6 因此, 点Q的坐标是(0,2,6).
证明:因为x y 1, 所以y 1 x
即MA x MB ห้องสมุดไป่ตู้ (1 x) MC x( MB MC ) MC MA MC x( MB MC ) 即CA xCB 所以A, B, C三点共线
跟踪练习2
OA 2OB 3OC, 则A, B, C三点是否共线?
点,这就是线段AB中点的向量表达式. ⑵ ③中
OP 、 OA 、 OB有共同的起点.
⑶ ③中OA 、 OB的系数之和为1.
• 思考探究: • 观察到空间直线向量参数方程中的系数满 足(1-t)+t= 1, 这与点A , P , B三点共 线有关系吗? • (1)若令t=0或1, 则点P在直线AB的什 么位置? • (2)若令t=或2, 则点P在直线AB的什么 位置? • (3)若令t=或3, 则点P在直线AB的什么 位置? • (4)若令t=-1, 则点P在直线AB的什 么位置?
3.2 空间向量在立体几 何中的应用
已知向量a,在空间固定一个基
点,再作向量 OA a ,则点A在空间 的位置就被向量a所惟一确定了,这
时,我们称这个向量为位置向量。
3.2.1直线的方向向量与直线的向量方程

3.2.1 直线的方向向量与直线的向量方程

3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程学习 目 标核 心 素 养1.理解直线的方向向量,了解直线的向量方程.(重点)2.会用向量方法证明线线、线面、面面平行.(难点、易混点)3.会用向量证明两条直线垂直,求两条直线所成的角.(难点)1.通过学习直线的方向向量及方向方程等概念,培养学生的数学抽象素养.2.利用向量法证明两直线垂直,求两直线所成的角,提升学生的逻辑推理素养.1.用向量表示直线或点在直线上的位置(1)在直线l 上给定一个定点A 和它的一个方向向量a ,对于直线l 上的任意一点P ,则有AP →=ta 或OP →= 或OP →= AB →=a ),上面三个向量等式都叫做空间直线的 .向量a 称为该直线的方向向量.(2)线段AB 的中点M 的向量表达式OM →=12.2.用向量方法证明直线与直线平行、直线与平面平行、平面与平面平行 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则由向量共线的条件,得l 1∥l 2或l 1与l 2重合⇔ .(2)已知两个不共线向量v 1,v 2与平面α共面,一条直线l 的一个方向向量为v ,则由共面向量定理,可得l ∥α或l 在α内⇔存在两个实数x ,y ,使v = .(3)已知两个不共线向量v 1,v 2与平面α共面,则由两平面平行的判定与性质,得α∥β或α与β重合⇔ .3.用向量运算证明两条直线垂直或求两条直线所成的角设两条直线所成的角为θ,v 1和v 2分别是l 1和l 2的方向向量,则l 1⊥l 2⇔2,cos θ=||.1.直线l 1,l 2的方向向量分别为v 1=(3,0,1),v 2=(-1,0,m ),若l 1∥l 2,则m 等于( )A .1B .3 C.13D .-132.若A (1,0,-1),B (2,1,2)在直线l 上,则直线l 的一个方向向量是( ) A .(2,2,6) B .(1,1,3) C .(3,l,1)D .(-3,0,1)3.直线l 1与l 2不重合,直线l 1的方向向量为v 1=(-1,1,2),直线l 2的方向向量v 2=(2,0,1),则直线l 1与l 2的位置关系是________.空间中点的位置确定C (0,3,5).(1)若OP →=12(AB →-AC →),求P 点的坐标;(2)若P 是线段AB 上的一点,且AP ∶PB =1∶2,求P 点的坐标.[思路探究] (1)由条件先求出AB →,AC →的坐标,再利用向量的运算求P 点的坐标.(2)先把条件AP ∶PB =1∶2转化为向量关系,再运算. [解] (1)AB →=(-1,1,5),AC →=(-3,-1,5). OP →=12(AB →-AC →)=12(2,2,0)=(1,1,0).∴P 点的坐标为(1,1,0).(2)由P 是线段AB 上的一点,且AP ∶PB =1∶2,知AP →=12PB →.设点P 的坐标为(x ,y ,z ),则AP →=(x -3,y -4,z ),PB →=(2-x,5-y,5-z ), 故(x -3,y -4,z )=12(2-x,5-y,5-z ),即⎩⎪⎨⎪⎧ x -3=12(2-x )y -4=12(5-y ),z =12(5-z )得⎩⎪⎨⎪⎧x =83y =133.z =53因此P 点的坐标为⎝ ⎛⎭⎪⎫83,133,53.此类问题常转化为向量的共线、向量的相等解决,设出要求点的坐标,利用已知条件得关于要求点坐标的方程或方程组求解即可.1.已知点A (2,4,0),B (1,3,3),如图,以AB →的方向为正向,在直线AB 上建立一条数轴,P ,Q 为轴上的两点,且分别满足条件:(1)AP ∶PB =1∶2; (2)AQ ∶QB =2∶1. 求点P 和点Q 的坐标.利用向量法求异面直线的夹角【例2】(1)直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.110 B.25 C.3010 D.22(2)如图所示,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点,设异面直线EM与AF所成的角为θ,则cos θ的最大值为________.[思路探究](1)建立空间直角坐标系,表示出BM→,AN→的坐标,利用向量法求解;(2)以A为原点,建立空间直角坐标系,设出正方形的边长,表示出向量AF→,EM→的坐标,建立函数关系式讨论最值.(1)C(2)25[(1)以C1为坐标原点,建立如图所示的空间直角坐标系,设BC=CA=CC1=2,则A(2,0,2),N(1,0,0),M(1,1,0),B(0,2,2),∴AN→=(-1,0,-2),BM→=(1,-1,-2),∴cos〈AN→,BM→〉=AN→·BM→|AN→||BM→|=-1+45×6=330=3010.(2)以AB,AD,AQ所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系Axyz,设正方形边长为2,M(0,y,2)(0≤y≤2),则A(0,0,0),E(1,0,0),F (2,1,0),∴EM →=(-1,y,2),|EM →|=y 2+5,AF →=(2,1,0),|AF →|=5,∴cos θ=|EM →·AF →||EM →||AF →|=|y -2|5·y 2+5=2-y 5·y 2+5.令t =2-y ,要使cos θ最大,显然0<t ≤2. ∴cos θ=15×t 9-4t +t 2=15×1⎝ ⎛⎭⎪⎫3t -232+59≤15×1⎝ ⎛⎭⎪⎫32-232+59=15×25=25. 当且仅当t =2,即点M 与点Q 重合时,cos θ取得最大值25.]利用向量求异面直线所成角的步骤 (1)确定空间两条直线的方向向量; (2)求两个向量夹角的余弦值;(3)确定线线角与向量夹角的关系:当向量夹角为锐角时,即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向量夹角的补角.提醒:两异面直线夹角范围为⎝ ⎛⎦⎥⎤0,π2,时刻注意两异面直线夹角的范围是解题的关键.2.如图所示,已知正四棱锥P -ABCD 底面边长为a ,高PO 的长也为a ,E ,F 分别是PD ,PA 的中点,求异面直线AE 与BF 所成角的余弦值.利用空间向量处理平行问题1.直线的方向向量在确定直线时起到什么作用? [提示] (1)非零性:直线的方向向量是非零向量.(2)不唯一性:直线l 的方向向量有无数多个,可以分为方向相同和相反两类,它们都是共线向量.(3)给定空间中的任一点A 和非零向量a ,就可以确定唯一一条过点A 且平行于向量a 的直线.2.两条平行直线的方向向量有什么关系?[提示] 设直线l ,m 的方向向量分别为a ,b ,则l ∥m ⇔a ∥b ⇔a =λb . 【例3】 (1)已知直线l ∥平面ABC ,且l 的一个方向向量为a =(2,m,1),A (0,0,1),B (1,0,0),C (0,1,0),则实数m 的值是________.(2)如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证:FC 1∥平面ADE .(1)-3 [AB →=(1,0,-1),AC →=(0,1,-1).因为l ∥平面ABC ,所以存在实数λ,μ,使a =λAB →+μAC →, 即(2,m,1)=λ(1,0,-1)+μ(0,1,-1). ∴⎩⎪⎨⎪⎧λ=2,m =μ,-λ-μ=1,解得m =-3.](2)[证明] 如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1).所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1), 因为DA ⊂平面ADE , AE ⊂平面ADE ,且(0,2,1)=0×(2,0,0)+1×(0,2,1), 即FC 1→=0×DA →+1×AE →,所以有FC 1⊂平面ADE 或FC 1∥平面ADE , 又因为FC 1⊄平面ADE , 所以FC 1∥平面ADE .1.(改变问法)本例3中若G ,H 分别为AD ,B 1C 1的中点.试求证EG ∥FH . 2.(改变问法)本例3条件不变,改为求平面ADE ∥平面B 1C 1F .(1)证两条直线平行可转化为证明两直线的方向向量平行.(2)用向量法证明线面平行:一是证明直线的方向向量与平面内的某一向量是共线向量且直线不在平面内;二是证明直线的方向向量与平面内的两个不共线向量是共面向量且直线不在平面内.(3)利用向量证明面面平行,可转化为证明线面平行.提醒:利用直线的方向向量证明直线与直线平行、直线与平面平行时,要注意向量所在的直线与所证直线或平面无公共点.1.思考辨析(1)直线l 的方向向量是唯一的.( )(2)若两条直线平行,则它们的方向向量的方向相同或相反.( ) (3)若向量a 是直线l 的一个方向向量,则向量ka 也是直线l 的一个方向向量.( )2.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为 ( ) A .(1,2,3) B .(1,3,2) C .(2,1,3)D .(3,2,1) 3.若异面直线l 1,l 2的方向向量分别是a =(0,-2,-1),b =(2,0,4),则异面直线l 1与l 2的夹角的余弦值等于( )A .-25B.25 C .-255D.2554.若AB →=aCD →+bCE →(a ,b 为实数),则直线AB 与平面CDE 的位置关系为________.。

3.2.1直线的方向向量与直线向量方程


能力训练
2.已知两点 A , 点 Q 在 OP (, 1 2, 3 ),( B 2, 1, 2 ),(, P 1 1, 2 ) 上运动,求当 QA QB 取得最小值时,点 Q 的坐标.
解:设 OQ OP ( ) ∴ QA QB 6 16 , ∴当 时, QA QB 取得最小值, 4 4 8 此时 Q( , , ) 3 3 3
O
x
设点P坐标为(x, y,z),则上式换用坐标表示 ,得 2 1 y A (x, y,z) (2,4,0) (1,3,3), 3 3
5 11 所以, x ,y , z 1 3 3 5 11 因此, 点P的坐标是 ( , ,1 ) 3 3
2 1 OP OA OB. 3 3
例1
3.2.1直线的方向向量与直线的向量方程
基础知识
2.直线的向量方程:
定点A,向量
a ,t R, P , a //
则: AP ta
为直线 的参数方 程,其中t为参数 称为直线的方向向量
a
A
O
P
a
OP OA ta, t R
基础知识
2.直线的向量方程:
P
① AP ta, t R ② OP OA ta, t R
5.A,B,C,三点不共线,四点A,B,C,M 共面的充要条件是:
AM xAB y AC,( x, y R)
图示:
M
C A B

基础知识
6.用向量方法证明平面与平面平行:
两个不共线向量 v1 , v2 与平面 共面
// 或与 重合 v1 // 且v2 //
v1
(2)因为AQ : QB 2, 所以 AQ 2QB,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EF
( 1 ,1 22
1 2
),B1C
(1, 0,
1).EF

B1C
0.
EF B1C
(2)C1
(0,1,1),G
(0,3 4
,0)
C1G
(0,
1 4
,1)
于是EF
•C1G
0
1 2
1 2
1 4
1 2
1
3 8
而 EF 3 2
C1G
17 4
cos EF,C1G
EF •C1G EF C1G
51 17
一、复习回顾
1.向量的有关知识:
a(a1,ห้องสมุดไป่ตู้2,a3)
b (b1,b2,b3)
(1)两向量数量积的定义:
ab|a||b|cosa,ba1b1a2b2a3b3
(2)两向量夹角公式:
cosa,b ab
a1b1a2b2a3b3
| a||b| a12a22a32 b12b22b32
2.什么是直线的方向向量?
直线的方向用一个与该直线平行的非零向量来表示, 该向量称为这条直线的一个方向向量。
3、什么是异面直线及其夹角?夹角范 围呢?
不同在任何平面的直线叫做异面直线
已知两条异面直线a,b,经过空间任一点O 作直线m//a,n//b;我们把m与n所成的锐角 (或直角)叫做异面直线a与b所成的角。
异面直线所成角的范围:
1 2
1
A
AC1 和 CB1 所成的角为 3
xA
x
其他建系方法?
CC1 1 BB1
1
C
C
D
D
BB y y
例2 已知三棱锥O-ABC(如图),OA=4,OB=5,OC=3, ∠AOB=∠BOC=60°,∠COA=90°,M,N分别是棱OA,BC的 中点,求异面直线MN与AC所成角的余弦。
已知三棱锥O-ABC(如图),OA=4,OB=5,OC=3,∠AOB=∠BOC=60°, ∠COA=90°,M,N分别是棱OA,BC的中点,求异面直线MN与AC所 成角的余弦。
解:设 OA a,OB b,OC c ,直线MN与AC所成角为θ,则
MN ON OM 1 (b c) 1 a 1 (b c a)
2
22
O
AC c a
M
| MN |2 MN • MN 1 (b c a)2 4
1 4
(|
a
|2
|
b
|2
|
c
|2
2b

c
2a

b
2a
•A c )
l 1 l 2 1 2 1 • 2 0 l1
设两条直线所成角为θ,则
1
c o s |c o s1 ,2 |
1 2
l1 l2
2 l2
三、典例分析
例 1 在棱长为 1 的正方体中 ABCD A1B1C1D1中,E、F 分别为 DD1、BD 的中点,G 在
CD 上,且 CG=CD/4,H 为 C1G 的中点,
即EF与C1G所成角的余弦值为
51 . 17
z
D1
A1 E
C1 B1
H
D
G
C y
F
A
B
x
方法感悟
坐标法求异面直线所成的角步骤:
1.利用图形中的垂直关系建立空间直角坐标系 2.准确的标出各相关点坐标,并求出各向量的坐标 3.利用向量的数量积公式求出异面直线成角 备注:此法相对简单,关键是建系、找点;务必充
0,
2
C
D
A
D1
B
二、探究新知
小组讨论?
设两异面直线 l1、l2 的方向向量分别为 v1 和 v 2 ,
v2
问题
1:若这两条直线互相垂直,
v1

v
2
O
有怎样的关系?
问题 2: 当 v1 与 v 2 的夹角不大于 90°时,异面直线 l1、l2 所成 v1
的角 与 v1 和 v2 的夹角的关系?
1 (42 52 32 15 20 0) 45
4
4
C N B
| AC |2 AC • AC (c a)2 | a |2 | c |2 2a • c)
(42 32 0) 25
向量解法
O M
C
A
N
B
方法感悟
向量法求异面直线所成的角步骤:
1.用基底来表示两条异面直线上的向量 2.找出这些基底的长度及相互之间的夹角 3.利用向量数量积公式求出夹角 注意:异面直线所成的角与向量的夹角不同
四、课堂检测
1、在棱长为 2 的正方体 ABCD A1B1C1D1 中,O 是底面 ABCD的中心,E, F 分别 CC1, AD 的中点,那么异面直线OE
和 FD1所成角的余弦值等于( B )
参考图形
A、 10
B、 15
C、 4
D、 2
5
5
5
3
2.在正三棱柱 A1B1C1-ABC 中,若 AB= 2BB1,则 AB1 与C1B 所成的角的大小为(B )
31
31
A(0,0,0), C1 (
2
a, a, 2
2a), C( 2 a, 2 a,0), B1 (0, a,
2a)
AC1 (
3 a, 1 a, 22
2a) , CB1
(
3 a, 1 a, 22
2a) AZ1
A
即 cos
AC1, CB1
AC1 CB1 | AC1 || CB1 |
3 a2 2 3a 2
大家好
1
3.2.1直线的方向向量与 直线的向量方程
用向量证明两条直线垂直和求两直线夹角
利用平面向量证明垂直关系
教学目标
• 1.掌握利用向量法证明两条直 线垂直和求两条异面直线所成 角的重要方法;
• 2.通过本节课的学习,体会向 量法在处理立体几何问题中的 重要作用;
• 3.提高分析与推理能力和空间 想象能力.
z
D1
⑴求证:EF⊥B1C;⑵求 EF 与 C1G 所成角的余 A1
E
C1 B1
H
弦值
D
G
C y
F
A
B
(1) 以 D 点为坐标原点,分别以 DA,DCx ,DD1 所在 直线为 X,Y,Z 轴建立空间直角坐标系,则 E(0,0,
1 2
),F(
1 2
,
1 2
,0),B1(1 , 1 , 1),C(0 , 1 , 0). 所 以
分利用题设中的垂直条件(线面垂直、面面垂直) 和准确理解图形。
跟踪练习 如图,正三棱柱 ABC A1B1C1 的底面边长为
a ,侧棱长为 2a ,求 AC1 和 CB1 所成的角.
A1 Z A
1
A A
x
C1
C
1
B1
B
C
C
D
D
1
BB y
解:如图,以 A 点为坐标原点,过点 A 做面 AB1 的垂线,分 别以该垂线,AB,AA1 为 x 轴、y 轴、z 轴建立空间直角坐标 系,则
v1,v2
问题 3: v1 与 v 2 的夹角大于 90°时,异面直线 l1、l2 所成的角
与 v1 和 v2 的夹角的关系?
-v1,v2
v1
v2
O
我们用向量的方法也可以求空间两条直线的夹角和证明空 间两条直线垂直(当夹角为90°时)
设直线 l 1 和 l 2 的方向向量分别为 1 和 2 ,则
相关文档
最新文档