计算简单梁在集中荷载作用下的支座反力
简支梁支座反力计算公式

简支梁支座反力计算公式在我们的力学世界里,简支梁支座反力计算公式可是个相当重要的家伙!想象一下,有一根长长的梁,就像一座简单的小桥,它两端被支撑着,这两端的支撑力可有着自己的计算规律,这规律就是简支梁支座反力计算公式。
先来说说简支梁到底是个啥。
简单来讲,简支梁就是两端可以转动,但不能移动的梁。
这就好比你把一根木棒放在两个石头上,木棒可以在石头上稍微转动,但不会沿着木棒的方向滑动。
那支座反力又是什么呢?比如说,你站在地上,地面对你的脚就有一个向上的支持力,这个力就是反力。
对于简支梁来说,支座反力就是梁两端的支撑给梁的力。
简支梁支座反力的计算公式是这样的:如果梁上作用着均布荷载q ,梁的长度为 L ,那么支座 A 的反力 RA = 0.5qL ,支座 B 的反力 RB = 0.5qL 。
要是梁上还有一个集中力 P 作用在距离支座 A 为 x 的地方,那支座 A 的反力 RA = 0.5qL - P(1 - x/L) ,支座 B 的反力 RB = 0.5qL +P(x/L) 。
我给您讲个我曾经在课堂上的事儿吧。
有一次,我给学生们讲这个简支梁支座反力计算公式,有个学生特别迷糊,怎么都搞不明白。
我就拿出了一个小木板,模拟成简支梁,又找了几个砝码当作荷载,给他实际演示了一下。
我一边演示,一边给他解释公式里每个部分的含义。
嘿,您猜怎么着?这孩子一下子就开窍了,那兴奋的小眼神,让我觉得自己的努力特别值!在实际工程中,这个公式可太有用啦。
比如说建桥的时候,工程师们得算清楚桥梁两端的支座反力,才能确保桥能稳稳地立在那里,让车辆和行人安全通过。
如果算错了,那后果可不堪设想。
咱们再回到公式上来,要想熟练运用这个公式,得多做几道练习题才行。
可别一看到题就头疼,把它当成一个小挑战,每次做对一道题,就给自己点个小赞。
总之,简支梁支座反力计算公式虽然看起来有点复杂,但只要咱们耐心琢磨,多练习,多结合实际情况去理解,就一定能把它拿下!就像我们解决生活中的其他难题一样,只要用心,没有什么是做不到的。
《5月、6月技术答疑手册》解答

midas Civil 2011技术答疑手册1、问题:边界激活选择“变形前”与“变形后”的区别:我们在施工阶段定义时,针对边界,具体在什么情况下选择“变形前”,什么情况下选择“变形后”。
解释:1、“变形前”与“变形后”仅仅针对边界条件中的“一般支撑”起作用,对其他的边界类型不起作用。
2、在某一个施工阶段激活边界组时,所施加边界的节点在上一个阶段可能已经发生位移;a、如果把边界加在结构变形前(原建模时)的节点上,程序内部会在该节点施加强制位移,使其上一个施工阶段发生的变形强制恢复到建模时的节点位置,此时的边界存在反力,而变形变为0。
这是以“变形前”的方式激活的边界;b、如果把边界加在结构变形后(非原建模时)的节点位置上,即已经发生一定位移的节点上施加边界,此时的边界是没有反力的,发生的变形也是上一个施工阶段下的变形。
这是以“变形后”的方式激活的边界。
c、但是,如果加边界的节点在上一个施工阶段没有发生位移,则选择“变形前”和“变形后”对结果是没有影响的。
模型测试,在上个施工阶段已经发生变形的悬臂梁自由端加边界,分别选择变形前和变形后的对比如下:选择“变形前”:有反力位移强制变为0选择“变形后”:反力为0位移为上一个施工阶段的位移建议:我们在工程应用中,对于顶推施工,我们必须采用“变形前”来模拟已经发生变形的悬臂端的边界。
2、问题:对于带有横坡的截面,在查看应力时为什么组合应力值≠Sax+Sby+Sbz(轴力+弯矩)?引出:我们经常会收到用户提出这样的疑问:就是组合应力值与所查看的弯矩和轴力作用的应力之和对应不上,这是怎么回事?其实这个问题的关键是1、弄清楚组合应力以及弯矩和轴力下的应力分别输出的是哪部分;2、查看梁截面是否有横坡。
我们先看看测试的模型,分别是不带横坡的简支梁桥和带横坡的简支梁桥,在自重作用下,查看组合应力以及弯矩和轴力下的应力情况。
我们先推测:在结构自重作用下的简支梁桥,Sax=0;Sby=0;组合应力=Sax+Sby+Sbz,组合应力=Sbz。
简支梁力学ppt课件

解法二:1)、取梁整体研究,作受力图 2)、由对称得
RA=R图示梁的支座反力
解:1)、 取整体研究, 作受力图
A 20KN
2m
1m
XA
mA
20KN
2m
1m
YA
13
2)、列平衡方程,求解
∑ Y= 0 ∑ X=0 ∑ mA=0
YA-20=0 XA=0 - mA+20×2=0
(2)∑mB=0,RA ×6-40 ×4-10 × 2=0,解之, RA=30KN (↑)
3)校核 ∵ ∑ Y= RA + RB –40-10=0 ∴计算无误(只有支反
40KN A
10KN B
2m 2m 2m
力无误,才有可能作的内
力图正确)
6m
RA
RB
8
2、求下图所示悬臂梁的支座反力。
P=10KN A
直于梁轴线、向下。
5
二、新课--计算简单梁在集中 荷载作用下的支座反力
(一)、计算方法和步骤
1、选取研究对象,根据梁支座约束性质作梁 的受力图
2、根据平面平行力系平衡条件恰当列平 衡方程
1)对于简单梁常为:
∑X=0
∑Y=0
∑mA=0
2)恰当:一个方程含一个未知数
6
3、求解平衡方程、得支座反力。若计算值为正, 则表示支座反力值与受力图方向相同,反之与受
10
三、课堂练习
1、求图示梁的支座反力
解法一: 1)、取梁整体研究,作受力图
A 80KN
B
3m
3m
RA
6m
RB
11
2)、列平衡方程求解 (1)∑mA=0,RB×6﹣80 ×3=0,解之, RB=40KN(↑) (2)∑mB=0,RA ×6-80 ×3=0,解之, RA=40KN (↑)
————计算简单梁在集中荷载作用下的支座反力

————计算简单梁在集中荷载作用下的支座反力
计算简单梁在集中荷载作用下的支座反力涉及到静力学的基本原理和
公式。
在进行计算之前,需要知道梁的长度、受力情况、梁的材料性质等
信息。
以下是计算简单梁在集中荷载作用下的支座反力的详细步骤:
1.确定梁的受力情况:
-集中荷载作用在梁上的位置及大小。
假设集中荷载作用在梁上的位
置为离左端距离为a处,大小为F。
集中荷载的作用点可以位于梁上任意
位置。
-梁上的两个支座。
假设支座分别位于梁的左端和右端。
左端支座的
反力为R1,右端支座的反力为R2
2.建立平衡方程:
<-F->
-------------------------------------
AxB
-------------------------------------
R1R2
-沿横向施加平衡方程:ΣFx=0,根据静力学的基本原理,F=R1+R2
-沿纵向施加平衡方程:ΣFy=0,在x处,梁受到横向力F和竖向力
R1,所以ΣFy=0可以得到R1=F。
即左端支座的反力等于集中荷载的大小。
3.计算右端支座反力R2:
-将R1=F带入到横向平衡方程F=R1+R2,可得R2=0。
即右端支座反力为零。
4.最终结果:
-左端支座反力R1=F。
即集中荷载的大小。
总结:
简单梁在集中荷载作用下的支座反力的计算可以通过平衡方程和静力学的基本原理进行求解。
通过确定梁的受力情况,建立平衡方程并代入已知条件,可以计算出支座反力的大小。
计算简单梁在集中荷载作用下的支座反力

计算简单梁在集中荷载作用下的支座反力简单梁是钢筋混凝土或木材等材料制成的梁,由于其结构简单,计算支座反力相对较容易。
下面将从支座反力计算的原理、步骤和示例三个方面进行详细介绍。
一、原理:支座反力是指梁在集中荷载或均布荷载作用下,支座所产生的反力。
根据平衡原理,支座反力需要满足力的平衡条件。
在计算支座反力时,一般根据受力分析和力矩平衡来进行计算。
二、步骤:1.绘制受力图:首先,根据荷载的作用位置,绘制受力图。
在计算支座反力时,需要将受力图中的荷载分解为水平力和竖直力。
2.分析受力:根据受力图进行受力分析。
根据力的平衡条件,竖直方向的合力应该等于零,即ΣFy=0;水平方向的合力也应该等于零,即ΣFx=0。
通过受力分析,可以得到支座反力的表达式。
3.力矩平衡:根据力矩平衡条件,ΣM=0,可以得到受力杆件端点的支座反力。
力矩平衡需要选择合适的参考点,计算出每个力臂的力矩。
4.计算支座反力:根据受力分析和力矩平衡,可以计算出支座反力。
支座反力分为竖直方向的支座反力和水平方向的支座反力,根据力的平衡条件进行计算。
三、示例:假设有一个长度为4m的简单梁,两端由两个支座支撑。
在该梁上,有一个集中荷载作用,大小为10kN,作用位置距离距离梁左端1m。
1.受力图:绘制受力图,将荷载分解为水平力和竖直力。
竖直方向的力为10kN,水平方向的力为零。
2.分析受力:根据力的平衡条件,竖直方向的力的合力应该等于零,即ΣFy=0。
因此,左端支座的竖直反力为10kN,右端支座的竖直反力也为10kN。
3.力矩平衡:选择支点A为参考点,在该参考点处计算力矩。
由于水平方向的力为零,因此,对于竖直反力来说,力臂为0,力矩也为0。
4.计算支座反力:根据受力分析和力矩平衡,可知左端支座的竖直反力为10kN,右端支座的竖直反力也为10kN。
水平方向的支座反力为零。
综上所述,该简单梁在集中荷载作用下的支座反力为:左端支座的竖直反力为10kN,右端支座的竖直反力也为10kN,水平方向的支座反力为零。
梁的支座反力计算公式

梁的支座反力计算公式梁在建筑结构和工程力学中可是个重要的角色,而要搞清楚梁的受力情况,支座反力的计算那是必不可少的。
咱们先来说说啥是梁的支座反力。
简单来讲,梁放在一些支撑点上,这些支撑点对梁施加的力就叫支座反力。
想象一下,一根长长的木板放在几个石头上,石头给木板的力就是支座反力啦。
那支座反力咋算呢?这就得用到一些公式和方法。
常见的有静定梁的计算方法,像简支梁、悬臂梁、外伸梁等等。
就拿简支梁来说吧,假如有一个均布荷载作用在梁上。
有一次我在工地上看到一根钢梁,就像这样的简支梁,上面放着一堆均匀分布的建筑材料。
当时我就好奇这梁的支座反力到底是多少。
经过一番计算,发现如果均布荷载的大小是 q ,梁的长度是 L ,那么支座反力就分别是 RA = RB = qL / 2 。
这里的 RA 和 RB 分别是两个支座的反力。
再比如说悬臂梁,一端固定,另一端自由。
如果在自由端有一个集中力 P 作用,那固定端的支座反力就比较简单啦,竖向反力就是 P ,弯矩就是 P 乘以悬臂的长度。
外伸梁稍微复杂点,但基本原理还是一样的,就是要根据具体的荷载情况和梁的支撑条件来分析计算。
在实际工程中,计算梁的支座反力可重要了。
要是算错了,那梁可能就承受不住压力,说不定哪天就出问题了。
记得有一次,一个新手工程师在计算的时候粗心大意,把支座反力算错了,结果施工的时候梁出现了裂缝,这可把大家吓得不轻,赶紧重新核算和加固,才避免了更严重的后果。
总之,梁的支座反力计算公式虽然看起来有点复杂,但只要咱们掌握了基本原理,多做几道题,多在实际中观察和思考,就一定能算得又准又快。
可别像那个新手工程师一样,犯了不该犯的错误哟!这样咱们才能保证建筑和结构的安全可靠,让每一根梁都能稳稳地发挥作用。
简支梁、悬臂梁、外伸梁弯矩及剪力

简支梁、悬臂梁、外伸梁弯矩及剪力
静定梁有三种形式:简支梁、悬臂梁、外伸梁。
这三种梁的支座反力和弯矩、剪力只要建立平衡方程,就可以求解。
图1.5.1左右两列分别是简支梁在均布荷载和集中荷载作用下的计算简图、弯矩图和剪力图。
图1.5.2左右两列分别是简支梁在2个对称集中荷载作用和一个非居中集中荷载作用下的计算简图、弯矩图和剪力图。
图1.5.3左右两列分别是悬臂梁在均布荷载作用和一个端点集中荷载作用下的计算简图、弯矩图和剪力图。
图1.5.4左右两列分别是外伸梁在集中荷载均布荷载作用和
均布荷载作用下的计算简图、弯矩图和剪力图。
从图1.5.1~图1.5.4,我们看到,正确的弯矩图和正确的剪力图之间有如下对应关系:每个区段从左到右,弯矩下坡,剪力为正;弯矩上坡,剪力为负;弯矩为水平线时,对应区段的剪力为零;在均布荷载作用下,剪力为零所对应的截面,弯矩最大;在集中荷载作用下,弯矩最大值一般在集中荷载作用点,该点的剪力有突变,突变的绝对值之和等于集中荷载的大小。
如果不满足这个对应关系,那么弯矩图和剪力图必有一个画错了,或者两个全不对。
多跨连续梁是超静定梁,单单用平衡方程不能求解,还需要“变形协调条件”才能解联立方程进行求解。
图1.5.5是某多跨连续梁在均布荷载力作用下的变形简图、受力钢筋配置区域和弯矩图示意图。
负弯矩表示截面的上翼缘受拉、下翼缘受压;正弯矩表示截面下翼缘受拉、上翼缘受压;反弯点截面,该点弯矩等于零,在这个截面,上下截面既不受压,也不受拉。
智慧树答案结构力学(上)知到课后答案章节测试2022年

第一章1.图示预制混凝土柱插入杯型基础,杯口的空隙中采用沥青麻刀填充,构建结构力学计算简图时一般视其为固定支座。
答案:错2.对于桥涵工程来说,结构自重、覆盖在结构上的土压力以及水位不变的静水压力等都属于恒荷载。
答案:对3.超静定结构在任意荷载作用下,反力和内力仅凭平衡条件就可以完全确定。
答案:错4.()横跨德夯大峡谷,落差达400多米,创造了四项世界记录,其中包括大桥主跨1176m,是跨峡谷悬索桥当今的世界第一。
答案:矮寨大桥5.图示的公路桥梁一般在结构力学分析时采用计算简图()。
答案:6.结构力学中,杆件间的连接简化为结点,一般不包括()。
答案:活动结点7.按几何特征分类,结构一般可以分为()。
答案:板壳结构;实体结构;杆系结构;薄膜结构8.杆系结构按计算特点和求解方法可以分为()。
答案:静定结构;超静定结构9.以下()属于以受弯为主的结构。
答案:刚架;排架;梁10.静力荷载和动力荷载的本质区别在于()。
答案:其是否引起惯性力;其是否产生动力效应第二章1.固定铰支座和定向支座各相当于2个约束,但它们并不是等效的。
()答案:对2.用2根杆固定1个新点的装置就是二元体,这些链杆可以为直杆,曲杆或者折杆。
()答案:错3.图示体系为瞬变体系。
()答案:错4.根据平面杆系的自由度计算公式,图示杆系的计算自由度为0,但其实际自由度为1。
()答案:对5.图示连接4个刚片的复铰相当于()个约束。
答案:66.3个本身无多余约束的刚片,两两全部通过一个铰相连,这三个铰中一个为实铰,一个为虚铰,一个为无穷铰,那么这个体系是几何不变体系的条件是()。
答案:实铰到虚铰的连线与形成无穷铰的平行链杆不平行7.图示体系为()。
答案:有多余约束的几何不变体系8.图示刚架为有1个多余约束的几何不变体系,它的支座约束中,可以将()中的任意1个视为多余约束。
答案:B处的水平支座;A处的水平支座9.以下说法正确的是()。
一个体系上增加或去掉二元体,体系的几何组成保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、求下图所示悬臂梁的支座反力。
P=10KN
A
3m
解:1)、取整体为研究对象,作受力图
P=10KN
MA
XA YA
3m
2)、列平衡方程,求解
∑ Y=0,
YA-P=0, YA=P=10KN (↑) XA=0
∑ X=0,
∑ MA=0,
MA-P×3=0
mA=40KN.m( 方向同图 )
四、小结
1、取研究对象,作受力图 2、列平衡方程,求解 3、校核
例 1
已知 q = 2KN/m ,求图示结构A支座的反力。
解:取AB 杆为研究对象画受力图。
由 ∑X = 0 : HA=0
由 ∑Y= 0 : RA-2q=0
RA=2q=2X2=4KN 由 ∑MA = 0 : M A 2 2 1 0
MA=P×3= 10×3=30KN· M(方向同图示) 3)、校核(只能判断公式中的计算正误,不能 确认平衡方程本身是否列对)。
三、课堂练习
1、求图示梁的支座反力
解法一:
1)、取梁整体研究,作受力图
A 80KN 3m RA 6m 3m RB B
2)、列平衡方程求解 (1)∑mA=0,RB×6﹣80 ×3=0,解之, RB=40KN(↑) (2)∑mB=0,RA ×6-80 ×3=0,解之, RA=40KN (↑) 3)、校核
例题 1、求下图所示简支梁的支座反力RA、RB。
40KN 10KN
A
2m 2m 6m 2m
B
解:1)、取整体为研究对象,作受力图 2)、列平衡方程、求解 (1)∑mA=0,RB×6﹣40 ×2-1 0 ×4=0,解之, RB=20KN(↑) (2)∑mB=0,RA ×6-40 ×4-10 × 2=0,解之, RA=30KN (↑) 3)校核 ∵ ∑ Y= RA + RB –40-10=0 ∴计算无误(只有支反 力无误,才有可能作的内 力图正确)
M A 4 KN m
HA MA
RA
例 2 求图示结构的支座反力。 解:取AB 杆为研究ຫໍສະໝຸດ 象画受力图。由 ∑X = 0
:
HA=0 由 ∑MA = 0 :
HA 由 ∑Y = 0 : RA RB
2.3.4叠加原理
P
q A
P
B
叠加原理: 结构在多个荷载作用下的某 一量值(反力、内力、变形等)的 大小等于各个荷载单独作用时所引 起的该量值的代数和。
∵ ∑ Y= RA + RB –80=0
∴计算无误
解法二:1)、取梁整体研究,作受力图
2)、由对称得
RA=RB=½×80=40KN(↑)
2、求图示梁的支座反力 解:1)、 取整体研究, 作受力图
A 20KN 2m 1m
XA
mA
20KN
2m
YA
1m
2)、列平衡方程,求解
∑ Y= 0 ∑ X=0 ∑ mA=0 YA-20=0 XA=0 - mA+20×2=0 YA=20KN(↑)
=
B
A
A
q B
叠加原理的适用条件: 结构处于弹性限度内和小变 形条件下;荷载和某量值的关系 是线性关系。
+