湖南省八年级数学上册 第11章 三角形小结教案 (新版)新人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形
课题:第十一章三角形小结课时一课时
教学设计
课标要求理解三角形及其内角、外角、中线、高、角平分线等概念,了解三角形的稳定性。探索并证明三角形的内角和定理。掌握三角形的外角等于与它不相邻的两个内角的和及三边关系
教材及学情分析
11.1节研究与三角形有关的线段.首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类.对于三角形的边,证明了三角形两边的和大于第三边.接下来,给出了三角形的高、中线与角平分线的概念.结合三角形的中线介绍了三角形的重心的概念.最后结合实际例子介绍三角形的稳定性.
11.2节研究与三角形有关的角.对于三角形的内角,证明了三角形内角和定理.然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余.最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和.
以三角形的有关概念和性质为基础,本章11.3节接着介绍多边形的有关概念与多边形的内角和、外角和公式.三角形是多边形的一种,因而可以借助三角形介绍多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来.三角形是最简单的多边形,因而常常将多边形分为几个三角形,利用三角形的性质研究多边形.多边形的内角和公式就是利用上述方法得到的.将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习。
通过一段时间的学习,八年级两个班对数学中符号语言的运用较为单薄,且在运用三角形外角的性质和直角三角形的相关性质有点吃力,复习要重点加强。
课时教学目标
1.理解三角形及与三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性.
2.理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和.
3.了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式.
重点三角形和多边形的概念及有关性质难点三角形和多边形性质的应用
教法学
法
指导
教具
准备
PPT
教学过程提要
环节
学生要解决的问
题或完成的任务
师生活动设计意图
引
入
新课熟悉知识体系
引导学生回顾课
本教学过程,梳
理知识
教学过
程三角形的有关概念
及性质
(1)三角形的有关概念及与三角形有关的线
段的性质
问题1:根据条件画图,并回答问题.
①画一个锐角△ABC.②作出BC边上的中线AD,高
线AE.③图中有多少个以AE为高的三角形?
问题2:三角形两边长分别是11和26,则第三
边的取值范围是.
(2)三角形的内角与外角
问题3:在△ABC中,∠A∶∠B∶∠C=1∶3∶5,
求∠A,∠B,∠C的度数.
问题4:如图所示,图中的∠1= °.
问题5:如图,请说明∠1>∠A.
(3)三角形的稳定性
问题6:下面哪个图形具有稳定性?
2.多边形的有关概念及性质
问题7:多边形的内角和公式为;
多边形的外角和等于.
问题8:一个多边形的内角和比它外角和的2
倍还大180°,这个多边形的边数
是.
问题9:三角形有条对角线;四边
形有条对角线;五边形有
条对角线……n边形有条对角线.
教学中,以三角
形为基础及性质
出发,鼓励学生
用自己的语言利
用类比的方法总
结内容。
B.三角形的三条中线都在三角形的内部则它的周长是.
欢迎您的下载,资料仅供参考!