SNCR脱硝技术方案设计
SNCR脱硝技术方案最终

SNCR脱硝技术方案最终SNCR(Selective Non-Catalytic Reduction,选择性非催化还原)脱硝技术是一种常用于燃煤电厂和工业锅炉等大型燃烧装置的脱硝方法。
它通过注入氨水或尿素溶液,使其与烟道气中的氮氧化物(NOx)发生氨还原反应,将其转化为气态氮和水,在减少NOx排放的同时保证燃烧过程的效能。
1.脱硝效率:提高脱硝效率是实施SNCR脱硝技术方案的首要目标。
脱硝效率受到很多因素的影响,如烟气温度、氨气与NOx的摩尔比、反应时间等。
在设计方案时,应确保脱硝效率能够符合环保法规的要求,并在实际运行中进行监测和调整。
2.氨水添加系统:实施SNCR脱硝技术方案需要一个稳定可靠的氨水添加系统。
该系统应能根据烟气中NOx的浓度和温度变化自动调节氨水的添加量,以实现最佳的脱硝效果。
此外,还需要考虑氨水的储存、输送和注入设备,以确保系统的稳定运行。
3.控制系统:SNCR脱硝技术方案的实施需要一个完善的控制系统来监测和控制氨水添加系统、烟气温度等参数的运行。
该控制系统应能实时采集数据,并根据设定的脱硝效率要求自动调整相关参数。
此外,还需要考虑与原有控制系统的接口,以实现脱硝技术与整个燃烧系统的协同运行。
4.运维管理:SNCR脱硝技术方案的长期有效运行需要一个科学合理的运维管理体系。
运维团队应定期对系统进行巡检、维护和保养,并及时清洗和更换关键设备。
此外,还需要开展培训和知识传递,确保运维人员具备足够的专业知识和技能。
5.经济可行性:实施SNCR脱硝技术方案需要投入一定的资金和人力资源。
在设计方案时,应综合考虑各项成本,并与预期的脱硝效果进行对比。
同时,还需要评估技术的长期运维和维护成本,以确保SNCR脱硝技术方案的经济可行性。
总之,实施SNCR脱硝技术方案需要充分考虑脱硝效率、氨水添加系统、控制系统、运维管理和经济可行性等关键因素。
通过科学合理的设计和运维管理,可以有效降低燃煤电厂和工业锅炉等大型燃烧装置的NOx排放,减少对大气环境的污染。
SNCR脱硝(氮)技术说明

一 原理概述
选择性催化还原法(SNCR)已经很成功的应用在脱硝/氮领
域。并已证实,温度、停留时间和炉内的 CO 浓度是影响 SNCR 性
能的重要因素。
从原理上解释,SNCR 过程十分简单,利用含氮试剂与燃烧产物 在炉内混合发生化学反应,在氧存在的环境下 NOX 被还原成 N2
炉内脱氮 SNCR 法主要使用含氮的药剂在温度区域 870-1200 ℃喷入含 NOx 的燃烧产物中,分解产生的自由基与 NOx 反应,发 生还原反应,脱除 NOx,生成氮气和水。使 NOx 的原始浓度 500mg/Nm3,降低到 280mg/Nm3 以下,达到脱除 NOx 目的。
炉内脱氮 SNCR 系统主要包括尿素溶液配制系统、在线稀释 系统和炉前喷射系统三部分。尿素溶液配制系统实现尿素储存、 溶液配制和溶液储存的功能,然后由在线稀释系统根据锅炉运行 情况和 NOx 排放情况在线稀释成所需的浓度,送入喷射系统。喷 射系统实现各喷射层的尿素溶液分配、雾化和计量。
E 0.2. OptiVap 系统—连接盒 连接盒提供了正确的连接方式以便使喷头架能正确的对准烟气 流向。
数量: 2 材质: 碳钢 (焊接到输送管外壁) 连接: 快速断开 注意: 收到订单、图纸后确定管架的数量和位置
E 0.3. 现场使用的温度感应器和传送器 非常高速的温度感应器 (2 个,装设在喷射系统出口) 高温陶瓷 外壳, 提供控制和显示
含氮试剂在烟气中的最佳分布 在 CFD 的计算后确定管架的分布图。 S 0.10. 项目设计和文件
安装,设备供应、其它供应设备的组合的所有设计和文件。 图片: Typical pumping and regulating skids:
Typical regulating rack during assembling Typical pumping skid during assembling
(完整版)SNCR+SCR方案

NH3为还原剂 4NH3+ 4NO + O2 → 4N2 + 6H2O
SNCR通常采用的还原剂有氨水、氨水和液氨,不同还原剂的比较如表3.1所列。
表3.1 不同还原剂特点
还原剂
特点
尿素
•安全原料 (化肥)
•便于运输
•脱硝有效温度窗口较宽
•溶解要消耗一定热量
氨水
•运输成本较大
锅炉烟气SNCR+SCR脱硝
技
术
投
标
文
件
绿能环保工程有限公司
二零一四年二月
一
目前主流的烟气脱硝技术有选择性非催化还原技术(SNCR)、选择性催化还原技术(SCR)和SNCR/SCR联合脱硝技术。
SNCR技术
研究发现,在800~1250℃这一温度范围内、无催化剂作用下,氨水等还原剂可选择性地还原烟气中的NOx生成N2和H2O,基本上不与烟气中的O2作用,据此发展了SNCR脱硝技术。
SNCR/SCR混合烟气脱硝技术
SNCR/SCR混合技术是SNCR工艺的还原剂喷入炉膛技术同SCR工艺利用末反应氨进行催化反应结合起来,或利用SNCR和SCR还原剂需求量不同,分别分配还原剂喷入SNCR系统和SCR系统的工艺有机结合起来,达到所需的脱硝效果,它是把SNCR工艺的低费用特点同SCR工艺的高脱硝率进行有效结合的一种扬长避短的混合工艺。SNCR/SCR混合工艺的脱硝效率可达到60~80%,氨的逃逸小于4mg/Nm3。图3.3为典型的SNCR/SCR混合烟气脱硝工艺流程。
没有压力损失
催化剂用量较SCR小,产生的压力损失较低
燃料及其变化的影响
燃料显著地影响运行费用,对灰份增加和灰份成分变化敏感,灰份磨耗催化剂,碱金属氧化物劣化催化剂,AS、S等使催化剂失活少,更换催化剂的总成本较SCR低
sncr氨水脱硝方案全案

75T/h流化床锅炉SNCR-EE 氨水脱硝系统项目方案20xx年 12月目录第1章脱硝背景及意义 (1)第2章SNCR脱硝工艺技术简介 (2)2.1SNCR脱硝原理 (2)2.2SNCR脱硝技术的优点 (2)2.3SNCR脱硝效率的影响因素 (3)第3章SNCR—EE脱硝系统方案 (5)3.1SNCR脱硝工艺参数表 (5)3.2工艺过程 (5)3.3系统组成 (6)3.4SNCR-EE系统主要设备清单 (9)3.5SNCR-EE系统运行成本分析 (10)3.6系统安全运行保障 (11)3.7SNCR-SE脱硝喷枪特点 (11)第4章施工组织计划 (14)4.1工程概况 (14)4.2施工准备工作 (14)4.3项目实施工作 (14)第5章公司承诺 (17)第6章公司简介 (19)第7章工程业绩表 (21)第1章脱硝背景及意义硝泛指含氮氧化物,主要有N2O、NO、NO2、N2O3等,多以NO、NO2形式存在,简称为NOx。
NOx主要来源于生产、生活中所用的煤、石油等燃料的燃烧。
NOx的危害主要有以下几个方面:(1)严重影响人类身体健康,NO能与血液中血红蛋白发生反应,降低血红蛋白的输氧能力,严重时可引起组织缺氧,损害中枢神经组织;(2)形成光化学烟雾,NOx与碳氢化合物在阳光照射下会产生有毒的烟雾,称之为光化学烟雾;(3)是形成酸雨的重要组成成分,我国酸雨主要成分为硫酸,其次是硝酸,硝酸主要来源就是空气中的氮氧化合物;(4)容易演变成PM10和PM2.5,对人体产生危害。
据研究,近来受民众关注的PM2.5,其中10%为氮氧化物氧化为硝酸根所致;(5)造成臭氧层耗损。
煤炭资源在我国一次能源构成中占据主要地位,约占目前已探明矿物质能源资源的90%。
从中国历年能源消费总量及构成上看,我国以煤为主的能源生产和消费结构在今后相当长的时间内都不会有根本性的变化。
因此,煤燃烧产生的污染物排放是我国大气污染的一个重要组成部分。
SNCR脱硝技术方案

SNCR脱硝技术方案SNCR(Selective Non-Catalytic Reduction)是一种选择性非催化还原脱硝技术,用于降低燃烧过程中产生的氮氧化物(NOx)的排放。
它是一种相对经济和有效的脱硝方法,广泛应用于燃煤锅炉、电厂和工业烟气排放等领域。
SNCR脱硝技术的基本原理是在燃烧过程中,通过向燃烧室或烟气道喷射一种或多种适当的还原剂,如氨水、尿素溶液等,使其与燃烧产物中的NOx发生反应生成氮气和水。
SNCR脱硝技术的优点在于不需要使用昂贵的催化剂,操作简单、成本低,但其脱硝效率相对较低,通常在30%~70%之间。
1.确定最佳喷射位置:喷射位置的选择是关键的一步。
通常在燃烧室出口、过热器顶部和脱硝催化剂之前是合适的喷射位置。
通过调整喷射位置可以达到最佳脱硝效果。
2.确定还原剂投入量:还原剂的投入量也是决定脱硝效率的重要因素。
适当的投入量可以使还原剂与NOx充分反应,但过量投入可能会产生副产品,如氨逃逸。
投入量可以通过实验室试验和现场测试得出。
3.确定喷射时间:喷射时间的控制也是关键的一步。
通常根据燃烧过程中的NOx生成特征,选择合适的喷射时间。
一般在燃烧室温度较高的区域喷射,确保还原剂与NOx充分接触并发生反应。
4.确定温度和浓度范围:最适宜的还原剂浓度和温度范围取决于燃料种类、燃烧设备类型等因素。
一般来说,在1400℃~1600℃的温度下,5%~12%的氨浓度是有效脱硝的范围。
5.监测和调整:在实际运行中,需要不断监测脱硝效果和排放水平,并根据监测结果进行调整。
可以通过在线氮氧化物分析仪监测排放浓度,并根据结果调整还原剂投入量等参数。
总之,SNCR脱硝技术是一种经济有效的脱硝方法,在工业排放和燃煤锅炉等领域得到广泛应用。
通过合理的喷射位置、还原剂投入量、喷射时间和温度浓度范围的选择,可以实现较低的NOx排放水平。
(完整版)SNCR+SCR方案

锅炉烟气 SNCR+SCR 脱硝
技 术 投 标 文 件
1
绿能环保工程有限公司 二零一四年二月
(完整版)SNCR+SCR 方案
目录
一、烟气脱硝技术介绍 ........................................................... 3 二、本项目 SNCR+SCR 方案设计................................................... 12
4
(完整版)SNCR+SCR 方案
图 3。1 SNCR 工艺系统流程图 SNCR 烟气脱硝过程是由下面四个基本过程组成:
还原剂的接收和溶液制备; 还原剂的计量输出; 在锅炉适当位置注入还原剂; 还原剂与烟气混合进行脱硝反应。 SCR 技术
5
(完整版)SNCR+SCR 方案
选择性催化剂还原(SCR)技术是在烟气中加入还原剂(最常用的是氨和氨水),在催化剂和 合适的温度等条件下,还原剂与烟气中的氮氧化物(NOx)反应,而不与烟气中的氧进行氧化 反应,生成无害的氮气和水.主要反应如下:
几种主要烟气脱硝技术综合比较情况如表 3.2 所列。
表 3。2 SCR、SNCR、SNCR/SCR CR/SCR 技术
反应剂 NH3
氨水或氨水
NH3
反应温 度
320~400℃
800~1250℃
前段:800~1000℃, 后段:320~400℃
8
催化剂 V2O5-WO3/TiO2
SNCR 烟气脱硝的主要反应为: NH3 为还原剂 4NH3 + 4NO + O2 → 4N2 + 6H2O
SNCR脱硝方案(改)

GXDF-20 沸腾炉SNCR 脱硝系统项目SNCR 技术方案2020 年04 月一、总论1.1工程概况GXDF-20 沸腾炉脱硝改造工程。
本工程采用选择性非催化还原法(SNCR)脱硝工艺,还原剂为尿素。
1.2 厂址所在地项目位于鄂尔多斯市伊金霍洛旗札萨克镇内蒙古伊泰广联煤化有限责任公司红庆河矿井及选煤厂工业广场内。
1.3主要设计参数(1)GXDF-20 沸腾炉(2)锅炉最大连续蒸发量:20t/h(3)锅炉(B-MCR)燃煤量:3.5 t/h(设计煤种)(4)锅炉运行方式:锅炉在50-100%负荷下能长期安全稳定运行1.4术语定义1.4.1 SNCR 工艺SNCR(Selective Non-Catalytic Reduction,简称SNCR)脱硝工艺,是利用还原剂在不需要催化剂的情况下有选择性地与烟气中的氮氧化物(NOx)发生化学反应,生成氮气和水的一种脱硝技术。
1.4.2脱硝效率脱硝效率也称NO X(以NO2计,标态,6%O2含量)脱除率,其计算方法如下:脱硝率= C1 −C2× 100% C1式中:C1——脱硝系统投运前锅炉排放烟气中NOx 含量(mg/Nm3)。
C2——脱硝系统运行时锅炉排放烟气中NOx 含量(mg/Nm3)。
1.4.3氨逃逸率氨的逃逸率是指在锅炉尾部烟道(空气预热器入口装设测点)处检测到的氨的浓度。
系指脱硝系统运行时,空气预热器入口烟气中氨的质量与烟气体积(标态,干基,6%O2)之比,单位为mg/Nm3。
1.4.4脱硝系统可用率从首次喷射尿素水溶液(20%溶液)开始直到最后的性能验收为止的质保期内,脱硝整套装置的运转率在最终验收前不低于98%。
系统可用率定义:A −B可用率= A:锅炉每年总运行时间,h;B:脱硝系统每年总停运时间,h。
1.5性能保证A× 100%1.5.1主要性能指标保证在下列边界条件下,脱硝装置在投运后:(1)在NOx 初始浓度为350mg/Nm3(标态,干基,6%O2)时,NOx 脱除率不小于79% ,氨逃逸率小于5mg/Nm3;在锅炉排烟烟气NO X浓度低于350mg/Nm3(标态,干基,6%O2)时,SNCR 脱硝将锅炉排烟烟气NOx 浓度降低至150mg/Nm3(标态,干基,6%O2)及以下。
SNCR脱硝技术方案设计最终

滨州东力热电有限公司2×130t/h CFB燃煤锅炉烟气脱硝项目标书方案项目编号:HYHABZ2013-0790招标方:滨州东力热电有限公司投标方:煤炭工业济南设计研究院有限公司2013年08月目录一、技术规范 (3)1.1总则 (3)1.2工程概况 (3)1.3设计与运行条件 (5)1.4技术要求 (11)1.5标准与规范 (32)1.6性能保证值 (34)二、供货范围 (35)2.1一般要求 (35)2.2供货范围 (37)三、设计范围和设计联络会 (49)3.1概述 (49)3.2设计部分 (50)3.3设计接口界限 (52)3.4设计联络 (53)四、技术资料内容和交付进度 (55)4.1项目实施阶段的资料 (55)4.2调试后资料 (56)4.3投标方提供的资料份数 (56)五、项目交付进度 (58)5.1交货进度 (58)六、检验、试验和验收 (59)6.1概述 (59)6.2工厂检验及试验 (60)6.3现场检验和试验 (61)6.4验收试验(性能考核测试) (61)七、技术培训 (62)7.1培训要求 (62)7.2培训内容 (62)7.3培训计划 (62)八、现场技术服务与调试 (65)8.1技术服务 (65)8.2调试 (66)九、运行费用计算 (68)十、施工组织设计.................................................................................................................. 错误!未定义书签。
一、技术规范1.1 总则本技术方案适用于滨州东力热电有限公司2×130t/h循环流化床锅炉的脱硝装置(SNCR)项目。
采用EPC总承包模式,提出了该系统的功能设计、结构、性能、安装和调试等方面的技术要求。
脱硝(SNCR)技术要求:(1) 本工程采用选择性非催化还原脱硝(SNCR)工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滨州东力热电有限公司2×130t/h CFB燃煤锅炉烟气脱硝项目标书方案项目编号:HYHABZ2013-0790招标方:滨州东力热电有限公司投标方:煤炭工业设计研究院有限公司2013年08月目录一、技术规 (3)1.1总则 (3)1.2工程概况 (3)1.3设计与运行条件 (5)1.4技术要求 (11)1.5标准与规 (33)1.6性能保证值 (34)二、供货围 (36)2.1一般要求 (36)2.2供货围 (38)三、设计围和设计联络会 (50)3.1概述 (50)3.2设计部分 (51)3.3设计接口界限 (54)3.4设计联络 (54)四、技术资料容和交付进度 (56)4.1项目实施阶段的资料 (56)4.2调试后资料 (57)4.3投标方提供的资料份数 (57)五、项目交付进度 (59)5.1交货进度 (59)六、检验、试验和验收 (60)6.1概述 (60)6.2工厂检验及试验 (61)6.3现场检验和试验 (62)6.4验收试验(性能考核测试) (62)七、技术培训 (64)7.1培训要求 (64)7.2培训容 (64)7.3培训计划 (64)八、现场技术服务与调试 (67)8.1技术服务 (67)8.2调试 (68)九、运行费用计算 (70)十、施工组织设计 ............................................................................................... 错误!未定义书签。
一、技术规1.1 总则本技术方案适用于滨州东力热电有限公司2×130t/h循环流化床锅炉的脱硝装置(SNCR)项目。
采用EPC总承包模式,提出了该系统的功能设计、结构、性能、安装和调试等方面的技术要求。
脱硝(SNCR)技术要求:(1) 本工程采用选择性非催化还原脱硝(SNCR)工艺。
(2) 使用氨水作为脱硝还原剂。
(3) 氨水输送和喷射控制系统使用DCS系统单独控制;CEMS污染物在线系统监测通过光纤将接至主控室。
(4) 系统脱硝效率达到75%,原烟气氮氧化物折算浓度按照350mg/m3考虑(出口烟气含氧量按10.5%),系统脱硝效率最低保证值按照不小于71.43%进行设计。
当原烟气折算浓度小于设计值350mg/m3时,亦应达到上述脱硝效率要求。
脱硝工艺公用系统部分:按照两台炉50~110% BMCR负荷运行进行设计,一台炉满负荷运行时的最大烟气量按照工况315000m3/h考虑。
(5) NH3逃逸量应控制在8 mg/m3以下。
(6) 脱硝装置可用率不小于98%,服务寿命为30年。
本技术方案提出的是最低限度的技术要求,并未对一切技术要求做出详细规定,也未充分引述有关标准及规的条文。
投标方保证提供符合本技术方案和相关的国际、国工业标准的优质产品。
1.2 工程概况1.2.1 概述锅炉为锅炉厂生产的循环流化床锅炉CG-130/9.81-MX2,锅炉额定蒸发量为2x130t/h、半露天布置,全钢架结构、平衡通风,采用静电除尘器,炉外石灰—石膏脱硫工艺。
根据锅炉形式合理选取喷枪布置位置和数量,并考虑水冷壁管子鳍片空间不够时的水冷壁让管设计和施工,做让管改造时,不得影响原水冷壁管的水循环。
1.2.2 厂址位于省滨州市滨城区小营镇工业园1.2.3 厂区的岩土工程条件该区域的工程地质条件中等,未受新活动的影响。
根据静力触探曲线资料分析及山地踏勘,拟建线路在垂深15.0米围场地岩土可划分成8个工程地质层。
1.2.4 地震烈度根据《中国地震动参数区划图》(GB18306-2001),扩建厂区地震动峰值加速度为0.10g(相应的地震基本烈度为7度)。
场地土类型与建筑场地类别厂/场区地震地震基本烈度为Ⅷ级厂址区建筑场地建筑场地级别为I~II类场地1.2.5脱硝系统入口烟气参数表2-2 脱硝系统入口烟气参数表2-3 锅炉BMCR工况SNCR脱硝系统入口烟气中污染物成分(标准状态,湿基,实际含氧量)1.2.6 水源表2-3水质全分析1.2.7 水文气象条件气象:年平均气温15.5℃1.3 设计与运行条件1.3.1 SNCR脱硝工艺描述:我院公司与美国斯普瑞公司合作,独家引进吸收该公司的SNCR烟气脱硝技术及喷雾技术,进行了技术的自主转化。
针对国生中、小型循环流化床锅炉的炉脱硝技术,进一步完善了工艺系统设计,形成了技术成熟、适应国需要的SNCR系统,可广泛适用于循环流化床锅炉、焚烧炉、水泥窑等各类系统的烟气脱硝处理。
采用美国ANSYS公司的CFD计算流体力学仿真分析软件,目前比较流行的是采用CFD技术,对本脱硝工程SNCR系统的布置进行了数值模拟计算流体力学技术(CFD)进行分析、预测。
由于SNCR反应需要在特定的温度区间和停留时间下进行,所以还原剂喷射位置的确定对SNCR系统十分关键。
错误的喷射位置会造成氨逃逸增加,还原剂用量增加和达不到要求的脱硝效率。
还原剂喷射位置的确定需要通过流场模拟以确定喷射位置,流场模拟会模拟锅炉温度、气体流动和烟气混合情况,以确定合适的喷射位置。
SNCR的效率取决于以下几点:烟气温度,还原剂和烟气混合、反应的停留时间,还原剂的喷射量,还原剂的和烟气的混合效果,未控制时的NOx 含量,以及氧气和二氧化碳的含量。
设计和运行良好的SNCR系统,在达到一定的脱硝效率同时,不会有过量的未反应的氨气(氨逃逸)或其他的污染物质排放到空气中。
当温度高于适合NOx脱除反应的温度围,NOx脱除效率也将降低。
在曲线的右边,还原剂的氧化反应将增强,其将和还原剂与NOx的反应进行竞争。
尽管脱除效率低于最优,但运行的时候一般温度是高于最优温度的,这样能减少副反应的发生。
在曲线的左端的温度下,尽管一定的脱硝效率和有较长的停留时间情况下,仍然会有较高氨逃逸的可能性。
NH3作为还原剂时,SNCR的最佳反应温度是950℃。
SNCR的原理是以氨水、尿素[CO(NH2)2]等作为还原剂,雾化后注入锅炉。
在一定的温度围,氨水或尿素等氨基还原剂可以在无催化剂的作用下选择性地把烟气中的NOx 还原为N2 和H2O ,故是一种选择性化学过程。
其原理如图所示。
2、SNCR技术简介SNCR技术是以PETRO SNCR系统为核心,并在此基础上进行设计转化和国配套而发展起来的。
SNCR系统采用模块化设计,处理工艺由下图所示。
国外已经投入商业运行的比较成熟的烟气脱硝技术, 它建设周期短、投资少、脱硝效率中等, 适合于对中小型电厂锅炉的改造, 以降低其NOx 排放量,在一定温度围,在无催化剂的作用下,氨或尿素等氨基还原剂可选择性地把烟气中的NOx还原为N2和H2O,基本上不与烟气中的氧气作用,据此发展了SNCR 法。
其主要反应为:氨(NH3)为还原剂时:4NH3+6NO 5N2+6H2O尿素为还原剂NO+CO(NH2)2+1/2O2→2N2+CO2+H2O该反应主要发生在950℃的温度围。
当温度超过1100 ℃时,NH3会被氧化成NO,反而造成NOx排放浓度增大。
其反应为:4NH3+5O2 4NO+6H2O而温度低于850 ℃时,反应不完全,氨逃逸率高,造成新的污染。
可见温度过高或过低都不利于对污染物排放的控制。
由于最佳反应温度围窄,随负荷变化,最佳温度位置变化,为适应这种变化,必须在炉中安置大量的喷嘴,且随负荷的变化,改变喷入点的位置和数量。
此外反应物的驻留时间很短,很难与烟气充分混合,造成脱硝效率低。
选择性非催化还原技术就是用NH3、尿素等还原剂喷入炉与NOX进行选择性反应,不用催化剂,因此必须在高温区加入还原剂,而且还需要一定的停留时间。
还原剂喷入炉膛合适的温度区域,该还原剂(尿素)迅速热分解成NH3并与烟气中的NOX进行SNCR反应生成N2,该方法是以炉膛为反应器。
不同还原剂有不同的反应温度围,此温度围称为温度窗。
NH3的反应最佳温度区为850~1100℃。
当反应温度过高时,由于氨的分解会使NOx 还原率降低,另一方面,反应温度过低时,氨的逃逸增加,也会使NOx还原率降低。
NH3是高挥发性和有毒物质,氨的逃逸会造成新的环境污染。
引起SNCR系统氨逃逸的原因有两种,一是由于喷入点烟气温度低影响了氨与NOx的反应;另一种可能是喷入的还原剂过量或还原剂分布不均匀。
还原剂喷入系统必须能将还原剂喷入到炉最有效的部位,因为NOx在炉膛的分布经常变化,如果喷入控制点太少或喷到炉某个断面上的氨分布不均匀,则会出现分布较高的氨逃逸量。
在较大的燃煤锅炉中,还原剂的均匀分布则更困难,因为较长的喷入距离需要覆盖相当大的炉截面。
为保证脱硝反应能充分地进行,以最少的喷入NH3量达到最好的还原效果,必须设法使喷入的NH3与烟气良好地混合。
若喷入的NH3不充分反应,则逃逸的NH3不仅会使烟气中的飞灰容易沉积在锅炉尾部的受热面上,而且烟气中NH3遇到S03会产生(NH4)2S04易造成空气预热器堵塞,并有腐蚀的危险。
SNCR系统烟气脱硝过程由下面四个基本过程完成:·接收和储存还原剂;·还原剂的计量输出、与水混合稀释;·在锅炉合适位置注入稀释后的还原剂;·还原剂与烟气混合进行脱硝反应。
1.3.2 燃料本期工程采用的煤质资料如下表:(按实际煤种作为设计煤种)表2-4设计和校核煤种的煤质及灰成分分析表1.3.3 气/汽源、水源参数进入可供脱硝装置气/汽源、水源的参数氨水稀释水要求质量:总硬度< 150 ppm;钙硬度< 100 ppm;“M”碱度< 100 ppm;铁< 0.5 ppm ;导电镀< 250 mhos;没有明显的混浊和悬浮固态物。
当电厂工业水质能满足以上条件时可代替除盐水。
1.3.4 电厂控制系统发电锅炉采用炉、机、电集中控制方式。
控制系统采用分散控制系统(DCS),其功能包括数据采集系统(DAS)、模拟量控制系统(MCS)、锅炉炉膛安全监控系统(FSSS)、机炉辅机及发电机-变压器组的顺序控制系统(SCS)。
两台锅炉合设一个集中控制室,集中控制室与电子设备室集中布置。
两台锅炉的分散控制系统之间设置一公用网络,分别与两台锅炉的DCS通过网桥开关联接。
1.3.5 电厂供电现状电动机电源电压:低压380 V1.3.6 还原剂本脱硝工程采用氨水作为还原剂,采用浓度为20%的氨水水溶液。
氨水溶液储存量不小于2台锅炉BMCR工况下5~7天的用量,满足招标方的要求。
1.4 技术要求1.4.1 本项目围锅炉脱硝装置改造项目的设计、设备供货、安装、系统调试和试运行、考核验收、培训等。
1.4.2 脱硝装置的总体要求1.4.2.1脱硝系统和设备至少满足以下总的要求:● SNCR脱硝不增加烟气阻力;●脱硝装置设计在两台锅炉负荷50%-110%BMCR负荷围有效地运行;●采用SNCR烟气脱硝技术,采用20%氨水溶液(wt%)作为SNCR烟气脱硝系统的还原剂;●设计系统脱硝效率达到71.43%,原烟气氮氧化物折算浓度按照350mg/m3考虑(出口烟气含氧量按10.5%),系统脱硝效率最低保证值按照不小于71.43%进行设计。