《整式方程及整式方程的解法》复习题汇编
整式方程和分式方程-教师版

【例1】下列关于x 的方程中,为一元整式方程的是( )A .343x y -=B .24x -C .322x x =-D .22350x x --=【难度】★ 【答案】D【解析】含有一个未知数,且各项均为整式的方程,称为一元整式方程. 【总结】考察一元整式方程的概念.【例2】判断下列关于x 的方程,哪些是一元整式方程,并指出这些整式方程分别是一元几次方程?① 23270x a x +-=; ②321240(0)x x x a b a b+-=+≠+; ③13(0)1x x x +=≠-; ④212(0)x x x +=-≠; ⑤213502m xm x ⋅+-=-; ⑥352270(1)1x x x b b +--=≠-. 【难度】★【答案】 ①、②、⑥都是整式方程;①是一元二次方程;②是一元三次方程;⑥是一元五次方 程.【解析】“元”表示未知数的个数,“次”表示未知数的最高次数,各项都是整式的方程是整式方程;【总结】考察一元整式方程的概念.【例3】(1)若关于x 的方程62ax x +=的解为2,则a =__________;(2)若方程2250x kx --=的一个根是1-,则k =__________. 【难度】★【答案】(1)1a =-(2)3k =【解析】(1)把2x =代入62ax x +=,得:2641a a +=∴=-,; (2)把1x =-代入2250x kx --=,得:2503k k +-=∴=,. 【总结】考察对方程的解的概念的理解及应用.例题解析【例4】若关于x 的二项方程420x m +=没有实数根,则m 的取值范围是()A .0m ≤;B .0m <;C .0m ≥;D .0m >;【难度】★ 【答案】D【解析】因为42x m =-,所以412x m =-,若方程没有实数根,则0m >.【总结】考察二项偶次方程有解的情况.【例5】关于x 的方程2410mx x --=实数根的情况是( ) A .1个B .2个C .1个或2个D .不确定【难度】★★ 【答案】D【解析】当0m =时,方程化为14104x x +==-,,只有一个解;当0m ≠时,方程为一元二次方程,160m =+≥V ,即16m ≥-且0m ≠时,方程有两个实数根,160m =+<V , 即16m <-时,方程没有实数根;综上所述,方程实数根的情况不能确定. 【总结】考察对含字母系数的一元整式方程根的分类讨论.【例6】如果m .n 为常数,关于x 的方程2(2)32x kmkx n -+-=,无论k 为何值,方程的解总是12,则m =___________,n =____________. 【难度】★★ 【答案】13216m n ==,. 【解析】将方程整理得:()4168k x km n -=--,把12x =代入得:()141682k km n -=--,整理得:()13282m k n -=-,若k 为任意实数,则13216m n ==,. 【总结】考察含字母的系数的整式方程解的讨论及综合应用.(1)42416x x =;(2)4220x x +-=; (3)222(231)22331x x x x -+=-+;(4)22(1)1x x x +--=.【难度】★★【答案】(1)1234022x x x x ===-=,,; (2)1211x x =-=,;(3)1234330322x x x x ====-,,,; (4)12342210x x x x =-==-=,,,.【解析】解:(1)由42416x x =,得:4240x x -=,即()()2220x x x +-=,解得原方程的解为:1234022x x x x ===-=,,;(2)由4220x x +-=,得:()()22210x x +-=,即()()()22110x x x ++-=, 解得原方程的解为:1211x x =-=,; (3)由222(231)22331x x x x -+=-+,得:()()()222223223111231x x x x x x -+-+=-+,即()()222239230x x x x ---=,分解因式,得:()()()233230x x x x --+=,解得原方程的解为:1234330322x x x x ====-,,,;(4)因为22(1)1x x x +--=,所以分以下情况讨论: ①当20x +=时,解得:12x =-;②当211x x --=时,解得:2321x x ==-,; ③当211x x --=-时,解得:4501x x ==,, 当211x x --=-时,2x +应为偶数,1x ∴=舍去, 故原方程的解为:12342210x x x x =-==-=,,,.【总结】本题主要考察一元高次方程的解法,第(4)问注意要从多个角度进行分类讨论.(1)(1)42a ax x -=-; (2)2(2)31a x a x --=+. 【难度】★★【答案】(1)当2a ≠±时,12x a =+,当2a =时,x 为一切实数,当2a =-时,方程无解; (2)当1a =-时,x 为一切实数,当1a =时,方程无解,当1a ≠±时,()()121a x a -=+,211a x a +=-.【解析】解:(1)由(1)42a ax x -=-,得:()242a x a -=-,故当240a -≠时,即2a ≠±,12x a =+;当240a -=时, (1)2a =:00x =,x 为一切实数;(2)2a =-:04x =-,方程无解;综上所述:当2a ≠±时,2x a =+;当2a =时,x 为一切实数;当2a =-,方程无解; (2)由2(2)31a x a x --=+,得:()()2212310a x a a --++=, 即()()()()11121a a x a a +-=++,当1a =-时,00x =,x 为一切实数; 当1a =时,06x =,方程无解;当1a ≠±时,()()121a x a -=+,211a x a +=-.【总结】考察含字母系数的整式方程的求解,注意进行分类讨论.【例9】解下列方程:(1)222(2)0x x --=;(2)(1)(2)(3)35x x x x +++=;(3)()()()()123410x x x x +++++=. 【难度】★★【答案】(1)12342121x x x x =-===-,,,;(2)12x x ==;(3)12x x ==【解析】解:(1)由222(2)0x x --=, 得:()()22220x x x x +---=,即()()()()21210x x x x +--+=,故原方程的解为:12342121x x x x =-===-,,,;(2)由(1)(2)(3)35x x x x +++=,得:()()2235370x x x x +-++=,2350x x ∴+-=或2370x x ++=,当2350x x +-=,12x x =2370x x ++=,0<V ,方程无解.所以原方程的解为:12x x =; (3)由()()()()123410x x x x +++++=, 得:()()()()142310x x x x +++++=⎡⎤⎡⎤⎣⎦⎣⎦, 即()()22545610x x x x +++++=, 所以()22550x x ++=, 即2550x x ++=,解得原方程的解为:12x x =. 【总结】考察整式方程的解法,注意因式分解的准确运用.【例10】关于x 的方程43mx x n +=-,分别求m 、n 为何值时,原方程:(1)有唯一解; (2)有无数多解; (3)无解. 【难度】★★★【答案】(1)3m ≠,n 为任意实数,有唯一解; (2)3m =,4n =-,有无数多解; (3)3m =,4n ≠-,方程无解.【解析】解:43mx x n +=-,整理得:()34m x n -=+,(1)当30m -≠时,即3m ≠,n 为任意实数,43nx m+=-,即有唯一解; (2)当30m -=,40n +=时,即3m =,4n =-,00x =,x 为一切实数,即有无数多解; (3)当30m -=,40n +≠时,即3m =,4n ≠-,04x n =+,方程无解. 【总结】考察整式方程含字母系数的方程求解的分类讨论.【例11】解下列方程:(1)22b x x a a b-+=(0a b <<); (2)24433()0abx a b x a b -++=(0ab ≠). 【难度】★★★【答案】(1)x =(2)3312b a x x a b ==,.【解析】(1)因为22b x x aa b -+=,所以2222b bx ax a -=+, 即2222ax bx b a +=-,则()()()2a b x a b b a +=+-, 因为0a b <<,所以0a b +≠,0b a ->,所以原方程的解为:x =(2)因为24433()0abx a b x a b -++=(0ab ≠),所以()()330ax b bx a --=, 则30ax b -=或30bx a -=,∴3ax b =或3bx a =,0ab ≠Q ,∴00a b ≠≠,,∴原方程的解为:3312b a x x a b==,.【总结】考察含字母系数的方程的分类讨论,注意考虑未知数系数是否为零.【例12】已知a 是正整数,且使得关于x 的一元二次方程22(21)4(3)0ax a x a +-+-=至少有一个整数根,求a 的值. 【难度】★★★【答案】a 的值为13610,,,.【解析】(1)将原方程变形为()()2226x a x +=+,显然20x +≠,即2x ≠-.()()2262x a x +∴=+,Q a 是正整数,1a ∴≥,即()()22612x x +≥+,()()228042042x x x x x ∴+-≤+-≤∴-≤<,即,.Q 方程至少有一个整数根,∴当x 可取431012---,,,,,时,故对应的a 的值为141610319,,,,,,Q a 是正整数,a ∴的值为13610,,,.【总结】考察在一元二次方程中,如果参数是一次的,可以先对这个参数求解,题目比较典型,难度较大.【例13】已知方程:①2510x x +-=,②22123x x +=,③3711510x x +=+-,④10x=,⑤111y z x y x z +=---3=,其中分式方程有_________________. 【难度】★【答案】③、④、⑤.【解析】分母中含有未知数的方程叫分式方程. 【总结】考察分式方程的概念.【例14】解下列分式方程: (1)23y y +=;(2)216244y y y -=--. 【难度】★【答案】(1)1212y y ==,;(2)2y =-. 【解析】(1)由23y y+=,得:2320y y -+=,即()()120y y --=,解得:1212y y ==,, 经检验:1212y y ==,是原方程的解, 所以原方程的解为1212y y ==,;(2)由216244y y y -=--,得:2280y y --=,即()()420y y -+=,解得:1242y y ==-,, 经检验:14y =是原方程的增根,所以原方程的解为:2y =-. 【总结】本题主要考察分式方程的解法,注意解完后要检验. 【例15】解下列分式方程: (1)2613x x x +=+-; (2)214124x x -=--. 【难度】★★【答案】(1)12x x ==; (2)1x =-. 【解析】(1)由2613x x x +=+-,得()()()2361x x x +-=+,即27120x x --=,解得:12x x =,经检验:12x x =是原方程的解,所以原方程的解为12x x ==; (2)由214124x x -=-- ,得2244x x +-=-,即()()210x x -+=,解得:1221x x ==-,,经检验:2x =是原方程的增根, 所以原方程的解为:1x =-.【总结】考察分式方程解法,注意要检验根.【例16】解下列分式方程:(1)222412352x x x x x +-+=---;(2)21111333x x x x +-=--. 【难度】★★【答案】(1)12012x x ==-,;(2)无解. 【解析】(1)由222412352x x x x x +-+=---,得:()()22412312x x x x x +-+=-+-, 即()()222314352x x x x x +++-=--, 解得:12012x x ==-,, 经检验:12012x x ==-,是原方程的解, 所以原方程的解为12012x x ==-,;(2)由21111333x x x x +-=--,得:()()1111331x x x -=--, 即()31x x x --=,解得:1x =, 经检验:1x =为原方程的增根,所以原方程无解.【总结】考察分式方程的解法,注意要检验.【例17】解下列分式方程:(1)2223x x+=;(2)2231712x x x x -+=-.【难度】★★【答案】(1)123411x x x x =-===,,;(2)12122x x =-=,,3411x x =+=【解析】(1)由2223x x+=,得42320x x -+=,即()()(110x x x x +-=,解得:123411x x x x =-===,,,经检验:123411x x x x =-===,,是原方程的解,所以原方程的解为:123411x x x x =-==,,; (2)设21x a x =-,则1732a a +=可化为整式方程:26720a a -+=, 即()()32210a a --=, 解得:122132a a ==,,当2213x x =-时,即22320x x --=,()()2120x x +-=,解得:12122x x =-=,, 当2112x x =-时,即2210x x --=,解得:3411x x =+= 经检验:12122x x =-=,,3411x x =+=所以原方程的解为:12122x x =-=,,3411x x ==-【总结】考察利用换元法解分式方程,注意解完后进行验根.【例18】解下列分式方程:(1)517311x y x y x y x y⎧+=⎪+-⎪⎨⎪-=⎪+-⎩;(2)51342212x y xy ⎧-=⎪⎪⎨⎪+=⎪⎩. 【难度】★★【答案】(1)3414x y ⎧=⎪⎪⎨⎪=⎪⎩; (2)612x y =⎧⎨=⎩.【解析】(1)设11a b x y x y ==+-,,则5731a b a b +=⎧⎨-=⎩,解得:12a b =⎧⎨=⎩, 1112x y x y⎧=⎪+⎪∴⎨⎪=⎪-⎩,112x y x y +=⎧⎪∴⎨-=⎪⎩,3414x y ⎧=⎪⎪∴⎨⎪=⎪⎩ 经检验:3414x y ⎧=⎪⎪⎨⎪=⎪⎩是原方程组的解, ∴原方程的解为3414x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)设11a b x y ==,,则3541222a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得:16112a b ⎧=⎪⎪⎨⎪=⎪⎩,1161112x y ⎧=⎪⎪∴⎨⎪=⎪⎩,612x y =⎧∴⎨=⎩, 经检验:612x y =⎧⎨=⎩是原方程组的解, 所以原方程的解为:612x y =⎧⎨=⎩.【总结】考察利用换元法解分式方程组,注意进行检验.【例19】解方程:(1)2225413242x x x x x -+=++--; (2)221193431x x x x x ++=--+-. 【难度】★★【答案】(1)6x =; (2)无解.【解析】(1)原方程可化为:()()()()254112222x x x x x x -+=+++--, 去分母,得:28120x x -+=, 即()()260x x --=,解得:1226x x ==,,经检验:2x =是方程的增根,∴原方程的解为6x =;(2)原方程可化为:()()()12113313x x x x x -+=----,去分母,得:2430x x -+=,解得:1213x x ==,,经检验:1213x x ==,是方程的增根,∴原方程无解.【总结】考察分式方程的解法,注意先分解因式再计算,解完后注意验根.【例20】若方程222312122x b bx x x x +-+=---有增根,求b 的值.【难度】★★【答案】1b =±或2b =-.【解析】222312122x b bx x x x +-+=---,去分母得()2221210x b x b -++-=,Q 方程有增根,∴(1)把增根0x =代入整式方程得:210b -=,1b ∴=±; (2)把增根2x =代入整式方程,得:2470b b +-=,2b ∴=-± 综上所述,1b =±或2b =-.【总结】考察已知增根,如何求解分式方程中的字母.先将分式方程化成整式方程,再代入增根求得字母的值.【例21】解方程:34xx x x-=【难度】★★★ 【答案】4x =. 【解析】当0x >时,43x x-=,去分母,得:()()2340410x x x x --=-+=,, 1241x x ∴==-,,0x >Q ,1x ∴=-舍去,4x ∴=,经检验4x =是原方程的解; 当0x <时,43x x+=,去分母,得23400x x -+=<V ,此时,∴方程无解. 综上所述,原方程的解为4x =.【总结】考察含绝对值的分式方程的解法,注意进行分类讨论.【例22】解方程:(1)11115867x x x x +=+++++; (2)222(3)223x x x x x x -+++=+--. 【难度】★★★ 【答案】(1)132x =-;(2)12403x x ==,.【解析】(1)由11115867x x x x +=+++++,得11115678x x x x -=-++++, 即()()()()115678x x x x =++++,所以()()()()5678x x x x ++=++, 去括号,得:2211301556x x x x ++=++,即426x =,解得:132x =-, 经检验:132x =-是原方程的解, ∴原方程的解为132x =-; (2)由222(3)223x x x x x x -+++=+--,得()2362424223x x x x x x -++--++=+--, 即4412112223x x x ⎛⎫⎛⎫-++=+ ⎪ ⎪+--⎝⎭⎝⎭,113223x x x -=-+-, 即()()()()()()2323322x x x x x x +----=+-,2340x x -=,解得:12403x x ==,,经检验:12403x x ==,是原方程的解,∴原方程的解为12403x x ==,. 【总结】考察分式方程的解法,本题综合性较强,注意对方法的归纳总结.【例23】解下列方程:(1)22111256890x x x x ⎛⎫⎛⎫+-++= ⎪ ⎪⎝⎭⎝⎭;(2)11111(1)(1)(9)(10)12x x x x x x ++⋅⋅⋅+=-+++;(3)222111011828138x x x x x x ++=+-+---.【难度】★★★【答案】(1)12122x x ==,,343223x x ==,;(2)12211x x ==-,; (3)2181x x ==-,,3481x x =-=,. 【解析】(1)设1x a x+=,原方程可化为:21256650a a -+=, 即()()256130a a --=,解得:1251326a a ==,,当52a =时,即152x x +=,22520x x -+=,解得:12122x x ==,;当136a =时,即1136x x +=,261360x x -+=,解得:343223x x ==,;经检验:12122x x ==,,343223x x ==,是原方程的解, ∴原方程的解为12122x x ==,,343223x x ==,; (2)原方程变形为111111111191012x x x x x x -+-++-=-+++L , 整理得:111111012x x -=-+,去分母得:29220x x +-=,解得:12211x x ==-,, 经检验12211x x ==-,是原方程的根,∴原方程的解为12211x x ==-,;(3)令228x x y +-=,原方程可化为1110915y x y y x++=+-, 解得:9y x =或5y x =-,当9y x =时,2289x x x +-=,解得:1281x x ==-,; 当5y x =-时,2285x x x +-=-,解得:3481x x =-=,; 经检验1281x x ==-,,3481x x =-=,是原方程的解,∴原方程的解为1281x x ==-,,3481x x =-=,.【总结】考察利用换元法解分式方程,综合性较强,注意对方法的归纳总结.【例24】已知关于x 的方程21221232a a x x x x ++=---+有增根,求a 的值. 【难度】★★★【答案】32a =-或2a =-.【解析】由方程有增根可知,1x =或2x =,原方程去分母得:()2122x a x a -+-=+,当1x =时,221a +=-,解得:32a =-;当2x =时,解得:2a =-,综上所述:当32a =-或2a =-时,x 的方程21221232a a x x x x ++=---+有增根. 【总结】考察分式方程的解,利用分式方程的增根是整式方程的解得出关于a 的一元一次方程,从而解得求出a 的值.【例25】当a 取什么整数时,关于x 的方程2202(2)x x x a x x x x -+++=--只有一个实数根,并求此实数根. 【难度】★★★【答案】当4a =-时,方程只有一个实数根1x =;当8a =-时,方程只有一个实数根1x =-. 【解析】原方程可化为()222402x x ax x -++=-, (1)若0x ≠且2x ≠,则22240x x a -++=,Q 方程只有一个实数根,0∴=V ,即8280a =--=V ,72a ∴=-,但a 为整数,则应舍去;(2)若22240x x a -++=有一个根是0x =,则4a =-;此时原方程为()224022x x x x x x x --++=--,去分母得2220x x -=,解得:1201x x ==,; 经检验0x =为增根,1x =是原方程的解,4a ∴=-时,原方程只有一个根为1x =;(3)若22240x x a -++=有一个根是2x =,则8a =-;此时原方程为()228022x x x x x x x --++=--, 去分母得,22240x x --=,解得:1221x x ==-,; 经检验2x =为增根,1x =-是原方程的解,4a ∴=-时,原方程只有一个根为1x =-.综上所述:当4a =-时,方程只有一个实数根1x =; 当8a =-时,方程只有一个实数根1x =-.【总结】考察分式方程增根的综合应用,综合性较强,注意分类讨论.【例26】解已知关于x 的方程22(1)()(27)1011x xa a x x --++=-- (1)求a 的取值范围,使得方程有实数根;(2)求a 的取值范围,使得方程恰有一个实数根;(3)若原方程的两个相异的实数根为12x x ,,且121231111x x x x +=--,求a 的值.【难度】★★★ 【答案】(1)5328a ≥-且1a ≠±(2)5328a =-或1a ≠±;(3)128103a a ∴=-=,.【解析】(1)当原方程为一元一次方程时,即210a -=,1a ∴=±,此时原方程有解;当原方程为一元二次方程时,此时2101a a -≠≠±,,设1xy x =-,原方程可以化为()()2212710a y a y --++=,()()2227410a a ∴=+--≥V ,即28530a +≥, 解得:5328a ≥-且1a ≠±, 综上所述:5328a ≥-; (2)同理可知:若方程有一个实数根,则1a =±;或0=V ,5328a ∴=-; (3)令12121211x x y y x x ==--,,则12311y y +=,即2273111a a +=-, 2227733a a ∴+=-,2322800a a ∴--=,128103a a =-=解得:,.【总结】考察分式方程与整式方程之间的转化即求解情况的讨论.随堂检测【习题1】 在方程:①969642x x -=-,②213014000x x +-=,③3132x x +=, ④121014x x -=+中,是分式方程的有( ) A .①和②B .②和③C .③和④D .①和④【难度】★ 【答案】D【解析】分母中含有未知数的方程叫做分式方程. 【总结】考察分式方程的定义.【习题2】 下列方程中,有实数根的是() A .220x x -+= B .410x -=C .40n x +=D .111x x x =-- 【难度】★ 【答案】B【解析】.0A <V ,无解;4.11B x x ==±,;.C n 为偶数时无解,n 为奇数时有解; .1D x =为增根,方程无解.【总结】考察方程有无实数根的分类讨论.【习题3】 下列方程中,不是二项方程的为( )A .51x =;B .6x x =C .31309x += D .4160x +=【难度】★ 【答案】B【解析】如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程.关于x 的一元n 次二项方程的一般形式为:0(00n ax b a b n +=≠≠,,是正整数) 【总结】考察二项方程的定义.【习题4】 (1)若分式22221x x x x --++的值为0,则x 的值等于__________;(2)若分式351x x +-无意义,当510322m x m x -=--时,则m =__________.【难度】★【答案】(1)2;(2)37m =.【解析】(1)由2220210x x x x ⎧--=⎨++≠⎩, 得:()()()212010x x x +-=⎧⎪⎨+≠⎪⎩,2x ∴=; (2)若分式351x x +-无意义,10x ∴-=,即1x =;5103221m m ∴-=--, 去分母,得730m -=,解得:37m =.【总结】考察分式值为零和分式无意义的解法.【习题5】 (1)用换元法解方程222212x x x x -+=-时,如设212y x x=-,则将原方程化为关于y 的整式方程是___________; (2)若关于x 的方程2133mx x =---无解,则m =__________. 【难度】★【答案】(1)2210y y --=;(2)2m =-.【解析】(1)原方程可转化为()2212212x x x x ⋅--=-,212y x x =-Q , ∴方程转化为分式方程为1210y y --=,去分母化为整式方程为:2210y y --=;(2)方程去分母得:23x m =--,若方程无解,则3x =,代入整式方程得2m =-. 【总结】考察分式方程去分母转化整式方程及对方程无解的理解及运用. 【习题6】 解下列方程: (1)3(2)80x ++=; (2)45(52)10x -=.【难度】★★【答案】(1)4x =-;(2)12x x ==. 【解析】(1)由3(2)80x ++=,得:()328x +=-,解得:4x =-;(2)由45(52)10x -=,得:()4522x -=,解得:12x x ==. 【总结】考察高次方程的解法,注意偶次方根有两个.【习题7】 解下列方程: (1)3244160x x x --+=;(2)()()426767720x x +-+-=;(3)4322914920x x x x -+-+=. 【难度】★★【答案】(1)123224x x x =-==,,;(2)125233x x =-=-,;(3)12341122x x x x ====,,. 【解析】(1)由3244160x x x --+=,得:()()24440x x x ---=,即()()()2240x x x +--=,解得原方程的解为:123224x x x =-==,,;(2)由()()426767720x x +-+-=,得:()()226796780x x ⎡⎤⎡⎤+-++=⎣⎦⎣⎦,所以()26790x +-=,即673x +=±,故原方程的解为:125233x x =-=-,;(3)原方程可变形为:()()()43322227777220x x x x x x x +--+++--+=,即()()()()43322227777210x x x x x x x ---+---=,所以()()32127720x x x x --+-=,()()()32122770x xx x ⎡⎤----=⎣⎦,()()()()21211710x x x x x x ⎡⎤--++--=⎣⎦,即()()()212210x x x ---=,解得原方程的解为12341122x x x x ====,,. 【总结】本题主要考查一元高次方程的解法,注意通过因式分解进行降次,从而求出方程的解,综合性较强,解题时注意分析.【习题8】 解下列方程: (1)22(a b)ax b bx a +=+≠;(2)2(3)40m y y -+=.【难度】★★【答案】(1)x a b =+;(2)1240(3)3y y m m==≠-,此时. 【解析】(1)原方程可变形为:()()()a b x a b a b -=+-, a b ≠Q ,0a b ∴-≠,()()a b a b x a b+-∴=-,x a b ∴=+;(2)原方程可变形为:()340y m y -+=⎡⎤⎣⎦,当30m -=,即3m =时,40y =,0y ∴=;当30m -≠,即3m ≠时,12403y y m==-,,综上所述:1240(3)3y y m m ==≠-,此时【总结】考察含字母系数的整式方程的求解,注意需要分类讨论.【习题9】 解下列分式方程:(1)3363242x x -=-+; (2)214124y y -=--; (3)2116122312x x x x -+=--+--; (4)222222322141233636109x x x x x x x x x x -+-+-+=+--++. 【难度】★★【答案】(1)12x x ==;(2)1y =-; (3)12233x x =-=,;(4)12912x x ==-,.【解析】(1)去分母,得:()()()()12233222432x x x x +--+=-, 化简,得:21224912127248x x x x +--+=-,2324280x x +-=,解得:12x x ,经检验:12x x ==是原方程的解,所以原方程的解为12x x ==; (2)去分母,得:2244y y +-=-,即()()210y y -+=, 解得:1221y y ==-,,经检验:12y =是原方程的增根,舍去, 所以原方程的解为:1y =-;(3)去分母,得:()()()()232312326x x x x ++-=-+--,即23760x x +-=, 解得:12233x x =-=,,经检验:12233x x =-=,是原方程的解, 所以原方程的解为:12233x x =-=,;(4)原方程变形为:()()()()()()()()()()()12261311326(6)19x x x x x x x x x x x x ----+-+=+--+++,即()()21311369x x x x x x ---+=+++,去分母得:()()()()()()()()()169213931360x x x x x x x x x -+++-++--++= 所以()()()()()()()1692393360x x x x x x x -+++++-++=⎡⎤⎣⎦,即 ()()112540x x -+=,解得:12912x x ==-,经检验:12912x x ==-,是原方程的解,∴原方程的解为12912x x ==-,.【总结】本题主要考查分式方程的求解,注意先去分母再计算,解完后注意要验根.【习题10】 当a 为何值时,方程2233x ax x-=---有增根. 【难度】★★ 【答案】1a =.【解析】原方程去分母得:()223x x a -=-+,Q 方程有增根,3x ∴=, 代入整式方程得:1a =,∴当1a =时,方程有增根.【总结】考察已知方程有增根,如何求解方程中的字母参数;先将分式方程转化整式方程,再代入增根求解字母的值.【习题11】 解下列分式方程:(1)1111x a x a +=+--(a 为已知数); (2)1121511015x y x y x y x y ⎧+=⎪-+--⎪⎨⎪+=⎪-++-⎩; (3)16252736x x x x x x x x +++++=+++++. 【难度】★★★【答案】(1)121a x a x a ==-,;(2)22x y =⎧⎨=⎩;(3)92x =-. 【解析】(1)原方程变形为:()()111111x a x a -+=-+--, 11x a ∴-=-或111x a -=-,解得:121a x a x a ==-,, 经检验:121ax a x a ==-,是原方程组的解,∴原方程组的解为121ax a x a ==-,;(2)设x y a x y b +=-=,,则方程组变形为()()112115110215b ab a ⎧+=⎪⎪+-⎨⎪+=⎪+-⎩,由()()21-,得:225a =--,解得:4a =,将4a =代入()1得:0b =,40x y x y +=⎧∴⎨-=⎩,解得:22x y =⎧⎨=⎩经检验:22x y =⎧⎨=⎩是原方程组的解,∴原方程组的解为22x y =⎧⎨=⎩;(3)原方程可化为111111112736x x x x -+-=-+-++++,则11112736x x x x +=+++++, 即11112367x x x x -=-++++, 去分母,得:()()()()6723x x x x ++=++, 解得:92x =-,经检验92x =-是原方程的根,所以原方程的解为:92x =-.【总结】考察方程通过变形后转化成为一般的方程求解的解法,注意解完后进行检验.【习题12】 若关于x 的方程22111x m x x x x --=+--无实数根,求m 的值; 【难度】★★★【答案】74m <或2m =【解析】去分母整理得:220x x m -+-=,Q 原方程无实数根,则(1)()1420m =--<V ,即74m <;(2)整式方程的根是原分式方程的增根,则0x =或1x =,代入整式方程得:2m =,综上所述:当74m <或2m =时,原方程无实数根.【总结】本题考察分式方程无实数根的分类讨论:1.分式方程转化的整式方程无实数根;2.整式方程的根为分式方程的增根.【习题13】 已知关于x 的二次方程22(815)2(133)80k k x k x -+--+=的两个根都是整数,求实数k . 【难度】★★★ 【答案】7k =或133k =或4k = 【解析】原方程可化为:()()()23562680k k x k x --+-+=,即 ()()34520k x k x -+-+=⎡⎤⎡⎤⎣⎦⎣⎦,()()350k k --≠Q ,124235x x k k ∴=-=---,, 124235k k x x ∴-=--=-,,消去k 得:122120x x x x •+-=,()()12212x x ∴+-=-.12x x Q ,都是整数,122112x x +=⎧∴⎨-=-⎩,122112x x +=-⎧⎨-=⎩,122211x x +=⎧⎨-=-⎩,122211x x +=-⎧⎨-=⎩解得:1211x x =-⎧⎨=-⎩,1233x x =-⎧⎨=⎩,1200x x =⎧⎨=⎩(舍去),1242x x =-⎧⎨=⎩解得:7k =或133k =或4k =;经检验,7k =或133k =或4k =满足分式方程的解,综上所述:7k =或133k =或4k =. 【总结】将方程整理成关于x 的一元二次方程的一般形式后,二次项系数不为零是隐含的条件,将参数k 用方程两根表示最终消去是解题的关键.【作业1】用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关 于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=【难度】★ 【答案】A【解析】原方程可化为310y y-+=,去分母得230y y +-=. 【总结】考察分式方程运用换元法转化整式方程的方法.【作业2】(1)若关于x 的方程(2)1a x b -=-无解,那么a ________,b __________;(2)已知关于x 的方程1302x a --=与203x ax --=的解相同,则a =____________.【难度】★【答案】(1)21a b =≠,;(2)531a =-. 【解析】(1)方程ax b =,当00a b ==,时,x 为一切实数;当00a b =≠,时,方程无解;当0a ≠时,bx a =-;(2)由方程1302x a --=,解得:61x a =+;由方程203x a x --=,解得:5ax =-:Q 方程的解相同,615a a ∴+=-,解得:531a =-.【总结】考察含字母的方程的解得问题的分类讨论.课后作业【作业3】下列说法错误的个数是()①二项方程一定有解;②二项方程的解最多有两个;③二项方程如果有两个解,则一定互 为相反数; A .0B .1C .2D .3【难度】★ 【答案】B【解析】①二项方程一定有解;(错);①二项方程的解最多有两个;(对)①二项方程如果有两 个解,则一定互为相反数;(对),故错误的有1个,选B . 【总结】考察二项方程及二项方程的解得概念.【作业4】关于x 的方程351x a bx -+=+有唯一解,则必须( )A .2a b ≠;B .6a ≠且3b ≠;C .3b ≠;D .6a =且3b ≠【难度】★ 【答案】C【解析】原方程可化为:()36b x a -=-,若方程有唯一解,则30b -≠,3b ∴≠. 【总结】考察含字母的方程求解问题的分类讨论.【作业5】如果不论k 为何值,1x =-总是关于x 的方程2123kx a x bk+--=-的解,试求a 、b 的值. 【难度】★★ 【答案】10332a b =-=,. 【解析】把1x =-代入方程,得:2123k a bk-+---=-,整理得()23310b k a -+=-, 230310b a ∴-==-,,解得:10332a b =-=,.【总结】考察了一元一次方程的解以及方程未知数的转换.【作业6】解下列方程: (1)3215200x x +=;(2)3244160x x x --+=;(3)22(321)(327)120x x x x -+--+=;(4)222()4(223)0x x x x ----=.【难度】★★【答案】(1)123403x x x ===-,; (2)123224x x x =-==,,;(3)1234151133x x x x ==-=-=,,,; (4)12341223x x x x =-==-=,,,.【解析】(1)由3215200x x +=,得:()25340x x +=,解得原方程的解为:123403x x x ===-,;(2)由3244160x x x --+=,得()()24440x x x ---=,故()()()2240x x x +--=,解得原方程的解为:123224x x x =-==,,;(3)由22(321)(327)120x x x x -+--+=,得()()2223263250x x x x ---+=,即()()223213250x x x x ----=,分解因式,得:()()()()1311350x x x x -++-=,解得原方程的解为:1234151133x x x x ==-=-=,,,;(4)由222()4(223)0x x x x ----=,得:()()2228120x x x x ---+=,即()()22260x x x x ----=,分解因式,得:()()()()12230x x x x +-+-=, 解得原方程的解为:12341223x x x x =-==-=,,,. 【总结】考察整式方程中运用换元思想降幂,求解高次方程的解法.【作业7】解下列方程:(1)222()0abx a b x ab -++=(0a ≠,0b ≠); (2)2222(1)(1)(1)a x x a x a x -+--=-. 【难度】★★【答案】(1)12b ax x a b==,;(2)当0a =时,0x =;当1a =时,2x =; 当0a ≠且1a ≠时,1211a ax x a a +==-,. 【解析】(1)原方程可分解为:()()0ax b bx a --=,即ax b =或bx a =, 00a b ≠≠Q ,,∴可得原方程的解为:12b ax x a b==,; (2)原方程可整理为:()()()2222210a a x a x a a ---++=, 当20a a -=时,当0a =时,0x =;当1a =时,2x =;当20a a -≠时,即0a ≠且1a ≠时,()()110ax a a x a -+--=⎡⎤⎡⎤⎣⎦⎣⎦, 解得:1211a ax x a a +==-,, 综上所述:当0a =时,0x =;当1a =时,2x =;当0a ≠且1a ≠时,1211a ax x a a +==-,. 【总结】考察含字母系数的方程的求解,注意进行分类讨论.【作业8】解下列方程: (1)651(1)x x x x +=++;(2)225242414015x x x x x x-+++=+-;(3)221245422x x x x +++=++;(4)22171()102x x x x +--+=.【难度】★★【答案】(1)1x =; (2)1212x x ==,,3434x x =-=-,;(3)1x =-;(4)12122x x =-=,,3411x x =+=-【解析】(1)对原方程去分母得:65x x =+,解得:1x =, 经检验1x =是原方程的解,∴原方程的解为:1x =;(2)设251x xy x -=+,原方程可化为24140y y ++=, 214240y y ∴++=,()()2120y y ++=,解得:12212y y =-=-,.当2y =-时,2521x xx -=-+,2320x x -+=,解得:1212x x ==,当12y =-时,25121x xx -=-+,27120x x ++=,解得:3434x x =-=-,经检验1212x x ==,,3434x x =-=-,均是原方程的解, 所以原方程的解为:1212x x ==,,3434x x =-=-,; (3)原方程可化为()2212223022x x x x +++-=++,设222x x a ++=,则可化为1230a a+-=,转化整式方程得:22310a a -+=, ()()2110a a ∴--=,解得:12112a a ==,.当12a =时,21222x x ++=,22430x x ++=,0<V ,方程无解;当1a =时,2221x x ++=,2210x x ++=,121x x ∴==-; 经检验1x =-是原方程的解,所以原方程的解为:1x =-; (4)原方程可化简为:21712102x x x x ⎛⎫⎛⎫-+--+= ⎪ ⎪⎝⎭⎝⎭,令1x t x -=,则27302t t -+=,化成整式方程得:22760t t -+=,即()()2320t t --=,解得:12322t t ==,,当32t =时,132x x -=,22320x x --=,()()2120x x +-=,解得:12122x x =-=,;当2t =时,12x x-=,2210x x --=,解得:3411x x ==经检验12122x x =-=,,3411x x ==所以原方程的解为:12122x x =-=,,3411x x ==【总结】本题主要考察利用去分母或者是换元法解分式方程,注意解完后要检验.【作业9】解下列方程:(1)11118475x x x x +=+----; (2)222212219116x x x x x x x +++++=+++. 【难度】★★★【答案】(1)6x =;(2)12x x ==,31x =. 【解析】(1)原方程可变形为:11118754x x x x -=-----,即()()()()118754x x x x =----, 所以()()()()8754x x x x --=--, 去括号,得:221556920x x x x -+=-+, 解得:6x =.经检验6x =是原方程的解,所以原方程的解为6x =;(2)原方程可变形为:222211231132x x x x x x ++++=++++,设2211x x y x ++=+,则原方程变为12332y y +=+,解得:122332y y ==,.当221213x x x ++=+时,化简得:2310x x ++=,解得:12x x ==; 当221312x x x ++=+时,化简得:2210x x -+=,解得:31x =,经检验12x x =,31x =是原方程的解,所以原方程的解为:12x x ==,31x =. 【总结】考察分式方程的解法,注意对方法的归纳总结,解完后注意要检验.【作业10】若方程x 的方程2211k x kx x x x x+-=--只有一个解,求k 的值. 【难度】★★★ 【答案】0k =或12k =. 【解析】原方程可以化为()22310kx k x +--=①,(1)当0k =时,原方程有一个解,12x =; (2)当0k ≠时,()225410k k =+->V ,则方程①恒有两个不相等的实数根,又Q 原方程只有一个解,则必有一个解为原方程的增根,即0x =或1x =,当0x =时,不是方程①的解,1x ∴=,代入方程①得12k =;把12k =代入原方程,得2x =-.综上所述:0k =或12k =【总结】考察先将分式方程转化为整式方程,把分式方程解的讨论转化为整式方程解的讨论.【作业11】已知方程()222221210()x ax a a x a +-++-=+有实数根,求实数a 的取值范围. 【难度】★★★【答案】1122a -≤≤且0a ≠.【解析】原方程可整理得()()22221210x a x a a x a +-++-=⎡⎤⎣⎦+,进一步整理得:()()222220x ax a ax x a +-+=+,()20x a x a x a ⎡⎤∴+-=⎢⎥+⎣⎦,()0x a x a x a ∴+-=+, 去分母整理,得:()223210ax a x a +-+=;当0a =时,解得:0x =,此时0x a +=,原方程无意义;当0a ≠时,若方程有实数根,则()2242140a a =--≥V ,解得:1122a -≤≤,其方程的根为:x =,又0x a +≠Q ,即x a =≠-,解得:0a ≠,综上所述,当原方程有实数根时,a的取值范围为:1122a-≤≤且0a≠.【总结】考察方程有解求方程中参数的问题,以及结合含字母系数的分类讨论的综合运用,综合性加强,注意进行方法的总结.。
方程题100道带答案大全_一元一次方程解法步骤

方程题100道带答案大全_一元一次方程解法步骤只含有一个未知数、未知数的最高次数为1的等式叫做一元一次方程(linear equation in one unknown);使方程左右两边的值相等的未知数的值,叫做方程的解(solution)标准形式一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax=b( )。
其中是未知数的系数,是常数,是未知数。
未知数一般常设为 , , 。
方程特点(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。
满足以上三点的方程,就是一元一次方程。
判断方法要判断一个方程是否为一元一次方程,先看它是否为整式方程。
若是,再对它进行整理。
如果能整理为的形式,则这个方程就为一元一次方程。
里面要有等号,且分母里不含未知数。
变形公式( ,为常数,为未知数,且 )求根公式一元一次方程的标准形式:ax+b=0 (a≠0)其求根公式为:x=-b/a一元一次方程只有一个根通常解法去分母→去括号→移项→合并同类项→未知项系数化为1(即化为x=a的形式)两种类型(1)总量等于各分量之和。
将未知数放在等号左边,常数放在右边。
如:。
(2)等式两边都含未知数。
如:,。
方程举例3y=-15z+2=52x=15a+4=13×32都是一元一次方程。
“方程”一词来源于中国古算术书《九章算术》。
在这本著作中,已经列出了一元一次方程。
法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。
在19世纪以前,方程一直是代数的核心内容。
主要用途一元一次方程通常可用于做应用题,如工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题等。
[1]补充说明合并同类项(1)依据:乘法分配律(2)把所含字母相同且相同字母的指数也相同的项合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
移项(1)依据:等式的性质一(2)含有未知数的项变号后都移到方程左边,把常数项移到右边。
八年级数学期末整式与分式(方程)基础复习

(2)单项式乘多项式:
(3)多项式乘多项式:
【例题精讲】整式乘法与因式分解
1、下列各式计算正确的是()
A.(x-1)2=x2-1B.4x2-9=(4x+3)(4x-3)
C.9-6(m-n)+(m-n)2=(3-m-n)2D.(-2a-3b)(2a-3b)=9b2-4a2
2、将下列多项式因式分解,结果中不含因式(x+2)的是()
8、解方程:(1) (2)
9、先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y=-1.5。
4、先化简,再求值: ,其中 。
5、解分式方程:(1) (2)
【课堂练习】
1、如果把 中的x和y都扩大到5倍,那么分式的值()
A.扩大5倍B.不变C.缩小5倍D.扩大4倍
2、分式方程 去分母正确的是()
A.x(x+1)-1=1B.x(x+1)-1=-1C.x(x+1)-x2+1=-1D.x(x+1)-x2-1=-1
2、分式值为0的条件:
3、最简公分母的含义:
4、分式化简的方法:
5、分式方程的解法:
【例题精讲】
1、下列三角数0.000 000 010 8用科学记数法表示为()
A.1.08×10-7B.1.08×10-8C.10.8×10-8D.10.8×10-9
2、分式 与 的最简公分母是。
3、绿化队原来用漫灌方式浇绿地,a天用水mt,现在改用喷灌方式,可使这些水多用3天,现在比原来每天节约用水吨。
(2)在坐标轴上取点D,使得△ABD为等腰三角形,这样的点D共有__________个。
知识点一 整式加减乘除与乘法公式
【知识梳理】
1、整式加减法则:
2、整式乘法计算方法:
整式方程练习题

整式方程练习题一、单项选择题1.已知整式方程2x^2 - 5x - 3 = 0,那么它的根是:A) x = -3/2, x = 1B) x = 1, x = -1C) x = 3/2, x = -1D) x = -1/2, x = 32.求解整式方程x^3 – 5x^2 + 4x + 20 = 0的根,其中真根的个数是:A) 0B) 1C) 2D) 33.下列哪个是整式方程(x - 4)^2 = 16的解:A) x = 6B) x = -6C) x = 8D) x = -8二、填空题1.解方程(x + 3)(x - 1) = 0,根为_____________。
2.已知整式方程2x(x - 3) = 0,其中x的一个解为_____________。
三、解答题1.解方程x^2 + 3x - 4 = 0,并判断方程有几个实根。
解答:我们将方程x^2 + 3x - 4 = 0进行因式分解:(x + 4)(x - 1) = 0从因式分解可知,方程的解为x = -4和x = 1。
因此,方程有两个实根。
2.解方程3x^2 - 7x = 6,并判断方程有几个实根。
解答:我们将方程3x^2 - 7x = 6移项,得到3x^2 - 7x - 6 = 0。
通过因式分解或二次方程公式求解,我们得到方程的解为x = -1/3和x = 2。
因此,方程有两个实根。
3.解方程2(x - 1)(x + 3) + x^2 = 5,并判断方程有几个实根。
解答:我们展开方程2(x - 1)(x + 3) + x^2 = 5并化简,得到2x^2 + 4x - 5 = 0。
利用二次方程公式求解,我们得到方程的解为x = (-4 ± √36) / 4。
化简后,方程的解为x = (-1 ±√9) / 1。
经过计算,我们得到两个实根x = -2和x = 1/2。
因此,方程有两个实根。
通过以上练习题,我们巩固了整式方程的解法。
一元一次方程测试题一元整式方程

⼀元⼀次⽅程测试题⼀元整式⽅程⼀元⼀次⽅程测试题-⼀元整式⽅程整式和⼀元⼀次⽅程整式和⼀元⼀次⽅程⼀.解答题1.如果⽅程的解与⽅程4x﹣=6x+2a ﹣1的解相同,求式⼦的值.2.下⾯是马⼩哈同学做的⼀道题:解⽅程:解:①原⽅程可化为:;②去分母,得5﹣2=﹣25;③去括号,得50x+150﹣8x﹣20=﹣25;④移项,得50x﹣8x=﹣25+150﹣20;⑤合并同类项,得42x=105;⑥系数化为1,得;上⾯的解题过程中出现了错误的步骤有;请把正确的解答写在右⾯.3.解⽅程:.第1页.﹣=1.;x﹣﹣1;......﹣=.x﹣=2﹣;.11.已知A=x﹣2x+1,B=2x﹣6x+3.求:A+2B.2A﹣B.4.计算:(3)2﹣3﹣;﹣2﹣(6)4a+2﹣.(7)2﹣5.已知A=2x+3xy﹣2x﹣1,B=﹣x+xy﹣1:求3A+6B;若3A+6B的值与x⽆关,求y的值.2222222222223222.(2)+﹣2 222第2页⼀元整式⽅程教学⽬标1、知道⼀元整式⽅程与⾼次⽅程的有关概念,知道⼀元整式⽅程的⼀般形式.2、经历从具体问题中的数量相等关系引进含字母系数的⽅程的过程,理解含字母系数的⼀元⼀次⽅程、⼀元⼆次⽅程的概念,掌握它们的基本解法.3、通过解含字母系数的⼀元⼀次⽅程、⼀元⼆次⽅程,体会分类讨论的⽅法,了解由特殊到⼀般、⼀般到特殊的辨证思想.教学重点及难点重点:理解含字母系数的⼀元⼀次⽅程、⼀元⼆次⽅程的概念及解法.难点: 解含字母系数的⼀元⼀次⽅程、⼀元⼆次⽅程中的分类讨论.教学流程设计教学过程设计⼀、问题引⼊11.思考根据下列问题列⽅程:买3本同样的练习本共需12元钱,求练习本的单价;买a本同样的练习本共需12元钱,求练习本的单价;⼀个正⽅形的⾯积的4倍等于16平⽅厘⽶,求这个正⽅形的边长;⼀个正⽅形的⾯积的b倍等于s,求这个正⽅形的边长.说明为了更好地使学⽣进⾏联系和⽐较已学过的⼀元⼀次和⼀元⼆次⽅程与含字母系数⼀元⼀次和⼀元⼆次⽅程,增加了、两个问题,也为解含字母的⼀元⼀次⽅程和⼀元⼆次⽅程埋下伏笔.2.讨论你所列出的⽅程之间有什么区别和联系?⼆、新课学习11、归纳概念12在⽅程ax12和bx s中,x是未知数;字母a、b是项的系数,s是常数项,它们都表⽰已知数,我们称这样的⽅程是含字母系数的⽅程,这些字母叫做字母系数.、问题中的⽅程就分别是含字母系数的⼀元⼀次⽅程和⼀元⼆次⽅程.2.讲解例题例题1 解下列关于x的⽅程:(学⽣进⾏尝试性地类⽐解题)(3a2)x2(3x);3、思考含字母系数的⽅程与不含字母系数的⽅程在解的过程中存在什么区别吗?4、结论含字母系数的⼀元⼀次和⼀元⼆次⽅程在解的过程中,由于字母的不确定性,在使⽤等式性质和根的判别式时,往往需要进⾏分情况进⾏讨论;如果字母能确定,则不需要讨论.说明通过学⽣⾃主尝试解含字母系数⽅程,充分暴露学⽣忽略等式性质中⾮零条件的限制及根判别式⾮负的要求,在分情况进⾏讨论的思维上的缺陷,教师再进⾏解释和引导,同时强调是在字母不能确定的时候才需讨论,否则不必要,从⽽使学⽣对这⼀思想的认识更为清晰和牢固.有⼀块边长为10分⽶的正⽅形薄铁⽪,在它的四个⾓上分别剪去⼤⼩⼀样的⼀个⼩正⽅形,然后做成⼀个容积为48⽴⽅分⽶的⽆盖长⽅体物件箱.设⼩正⽅形的边长为x分⽶,根据题意列⽅程;某⼚xx年产值为100万元,计划到2016年产值增长到万元.设每年的平均增长率为x,根据题意列⽅程. bx211x2(b1).说明增加问题2是为了提供更多的素材,帮助学⽣寻找共性,感受概念,从⽽为接下去的归纳概念提供更多的直观认识.四、新课学习21、归纳概念2①如果⽅程中只有⼀个未知数且两边都是关于未知数的整式,这个⽅程叫做⼀元整式⽅程;②⼀元整式⽅程中含未知数的项的最⾼次数是n(n是正整数),这个⽅程叫做⼀元n次⽅程;其中次数n⼤于2的⽅程统称为⼀元⾼次⽅程,简称⾼次⽅程.2.讲解例题例题2 判断下列关于x的⽅程,哪些是整式⽅程?这些整式⽅程分别是⼀元⼏次⽅程?1(1)x2a3x10;2x21(4);2x3五、巩固练习(2)4x3810;(5)2x a22a3;x(3) 3a2x5x1; a(6)x47x280.课本练习1、2、3六、课堂⼩结通过本堂课你有什么收获?稿件----⼀元整式⽅程的解法⼋年级第三周市⼋初级中学凌永刚200010 黄浦区复兴东路123号⼀元整式⽅程的解法【⽅程结构图】:⼀次⽅程整式⽅程⼆次⽅程有理⽅程⾼次⽅程代数⽅程分式⽅程⽆理⽅程【例题分析】:⼀、解下列关于x的⽅程:(1)(3a1)x3(1x)(2)b2x213x2分析:对于字母系数的⽅程需要讨论字母系数的取值范围与⽅程的解的关系. 解:(1)(3a1)x33x(3a2)x 32时,此⽅程⽆解; 323当3a+2≠0即a≠-时,x=. 33a2当3a+2=0即a=-bx3x 1x=1x=2222221 2b 3b23∵b+3>0,∴x=±2. b32⼆、解下列⽅程(1)2(12x)(4)2x3432(2)2x43x25 (3)3x35x2x0 6x26x180 (5) (x 2–x) 2–8 (x 2–x)+12=0分析:⾼次的⽅程的基本解法:因式分解降次.解:(12x)16 412x2,解得x1=31,x2=-. 22说明:运⽤开平⽅的⽅法。
第五讲试题整式方程(组)

整式方程(组)1.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A.12B.13C.14D.12或142.若一个直角三角形的两条直角边长之和为14,面积为24,则其斜边的长是()A.2B.4C.8D.103.已知菱形的两条对角线长是一元二次方程x2﹣3x+2=0的根,则此菱形的边长是()A.B.C.D.4.已知关于x的一元二次方程mx2﹣nx=p(m≠0)的两个根为x1=3,x2=5,则方程m(2x+5)2﹣n(2x+5)﹣p=0的根为()A.x1=3,x2=5B.x1=﹣1,x2=0C.x1=﹣2,x2=0D.x1=11,x2=155.若x2﹣2px+3q=0的两根分别是﹣3与5,则多项式2x2﹣4px+6q可以分解为()A.(x+3)(x﹣5)B.(x﹣3)(x+5)C.2(x+3)(x﹣5)D.2(x﹣3)(x+5)6.实数x,y满足(x2+y2)(x2+y2+1)=2,则x2+y2的值为()A.1B.2C.﹣2或1D.2或﹣17.已知当x>0时,反比例函数y=的函数值随自变量的增大而减小,此时关于x的方程x2﹣2(k+1)x+k2﹣1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定8.如果的解都是正数,那么a的取值范围是()A.a<2B.a>﹣C.﹣2<a<D.a<﹣9.关于x的方程m2x2﹣8mx+12=0至少有一个正整数解,且m是整数,则满足条件的m 的值的个数是()A.5个B.4个C.3个D.2个10.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程•a=﹣(x﹣6)无解,则a的值是()A.1B.﹣1C.±1D.a≠111.关于x的一元二次方程kx2﹣4x+3=0有实数根,则k应满足的条件是.12.已知关于x,y的二元一次方程(2m﹣1)x+(m+1)y﹣m+2=0,无论实数m取何值,此二元一次方程都有一个相同的解,则这个相同的解是.13.关于x、y的方程2x+ay=7仅有一组正整数解,则满足条件的正整数a的值为.14.如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,b(a>b),则a﹣b等于.15.如图,用如图①中的a张长方形和b张正方形纸板作侧面和底面,做成如图②的竖式和横式两种无盖纸盒,若295<a+b<305,用完这些纸板做竖式纸盒比横式纸盒多30个,则a=,b=.16.已知方程组的解x、y满足x+y<1,且m为正数,求m的取值范围.17.如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向终点B以1cm/s的速度移动,点Q从点B开始沿BC边向终点C以2cm/s的速度移动,当其中一点到达终点时,另一点随之停止.点P,Q分别从点A,B同时出发.(1)求出发多少秒时PQ的长度等于5cm;(2)出发秒时,△BPQ中有一个角与∠A相等.整式方程(组)参考答案与试题解析1.【解答】解:解方程x2﹣6x+8=0得:x=4或2,当三角形的三边为5,2,2时,2+2+<5,不符合三角形三边关系定理,此时不能组成三角形;当三角形的三边为5,4,4时,符合三角形三边关系定理,此时三角形的周长为5+4+4=13,故选:B.\2.【解答】解:设其中一条直角边的长为x,则另一条直角边为(14﹣x),根据题意得:x (14﹣x)=24,整理得:x2﹣14x+48=0.解得x1=6,x2=8,所以斜边长为:=10.故选:D.3.【解答】解:方程x2﹣3x+2=0,分解得:(x﹣1)(x﹣2)=0,解得:x=1或x=2,∵菱形的对角线互相垂直∴根据勾股定理得:=,故选:C.4【解答】解:∵关于x的一元二次方程mx2﹣nx=p(m≠0)的两个根为x1=3,x2=5,∴方程m(2x+5)2﹣n(2x+5)﹣p=0中2x+5=3或2x+5=5,解得:x=﹣1或x=0,即x1=﹣1,x2=0,故选:B.5【解答】解:∵x2﹣2px+3q=0的两根分别是﹣3与5,∴2x2﹣4px+6q=2(x2﹣2px+3p)=2(x+3)(x﹣5),故选:C.6.【解答】解:(x2+y2)(x2+y2+1)=2,设x2+y2=a,则原方程化为:a(a+1)=2,即a2+a﹣2=0,解得:a=﹣2或1,∵不论xy为何值,x2+y2不能为负数,所以x2+y2只能等于1,故选:A.7.【解答】解:∵当x>0时,反比例函数y=的函数值随自变量的增大而减小,∴k>0,∵x2﹣2(k+1)x+k2﹣1=0,∴△=[﹣2(k+1)]2﹣4×1×(k2﹣1)=8k+8>0,∴关于x的方程x2﹣2(k+1)x+k2﹣1=0有两个不相等的实数根,故选:C.8.【解答】解:,①×2+②得:5x=2a+4,解得:x=,①×3﹣②得:﹣5y=3a﹣4,解得:y=,即方程组的解是,∵方程组的解都是正数,∴>0,>0,解得:﹣2<a<,故选:C.9.【解答】解:m2x2﹣8mx+12=0,解法一:△=(﹣8m)2﹣4m2×12=16m2,∴x==,∴x1=,x2=,解法二:(mx﹣2)(mx﹣6)=0,∴x1=,x2=,∵关于x的方程m2x2﹣8mx+12=0至少有一个正整数解,且m是整数,∴>0,>0,∴m=1或2或3或6,则满足条件的m的值的个数是4个,故选:B.10.【解答】解:去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6移项,合并得,x=,因为无解;所以a﹣1=0,即a=1.故选:A.11.【解答】解:∵关于x的一元二次方程kx2﹣4x+3=0有实数根∴k≠0且△=(﹣4)2﹣4•k•3=16﹣12k≥0,解得:k≤且k≠0,故答案为:k≤且k≠0.12【解答】解:将方程(2m﹣1)x+(m+1)y﹣m+2=0整理得:(2x+y﹣1)m﹣x+y+2=0∵无论实数m取何值,此二元一次方程都有一个相同的解∴解得:故答案为:.13.【解答】解:2x+ay=7,ay=7﹣2x,①当x=1时,7﹣2x=5,∴ay=5,∴a=1,y=5(舍)或a=5,y=1,②当x=2时,7﹣2x=3,∴ay=3,∴a=1,y=3(舍)或a=3,y=1,③当x=3时,7﹣2x=1,∴ay=1,∴a=1,y=1(舍),综上,满足条件的正整数a的值为5或3,故答案为:5或3.14.【解答】解:设空白出图形的面积为x,根据题意得:a+x=16,b+x=9,则a﹣b=7.故答案为:7.15.【解答】解:设横式纸盒x个,则竖式纸盒为(x+30)个,a=4(x+30)+3x,b=(x+30)+2x,∵295<a+b<305,∴295<4(x+30)+3x+(x+30)+2x<305,解得:14.5≤x≤15.5,∵x为整数,∴x=15当x=15时,a=225,b=75,故答案为:225,75.16.【解答】解:①×2﹣②,得3x=1+7mx=,把x=代入①得+y=1+3m,y=,∵x+y<1,m.∵m>0,∴0.17.【解答】解:(1)设出发t秒时PQ的长度等于5cm,PQ=5,则PQ2=25=BP2+BQ2,即25=(5﹣t)2+(2t)2,解得:t=0(舍)或2.故2秒后,PQ的长度为5cm.(2)设出发x秒时,△BPQ中有一个角与∠A相等.∵AB=5cm,BC=7cm∴PB=(5﹣x)cm,BQ=2xcm当∠BPQ=∠A时,又∵∠B=∠B∴△ABC∽△PBQ∴=∴=解得:x=;当∠BQP=∠A时,又∵∠B=∠B∴△ABC∽△QBP∴=∴=解得:x=故答案为:或.。
2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)
2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)1. 合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。
2. 整式的加减的实质:合并同类项。
3. 整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。
②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。
③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。
④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。
4. 乘法公式:①平方差公式:()()22b a b a b a −=−+。
②完全平方公式:()2222b ab a b a +±=±。
5. 因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a −+=−22完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则: ()()n x m x c bx x ++=++2。
31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21. 【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21. 【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时, 原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣ =1+1+2×+﹣1﹣2 =2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值. 【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值: (1)(x ﹣x 1)2; (2)x 4+41x. 【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵=, ∴= = =﹣4x • =32﹣4=5;(2)∵=,∴=+2 =5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°; (2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。
整式及分式总复习
整式总复习教学目标1、复习巩固整式的乘除法及因式分解,并能掌握它们的算法及相互关系 3、学生综合能力的训练;分析问题习惯的培养。
教学重点1、 整式运算方法及因式分解的灵活应用2、分式方程的解法及其应用 教学重点学生综合能力及灵活性的训练教学过程整式的乘除法【课前热身】1. 31-x 2y 的系数是 ,次数是 . 2.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 一个字母 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n = .6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1若0a >且2xa =,3ya =,则x ya-的值为( )A .1-B .1C .23 D .32例2按下列程序计算,把答案写在表格:⑴ 填写表格:⑵ 请将题中计算程序用代数式表达出来,并给予化简.【中考演练】1.已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18B .12C .9D .7 2. 若3223mnx y x y -与 是同类项,则m + n =____________.3.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 .4.大家一定熟知辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += . 因式分解【课前热身】1.若 , ),4)(3(2==-+=++b a x x b ax x 则.2. 简便计算:2200820092008-⨯ = .3. () 下列式子中是完全平方式的是( )A .22b ab a ++ B .222++a a C .222b b a +- D .122++a a【考点】1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a ,⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2.6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析11 1 12 11 3 3 1 1 4 6 4 1 .......................................ⅠⅡ1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】例1 分解因式: 3y 2-27=___________________.例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.(08)将3214x x x +-分解因式的结果是 . 3. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.4.计算: 2222211111(1)(1)(1)(1)(1)234910-----.5.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得: 222244c b c a b a -=- ① ()()()2222222b a c b aba -=-+ ②即222c b a =+ ③ ∴△ABC 为Rt △。
第二单元 第五讲 整式方程(组)的概念及解法 2025年九年级中考数学总复习人教版(山东)
一般形式
5
对点练习
1.(1)下列是一元一次方程的是 ( D )
A.3-2x
B.6+2=8
C.x2-49=0
D.5x-7=3(x+1)
(2)下列是二元一次方程组的是( D )
A.
C.
2
3
2 2 + = 1
B.
3 − = 4
3
+ =7
D.
3 − = 0
− =1
− =2
当p=-1时,Δ=p2-4=-3<0;
∴p=3.
30
【方法技巧】
判别式的“双向应用”
1.正向:系数已知,可以判断方程根的情况.
2.逆向:已知方程根的情况,可以求未知系数或参数的值.
提醒:要根据a≠0和Δ≥0这两个前提进行所求参数值的检验和取舍.
31
【变式训练】
1.(2024·上海中考)以下一元二次方程有两个相等实数根的是 ( D )
【解析】(1)x2-(m+2)x+m-1=0,
这里a=1,b=-(m+2),c=m-1,
Δ=b2-4ac
=[-(m+2)]2-4×1×(m-1)
=m2+4m+4-4m+4
=m2+8.
∵m2≥0,∴Δ>0.∴无论m取何值,方程都有两个不相等的实数根;
33
(2)若方程x2-(m+2)x+m-1=0的两个实数根为x1,x2,
18
− = ①
【自主解答】(1)
,
− = + ②
由①,得y=3x-5,③
把③代入②,得5(3x-5)-1=3x+5,
整式方程的解法
整式方程的解法整式方程是指包含有未知数的整数系数的等式。
解决整式方程需要运用数学中的一系列方法和技巧。
本文将介绍常见的整式方程解法,帮助读者更好地理解和应用这些方法。
1. 一元一次整式方程的解法一元一次整式方程是最简单且常见的整式方程形式,可以表示为:ax + b = 0 (其中a和b为已知整数,x为未知数)。
为了解这个方程,我们可以使用逆运算法则,将方程化为x = -b/a 的形式。
通过这个简单的步骤,我们可以求得方程的解。
2. 一元二次整式方程的解法一元二次整式方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知整数。
为了解一元二次整式方程,我们可以使用求根公式:x = (-b ±√(b^2-4ac))/(2a)。
根据求根公式,我们可以分为三种情况来求解方程:当 b^2-4ac > 0时,方程有两个不相等实数根;当b^2-4ac = 0时,方程有两个相等实数根;当b^2-4ac < 0时,方程没有实数解。
3. 分式方程的解法分式方程是包含了分式的方程,可以表示为:(p(x)/q(x)) + r(x) =s(x),其中p(x)、q(x)、r(x)、s(x)均为整式。
为了解分式方程,我们可以通过通分的方式,将所有分式转化为整式,然后按照整式方程的解法进行求解。
4. 多个未知数的整式方程的解法多个未知数的整式方程是包含多个未知数的整式方程,可以表示为一组方程:f1(x1, x2, ..., xn) = 0;f2(x1, x2, ..., xn) = 0;...;fn(x1, x2, ..., xn) = 0。
为了解这组方程,可以利用消元法、代入法或者高斯消元法等方法来求解。
5. 已知条件的整式方程的解法在某些情况下,我们需要根据已知条件建立一个整式方程,然后求解这个方程来寻找满足条件的解。
在这种情况下,我们需要仔细分析已知条件,将其转化为方程,并根据上述的解法来解方程,以得到满足条件的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式方程及整式方程的解法》复习题汇编
[知识梳理]
1、整式方程:含有____________________________________叫整式方程.
2、一元一次方程:只含有一个 ,并且未知数的指数是 ,系数不为0,这样的方程叫一元一次方程.一般形式
3、解一元一次方程的一般步骤是
①去 ;②去 ;③移 ;④合并 ;⑤系数
4、一元二次方程定义,在整式方程中_________________叫一元二次方程,它的一般形式_______________
5.一元二次方程的常用解法:
(1)直接开平方法:形如__________或________的一元二次方程,就可用直接开平方法.
(2)配方法:化原方程为
2()x m n +=的形式,如果0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程________
(3)公式法:一元二次方程
20(0)ax bx c a ++=≠的求根公式是_________________ (4)因式分解法:
6. 一元二次方程根的判别式:
关于x 的一元二次方程
()002≠=++a c bx ax 的根的判别式为________________. (1)ac b 42->0⇔一元二次方程
()002≠=++a c bx ax 有______实数根,即x=___________. (2)ac b 42-=0⇔一元二次方程______实数根,即==21x x ___________ .
(3)ac b 42-<0⇔一元二次方程
()002≠=++a c bx ax _____________ 实数根. 7. 一元二次方程根与系数的关系
若关于x 的一元二次方程
20(0)ax bx c a ++=≠有两根分别为1x ,2x , 那么=+21x x _________,=⋅21x x __________.
[典例解析]
例1:1、若2x =是关于x 的方程2310x m +-=的解,则m 的值为________.
2、关于y 的一元二次方程y (y -3)=-4的一般形式是__________,它的二次项的系数是______,一次项是____,常数项是______
3.k 为 时, 方程 (k 2 – 3 k + 2 ) x 2 + (k 2
+ 6 k – 7 ) x + 2 k + 1 = 0, 是关于X 的一元 二次方程; k 为 时, 这个方程是关于X 的一元一次方程.
4、2X 2 - X+24=(X - )2
5、已知关于x 的方程x2+mx -6=0的一个根为2,则这个方程的另一个根是________
6、一元二次方程x2-2x =0的解是_______
7.方程x2 = x +1的根是____________
8.已知2 x – 3和1 + 4x 互为相反数,则x =-________。
9、一个三角形的两边长分别为3cm 和7cm ,第三边长为整数acm ,且a 满足a2-10a +21=0,则此三角形的周长为_______
10.k =_______时,2是关于x 的方程3│k │- 2 x = 6 x + 4的解
例2:解下列方程(组)
(1)()()x x x x --=--320379 (2)
16110312=--+x x (3)0.89 1.33511.20.20.3x x x --+-=
(4) (5) (6)
(7)4x 2-1=0(直接开平方法) (8)x 2-4x +3=0(配方法)
(9)2x 2-7x =4(公式法) (10)x +3-x (x +3)=0(因式分解法)
例3:(1)已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0,常数项为0,求m.
(2)方程23(1)0x -+=的解与关于x 的方程
3222
k x k x +--=的解互为倒数,求k 的值
⎩⎨⎧=-=+53473y x y x 2131342342x y x y --⎧-=⎪⎨⎪-=⎩2353042513x y z y z x y z +-=⎧⎪+=⎨⎪-+=-⎩
[中考演练]
1. p x 2 – 3x + p 2 – p= 0 是关于x 的一元二次方程,则( )
(A ) p=1 (B ) p >0 (C )p ≠0 (D ) p 为任何实数
2.方程 2 x 2 + x = 0 的解为( )
(A) x 1 = 0 x 2=12 (B) x 1 = 0 x 2= - 2 (C) x = - 12 (D) x 1 = 0 x 2 = -12
3.若 13 m + 1与 2m-73
互为相反数,则m 的值为( ) (A ) 34 (B ) 43 (C )- 34 (D )- 43
4、已知⎩⎨⎧==1
2y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为( ) A .4 B .2 C . 2 D . ±2
5.关于x 的一元二次方程(2-m)x 2=m(3-x)-1的二次项系数是 ,一次项系数是 ,常数项
是 ,对m 的限制是 。
6.若关于x 的方程x k =-153
的解是x =-3,则k =_________ 7. X 2 - 12
X+ =(X - )2 8.解方程
(1) (2)
(3) (4)
(5)(x -3)2-9=0(直接开方法) (6)x 2
-2x =5(配方法)
(7)x 2+5=25x (公式法) (8)4x (2x -1)=3(2x -1)(因式分解法)
x x -+=-2114135
()()1152121236x x -+-=2025x y x y +=⎧⎨-=⎩124321y x x y ++⎧=⎪⎨⎪-=⎩
(9)5m 2 – 17m + 14=0 (10)(x +1)(x -1)+2(x +3)=8
9、当m 取何值时,方程(m +1)x
|m|+1+(m -3)x -1=0是一元二次方程,并求出此方程的解.
10、
11、一元二次方程x 2-2x -
45=0的负根,也是一元二次方程x 2-(k +2)x +4
9=0的根,求k 的值.
()()()2253,12111x x x x x -=---++已知求的值。