典型相关分析SPSS例析精编版

合集下载

《SPSS统计分析》第10章 相关分析

《SPSS统计分析》第10章 相关分析

12.990 16.290 17.990 19.290
12.500 15.800 17.500 18.800
11.500 14.800 16.500 17.800
2.200 5.500 7.200 8.500
3.300 5.000 6.300
3.300
1.700 3.000
5.000 1.700
1.300
3.分析两个变量间线性关系的程度。往往因为第三个变量的作用,使相关系数不能真正反映两个 变量间的线性程度。 这是应该控制一个变量的变化求另两个变量间的相关系数,也就是说, 在第三个变量不变的情况下,两个变量的线性程度。
CORRELATIONS /VARIABLES=VCP with HEIGHT WEIGHT /PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE .
6.300 3.000 1.300
1.800 1.500 3.200 4.500
2.700 6.000 7.700 9.000
5.000 8.300 10.000 11.300
12.000 15.300 17.000 18.300
9: 9 14.790 14.300 13.300
4.000 1.800 1.500 3.200 4.500
返回
典型相关分析
返回
典型相关分析概念
典型相关分析是用来描述两组随机变量间关 系的统计分析方法。
通过线性组合,可以将一组变量组合成一个 新的综合变量。虽然每组变量间的线性组合有无 数多个,但通过对其施加一些条件约束,能使其 具有确定性。
典型相关分析就是要找到使得这两个由线性 组合生成的变量之间的相关系数最大的系数。
学习通过编程解决偏相关问题

如何在SPSS中实现典型相关分析

如何在SPSS中实现典型相关分析

如何在SPSS中实现典型相关分析什么是典型相关分析?典型相关分析是指对于两个变量集合,分别找出它们的主成分,使得两个主成分之间相关系数最大,称为典型相关分析,也叫双重主成分分析。

典型相关分析可用于研究两个变量集合之间的联系,特别是当变量集合具有相关结构时,可发现更深入的联系。

SPSS中如何实现典型相关分析?1.打开数据文件:首先要打开SPSS软件,然后点击“文件”选项卡,从下拉菜单中选择“打开”命令。

在弹出的打开文件对话框中选择自己的典型相关分析数据文件并打开。

2.设置典型相关分析:点击“分析”选项卡,在下拉菜单中选择“典型相关”命令。

在弹出的对话框中选择两组变量集合并输入相关变量的名称,然后点击“确定”按钮。

3.进行典型相关分析:在弹出的典型相关分析结果窗口中,SPSS会输出典型相关系数矩阵和变量权重矩阵,以及典型变量的相关性和累积方差贡献等信息。

4.结果解释:通过观察典型相关系数矩阵和变量权重矩阵,可发现两个变量集合之间的相关性状况。

同时,通过观察典型变量的相关性和累积方差贡献,获取变量集合对联结的贡献度和对典型变量的解释能力。

典型相关分析的应用实例举例来说,假设我们想研究人的身体状况与心理健康之间的关系。

我们将人的身体状况因素归为一组变量集(如身高、体重、BMI指数等),将人的心理健康因素归为另一组变量集(如焦虑得分、抑郁得分、快乐得分等),然后进行典型相关分析。

结果显示,两组变量集之间存在强关联,其中第一对典型变量是身高、体重、BMI指数、焦虑得分和抑郁得分;第二对典型变量是快乐得分、嗜睡得分和心境得分。

这些变量集代表两方面不同的人类特征。

因此我们可以得到人类身体和心理健康之间的关系非常密切。

典型相关分析是一种用于寻找两组变量集合之间关联的有用工具。

在SPSS中实现典型相关分析,需要首先打开数据文件,然后选择指定变量集合并进行典型相关分析。

最后通过观察典型相关系数矩阵、变量权重矩阵、典型变量的相关性和累积方差贡献等指标,来解释变量集合之间的关联状况。

SPSS典型相关分析案例

SPSS典型相关分析案例

SPSS典型相关分析案例典型相关分析(Canonical Correlation Analysis,CCA)是一种统计方法,用于研究两组变量之间的相关性。

它可以帮助研究人员了解两组变量之间的关系,并提供有关这些关系的详细信息。

在SPSS中,可以使用典型相关分析来探索两个或多个变量之间的关系,并进一步理解这些变量如何相互影响。

下面我们将介绍一个典型相关分析的案例,以展示如何在SPSS中执行该分析。

案例背景:假设我们有一个医学研究数据集,包含30名患者的多个生物标记物和他们的疾病严重程度评分。

我们希望了解这些生物标记物与疾病严重程度之间的关系,并查看是否可以建立一个线性模型来预测疾病严重程度。

以下是执行这个案例的步骤:第1步:准备数据首先,我们需要准备数据,确保所有变量都是数值型。

在SPSS中,我们可以通过检查数据集的描述性统计信息或查看变量视图来做到这一点。

第2步:导入数据在SPSS中,我们可以通过选择菜单中的"File"选项,然后选择"Open"来导入数据集。

我们应该选择包含待分析数据的文件,并确保正确指定变量的类型。

第3步:执行典型相关分析要执行典型相关分析,我们可以选择菜单中的"Analyze"选项,然后选择"Canonical Correlation"。

在弹出的对话框中,我们应该选择我们希望研究的生物标记物变量和疾病严重程度评分变量。

然后,我们可以选择一些选项,如方差-协方差矩阵、相关矩阵和判别系数,并点击"OK"执行分析。

第4步:解释结果完成分析后,SPSS将提供几个输出表。

我们应该关注典型相关系数和标准化典型系数,以了解两组变量之间的关系。

我们可以使用这些系数来解释生物标记物如何与疾病严重程度相关联,并找到最重要的变量。

此外,我们还可以使用SPSS提供的其他统计结果来进一步解释模型的效果和预测能力。

SPSS案例分析[精品文档]

SPSS案例分析[精品文档]

某道路弯道处53车辆减速前观测到的车辆运行速度,试检验车辆运行速度是否服从正态分布。

这道题目的解答可以先通过绘制样本数据的直方图、P-P图和Q-Q图坐车粗略判断,然后利用非参数检验的方法中的单样本K-S检验精确实现。

一、初步判断1.1绘制直方图(1)操作步骤在SPSS软件中的操作步骤如图所示。

(2)输出结果通过观察速度的直方图及其与正态曲线的对比,直观上可以看到速度的直方图与正太去线除了最大值外,整体趋势与正态曲线较吻合,说明弯道处车辆减速前的运行速度有可能符合正态分布。

1.2绘制P-P图(1)操作步骤在SPSS软件中的操作步骤如图所示。

(2)结果输出根据输出的速度的正态P-P 图,发现速度均匀分布在正态直线的附近,较多部分与正态直线重合,与直方图的结果一致,说明弯道处车辆减速前的运行速度可能服从正态分布。

二、单样本K-S 检验2.1单样本K-S 检验的基本思想K-S 检验能够利用样本数据推断样本来自的总体是否服从某一理论分布,是一种拟合优的检验方法,适用于探索连续型随机变量的分布。

单样本K-S 检验的原假设是:样本来自的总体与指定的理论分布无显著差异,即样本来自的总体服从指定的理论分布。

SPSS 的理论分布主要包括正态分布、均匀分布、指数分布和泊松分布等。

单样本K-S 检验的基本思路是:首先,在原假设成立的前提下,计算各样本观测值在理论分布中出现的累计概率值F(x),;其次,计算各样本观测值的实际累计概率值S(x);再次,计算实际累计概率值与理论累计概率值的差D(x);最后,计算差值序列中的最大绝对值差值,即)()(i i x F x S max D -= 通常,由于实际累计概率为离散值,因此D 修正为: )()(1i i x F x S max D -=- D 统计量也称为K-S 统计量。

在小样本下,原假设成立时,D 统计量服从Kolmogorov 分布。

在大样本下,原假设成立时,D n 近似服从K(x)分布:当D 小于0时,K(x)为0;当D 大于0时,)2-(exp )1-()(22x j x K j ∑∞-∞==容易理解,如果样本总体的分布与理论分粗的差异不明显,那么D 不应较大。

SPSS典型相关分析结果解读

SPSS典型相关分析结果解读

Correlations for Set-1Y1Y2Y3Y1 1.0000.9983.5012Y2.9983 1.0000.5176Y3.5012.5176 1.0000第一组变量间的简单相关系数Correlations for Set-2X1X2X3X4X5X6X7X8X9X10X11X12X13 X1 1.0000-.3079-.7700-.7068-.6762-.7411-.7466-.5922-.1948-.1285-.2650-.9070-.6874 X2-.3079 1.0000-.0117.0103-.0613-.0283-.0140.3333.4161.3810.3831.1098-.0640 X3-.7700-.0117 1.0000.9905.9860.9973.9990.5892.0421-.0196.2492.9515.9903 X4-.7068.0103.9905 1.0000.9910.9935.9952.5634.0249-.0367.2476.9120.9953 X5-.6762-.0613.9860.9910 1.0000.9887.9912.5717.0363-.0277.2475.8972.9926 X6-.7411-.0283.9973.9935.9887 1.0000.9985.5563.0142-.0453.2210.9355.9950 X7-.7466-.0140.9990.9952.9912.9985 1.0000.5795.0319-.0298.2441.9390.9945 X8-.5922.3333.5892.5634.5717.5563.5795 1.0000.7097.6540.8990.6619.5138 X9-.1948.4161.0421.0249.0363.0142.0319.7097 1.0000.9922.8520.1350-.0228 X10-.1285.3810-.0196-.0367-.0277-.0453-.0298.6540.9922 1.0000.8184.0752-.0801 X11-.2650.3831.2492.2476.2475.2210.2441.8990.8520.8184 1.0000.3093.1840 X12-.9070.1098.9515.9120.8972.9355.9390.6619.1350.0752.3093 1.0000.9040 X13-.6874-.0640.9903.9953.9926.9950.9945.5138-.0228-.0801.1840.9040 1.0000Correlations Between Set-1and Set-2X1X2X3X4X5X6X7X8X9X10X11X12X13 Y1-.7542-.0147.9995.9940.9892.9989.9998.5788.0334-.0280.2426.9430.9937 Y2-.7280-.0234.9965.9958.9954.9977.9988.5859.0485-.0136.2573.9285.9949 Y3-.4485.2952.5096.4955.5230.4760.5048.9695.7610.7071.9073.5449.4500Canonical Correlations1 1.0002 1.0003 1.000第一对典型变量的典型相关系数为CR1=1.....二三Test that remaining correlations are zero:维度递减检验结果降维检验Wilk's Chi-SQ DF Sig.1.000.000.000.0002.000.00024.000.0003.000103.48911.000.000此为检验相关系数是否显著的检验,原假设:相关系数为0,每行的检验都是对此行及以后各行所对应的典型相关系数的多元检验。

典型相关分析报告SPSS例析

典型相关分析报告SPSS例析

典型相关分析典型相关分析(Canonical correlation )又称规则相关分析,用以分析两组变量间关系的一种方法;两个变量组均包含多个变量,所以简单相关和多元回归的解惑都是规则相关的特例。

典型相关将各组变量作为整体对待,描述的是两个变量组之间整体的相关,而不是两个变量组个别变量之间的相关。

典型相关与主成分相关有类似,不过主成分考虑的是一组变量,而典型相关考虑的是两组变量间的关系,有学者将规则相关视为双管的主成分分析;因为它主要在寻找一组变量的成分使之与另一组的成分具有最大的线性关系。

典型相关模型的基本假设:两组变量间是线性关系,每对典型变量之间是线性关系,每个典型变量与本组变量之间也是线性关系;典型相关还要求各组内变量间不能有高度的复共线性。

典型相关两组变量地位相等,如有隐含的因果关系,可令一组为自变量,另一组为因变量。

典型相关会找出一组变量的线性组合X* ax i与Y*= dy j ,称为典型变量;以使两个典型变量之间所能获得相关系数达到最大,这一相关系数称为典型相关系数。

a i和bj称为典型系数。

如果对变量进行标准化后再进行上述操作,得到的是标准化的典型系数。

典型变量的性质每个典型变量智慧与对应的另一组典型变量相关,而不与其他典型变量相关;原来所有变量的总方差通过典型变量而成为几个相互独立的维度。

一个典型相关系数只是两个典型变量之间的相关,不能代表两个变量组的相关;各对典型变量构成的多维典型相关,共同代表两组变量间的整体相关。

典型负荷系数和交叉负荷系数典型负荷系数也称结构相关系数,指的是一个典型变量与本组所有变量的简单相关系数,交叉负荷系数指的是一个典型变量与另一组变量组各个变量的简单相关系数。

典型系数隐含着偏相关的意思,而典型负荷系数代表的是典型变量与变量间的简单相关, 两者有很大区别。

重叠指数如果一组变量的部分方差可以又另一个变量的方差来解释和预测, 就可以说这部分方差与另一个变量的方差之间相重叠, 或可由另一变量所解释。

SPSS 软件应用 相关分析举例

SPSS  软件应用  相关分析举例

SPSS案例:回归人均食品支出回归分析:一、散点图:人均食品支出与粮食平均单价是正相关关系,人均食品支出和人均收入也是正相关关系。

二、相关性分析:人均食品支出与粮食平均单价的相关系数为0.730,为显著相关,假设检验t检验,sig(2-tailed)=0小于双侧检验的显著水平0.01,所以推翻原假设,人均食品支出与粮食平均单价线性相关。

人均食品支出与人均收入的相关系数为0.921,为显著相关,假设检验t检验,sig(2-tailed)=0小于双侧检验的显著水平0.01,所以推翻原假设,人均食品支出与人均收入线性相关。

三、(1)方程中的自变量列表(方法是进入)(2 )模型拟合概述:可以从表中看出,自变量和因变量之间的相关系数为0.940,拟合线性回归的确定性系数为0.883,经调整后的确定性系数为0.875,标准误的估计为2.766。

这里的R,R^2的值反映两变量的共变量比率高,模型与数据的拟合程度好。

Durbin-Watson=2.766>2,所以他们三者的关系程度显著。

四、方差分析:回归平方和为915129.1,残差平方和为120679.8,总平方和为1035809,对应的F统计量的值为106.164,显著性水平小于0.05,可以认为所建立的回归方程有效。

因为sig=0小于0.05,所以推翻原假设的多个自变量同时为0的假设,所以自变量不同时为0.五、回归系数:非标准化的回归系数X1的估计值为213.423,标准误为73.278,标准化的回归系数为0.243,回归系数显著性检验t统计量的值为2.913,对应显著性水平Sig.=0.007<0.05,可以认为粮食平均单价对人均食品输出有显著影响。

X2的估计值为0.352,标准误为0.038,标准化的回归系数0.767,回归系数显著性检验t统计量的值为9.185,对应显著性水平Sig.=0.000<0.05,可以认为人均收入对人均食品输出有显著影响。

《2024年利用SPSS软件分析变量间的相关性》范文

《2024年利用SPSS软件分析变量间的相关性》范文

《利用SPSS软件分析变量间的相关性》篇一一、引言在社会科学、统计学和许多其他研究领域中,了解不同变量之间的相互关系是非常重要的。

SPSS软件作为一款强大的统计分析工具,为研究者提供了多种分析方法,其中之一就是分析变量间的相关性。

本文将详细介绍如何利用SPSS软件进行变量间的相关性分析,并通过一个具体的例子来展示其应用。

二、数据准备首先,我们需要准备用于分析的数据。

数据可以是来自调查问卷、实验数据或其他来源的数值型数据。

确保数据的准确性和完整性对于后续的统计分析至关重要。

在本例中,我们将使用一个包含多个变量的数据集,这些变量可能存在某种相关性。

三、SPSS软件操作步骤1. 打开SPSS软件并导入数据。

在SPSS中,通过“文件”菜单选择“打开”,然后选择要分析的数据文件格式(如CSV、Excel 等)导入数据。

2. 检验数据。

在导入数据后,进行数据的清洗和检查,确保数据没有缺失值、异常值等问题。

3. 选择相关性分析方法。

在SPSS中,选择“分析”菜单下的“相关”选项,然后选择适合的分析方法,如皮尔逊相关性、斯皮尔曼等级相关性等。

4. 选择变量。

在弹出的对话框中,选择要分析的变量。

可以选择单个变量或多个变量进行相关性分析。

5. 运行分析。

点击“运行”按钮,SPSS将开始进行相关性分析。

6. 查看结果。

分析完成后,SPSS将显示相关性分析的结果。

结果通常包括相关系数、显著性水平等统计信息。

四、具体案例分析以一个关于消费者购买行为的研究为例,我们拥有关于消费者年龄、收入、教育水平、品牌偏好和购买频率等多个变量的数据。

我们希望通过SPSS软件分析这些变量之间的相关性。

1. 导入数据并清洗数据。

2. 选择皮尔逊相关性分析方法,并选择年龄、收入、教育水平、品牌偏好和购买频率这五个变量。

3. 运行分析。

4. 查看结果。

SPSS将显示这五个变量之间的相关系数和显著性水平。

例如,我们发现年龄与购买频率之间存在显著的正相关关系,这意味着年龄较大的消费者更可能购买更多产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型相关分析S P S S例

集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-
典型相关分析 典型相关分析(Canonicalcorrelation )又称规则相关分析,用以分析两组变量间关系的一种方法;两个变量组均包含多个变量,所以简单相关和多元回归的解惑都是规则相关的特例。

典型相关将各组变量作为整体对待,描述的是两个变量组之间整体的相关,而不是两个变量组个别变量之间的相关。

典型相关与主成分相关有类似,不过主成分考虑的是一组变量,而典型相关考虑的是两组变量间的关系,有学者将规则相关视为双管的主成分分析;因为它主要在寻找一组变量的成分使之与另一组的成分具有最大的线性关系。

典型相关模型的基本假设:两组变量间是线性关系,每对典型变量之间是线性关系,每个典型变量与本组变量之间也是线性关系;典型相关还要求各组内变量间不能有高度的复共线性。

典型相关两组变量地位相等,如有隐含的因果关系,可令一组为自变量,另一组为因变量。

典型相关会找出一组变量的线性组合**=i i j j X a x Y b y =∑∑与,称为典
型变量;以使两个典型变量之间所能获得相关系数达到最大,这一相关系数称为典型相关系数。

i a 和j b 称为典型系数。

如果对变量进行标准化后
再进行上述操作,得到的是标准化的典型系数。

典型变量的性质
每个典型变量智慧与对应的另一组典型变量相关,而不与其他典型变量相关;原来所有变量的总方差通过典型变量而成为几个相互独立的
维度。

一个典型相关系数只是两个典型变量之间的相关,不能代表两个变量组的相关;各对典型变量构成的多维典型相关,共同代表两组变量间的整体相关。

典型负荷系数和交叉负荷系数
典型负荷系数也称结构相关系数,指的是一个典型变量与本组所有变量的简单相关系数,交叉负荷系数指的是一个典型变量与另一组变量组各个变量的简单相关系数。

典型系数隐含着偏相关的意思,而典型负荷系数代表的是典型变量与变量间的简单相关,两者有很大区别。

重叠指数
如果一组变量的部分方差可以又另一个变量的方差来解释和预测,就可以说这部分方差与另一个变量的方差之间相重叠,或可由另一变量所解释。

将重叠应用到典型相关时,只要简单地将典型相关系数平方(2
CR),就得到这对典型变量方差的共同比例,代表一个典型变量的方差可有另一个典型变量解释的比例,如果将此比例再乘以典型变量所能解释的本组变量总方差的比例,得到的就是一组变量的方差所能够被另一组变量的典型变量所能解释的比例,即为重叠系数。

例1:CRM(CustomerRelationshipManagement)即客户关系管理案例,有三组变量,分别是公司规模变量两个(资本额,销售额),六个CRM实施程度变量(WEB网站,电子邮件,客服中心,DM快讯广告Directmail缩写,无线上网,简讯服务),三个CRM绩效维度(行销绩效,销售绩效,服务绩效)。

试对三组变量做典型相关分析。

数据的格式如上所示,以下对三组变量两两做典型相关分析。

首先对公司规模和CRM实施程度做典型相关分析
SPSS并未提供典型相关分析的交互窗口,只能直接在synatxeditor窗口中呼叫SPSS的CANCORR程序来执行分析。

并且cancorr不能读取中文名称,需将变量改为英文名称。

打开文件后
File-new--synatxeditor打开语法窗口
输入语句
INCLUDE'D:\spss19\Samples\English\Canonicalcorrelation.sps'. CANCORRSet1=CapitalSales
/Set2=WebMailCallDMMobileShortM.
小写字母也行,但是变量名字必须严格一致
include'D:\spss19\Samples\English\Canonicalcorrelation.sps'. cancorrset1=CapitalSales
/set2=WebMailCallDMMobileShortM.
注意第三行的“/”不能为“\”
runall得到典型相关分析结果
第一组变量间的简单相关系数
第一对典型变量的典型相关系数为CR1=0.434,第二对典型变量的典型相关系数为CR2=0.298.
此为检验相关系数是否显着的检验,原假设:相关系数为0.
每行的检验都是对此行及以后各行所对应的典型相关系数的多元检验。

第一行看出,第一对典型变量的典型相关系数是不为0的,相关性显着。

第二行sig值P=0.263>0.05,在5%显着性水平下不显着。

第一个典型变量的标准化典型系数为-0.287和-0.774.
CV1-1=--0.287capital--0.774sales,CV1-2=--1.4capital+1.2sales CV2-1=--0.341web+0.117mail+0.027call—0.091DM—0.767mobile—0.174shortm
CV2-2=--0.433web—0.168mail—
1.075call+0.490DM+0.139mobile+0.812shortm
典型负荷系数和交叉负荷系数表
重叠系数分析Redundancyindex
0.157=21
CR*0.833=0.434^2*0.833
0.08=21*0.425
CR=0.434^2*0.425
此为计算的典型变量,保存到原文件后部。

公司规模与CRM绩效的典型相关分析
CRM绩效与CRM实施程度典型相关分析
自变量因变量规则相关系数检验的P值
公司规模CRM实施程度0.4340.05
CRM实施程度CRM绩效0.3680.00
公司规模CRM绩效0.3580.112
由上表知,公司规模与CRM实施程度显着相关,且公司规模越大实施程度越高;此外CRM实施程度越高越能实现CRM绩效,但公司规模与CRM 绩效并不显着相关;就整体而言,公司规模不直接影响CRM绩效,而是
通过CRM实施程度间接影响CRM绩效。

影响CRM绩因素很多,光靠较大公司规模还不是CRM绩效的保证,还有其他因素影响CRM绩效。

例2:全国30省市自治区农村收入与支出的指标,x1—x4反映农村收入,y1---y8反映农村生活费支出,对收入与支出进行典型相关分析。

语法输入
INCLUDE'D:/spss19/Samples/English/Canonicalcorrelation.sps'. cancorrset1=x1x2x3x4
/set2=y1y2y3y4y5y6y7y8.
只有前两对典型相关系数是显着的;分别为CR1=0.982和CR2=0.910. CV1-1=-0.511x1-0.039x2-0.448x3-0.142x4
CV1-2=-1.046x1-0.293x2+1.459x3-0.319x4
CV2-1=-0.199y1+0.017y2+0.442y3-0.615y4+0.096y5-0.415y6-0.07y7-0.22y8
CV2-2=-0.117y1-1.512y2-1.515y3+1.320y4-
0.03y5+0.705y6+0.453y7+0.274y8
第一对典型变量说明靠劳动报酬和转移收入为主的家庭其对应的消费主要在家庭设备和服务,交通和通讯支出上,在居住支出上比较少。

例三:已知294个被调查者的cesd(抑郁症),health与
sex,age,education,income两组指标建立数据文件。

对两组进行典型相关分析。

语法输入
INCLUDE'D:/spss19/Samples/English/Canonicalcorrelation.sps'.
CANCORRSet1=cesdhealth
/Set2=sexageeducincome.
结果选录
从第一对典型变量的表达式看出,年龄较大,教育程度较低,相对的无抑郁症趋势;显然健康比较差。

第二对典型变量表明,年龄小,教育度低,收入低的女性相对的有抑郁症。

相关文档
最新文档