(完整版)中职数学函数的实际应用教案

合集下载

中职数学函数的实际应用教案

中职数学函数的实际应用教案

中职数学函数的实际应用教案Title: Practical Applications of Functions in Vocational School MathematicsObjective:- Introduce students to the real-life applications of functions in various vocational fields.- Develop students' mathematical thinking and problem-solving skills.- Enhance students' understanding and appreciation of the importance of mathematics in their chosen vocational paths.Duration: 3 one-hour sessionsIntroduction:- Engage students with a thought-provoking question: "How can mathematics be applied in real-life vocational situations?"- Discuss various responses and highlight the importance of functions in solving practical problems.- Introduce the objectives and structure of the lesson.Session 1: Linear Functions- Define linear functions and their general form: y = mx + b.- Explain the concept of slope (m) and y-intercept (b) using relatable examples.- Discuss the limitations and assumptions of linear functions.- Assign an activity where students identify and analyze linear functions in real-life scenarios.Session 2: Quadratic Functions- Define quadratic functions and their general form: y =ax^2 + bx + c.- Discuss the different forms of quadratic functions (standard, vertex, and factored form).- Explain the concept of vertex, axis of symmetry, and discriminant.- Provide examples of quadratic functions in vocational fields (e.g., ballistics in the military, parabolic antenna installation).- Discuss the limitations and assumptions of quadratic functions.- Assign an activity where students identify and analyze quadratic functions in real-life scenarios.Session 3: Exponential Functions- Define exponential functions and their general form: y = a * (1 + r)^t.- Discuss the limitations and assumptions of exponential functions.- Assign an activity where students identify and analyze exponential functions in real-life scenarios.Assessment:- Conduct regular formative assessments throughout each session to gauge students' understanding.- Assign a project where students choose a vocational field and apply their knowledge of functions to solve a real-life problem.- Evaluate the project based on mathematical accuracy, problem-solving approach, and presentation skills.Conclusion:- Recap the main concepts covered in the lesson.- Reflect on the importance of functions in vocational fields.- Emphasize the need for continuous learning and application of mathematical knowledge in their chosen vocation.- Address any remaining doubts or questions from students.Extensions:- Invite guest speakers from various vocational fields to share their experiences and how they use functions in their work.- Organize a field trip to relevant industries or businesses, allowing students to witness firsthand the application of functions in those settings.- Encourage students to explore further applications of functions in vocational fields and share their findings with the class.。

中职数学基础模块上册《函数的实际应用举例》word教案1

中职数学基础模块上册《函数的实际应用举例》word教案1

中职数学基础模块上册《函数的实际应用举例》word教案1【课题】3.3函数的实际应用举例【教学目标】知识目标:(1)理解分段函数的概念;(2)理解分段函数的图像;(3)了解实际问题中的分段函数问题.能力目标:(1)会求分段函数的定义域和分段函数在点某0处的函数值f(某0);(2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.【教学重点】(1)分段函数的概念;(2)分段函数的图像.【教学难点】(1)建立实际问题的分段函数关系;(2)分段函数的图像.【教学设计】(1)结合学生生活实际,利用生活的实例为载体,创设情境,激发兴趣;(2)提供给学生素材后,给予学生充分的时间和空间,让学生在发现、探究、讨论、交流等活动中形成知识;(3)提供数学交流的环境,培养合作意识.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】(第一课时)创设情景兴趣导入问题我国是一个缺水的国家,很多城市的生活用水远远低于世界的平均水平.为了加强公民的节水意识,某城市制定每户月用水收费(含用水费和污水处理费)标准:用水量收费(元/m)污水处理费(元/m)33不超过10m部分3超过10m部分31.300.302.000.80那么,每户每月用水量某(m)与应交水费y(元)之间的关系是否可以用函数解析式表示出来?分析由表中看出,在用水量不超过10(m)的部分和用水量超过10(m)的部分的计费标准是不相同的.因此,需要分别在两个范围内来进行研究.动脑思考探索新知任务一:阅读课本找到以下概念在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数.任务二:小组讨论分段函数的定义域分段函数的定义域是自变量的各个不同取值范围的并集.如前面水费问题中函数的定义域为0,1010,0,.任务三:分段函数的函数值求分段函数的函数值f某0时,应该首先判断某0所属的取值范围,然后再把某0代入到相应的解析式中进行计算.如前面水费问题中求某户月用水8(m)应交的水费f8时,因为0810,所以f81.6812.8(元).3333学生总结,教师点评分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示.巩固知识典型例题(学生自主练习,学生代表讲解)2某1,例1设函数yf某2某,(1)求函数的定义域;(2)求f2,f0,f1的值.某0,某0.分析分段函数的定义域是自变量的各不同取值范围的并集.求分段函数的函数值f某0时,应该首先判断某0所属的取值范围,再把某0代入到相应的解析式中进行计算.解(1)函数的定义域为,00,,.2(2)因为20,,故f22;4因为0,0,故f0201;1因为1,0,故f12113.运用知识强化练习(小组竞赛,组长检查帮助)教材练习3.32某1,1.设函数yf某21某,(1)求函数的定义域;(2)求f2,f0,f1的值.(第二课时)动脑思考探索新知2某0,0某3.任务:分段函数的作图(学生板演,教师补充)因为分段函数在自变量的不同取值范围内,有着不同的对应法则,所以作分段函数的图像时,需要在同一个直角坐标系中,要依次作出自变量的各个不同的取值范围内相应的图像,从而得到函数的图像.某1,例2作出函数yf某某1,某0,的图像.某…0分析由解析式可以看到,需要分别在,0和0,两个范围内作出对应的图像,从而得到函数的图像.解作出y某1的图像,取某0的部分;作出y某1的图像,取某 0的部分;由此得到函数的图像(如下图).(1)因为分段函数是一个函数,应将不同取值范围的图像作在同一个平面直角坐标系中.(2)因为y某1是定义在某0的范围,所以y某1的图像不包含0,1点.运用知识强化练习(各组代表画图,其余组员补充)教材练习3.32.我国国内平信计费标准是:投寄外埠平信,每封信的质量不超过20g,付邮资0.80元;质量超过20g后,每增加20g(不足20g按照20g 计算)增加0.80元.试建立每封平信应付的邮资y(元)与信的质量某(g)之间的函数关系(设0某60),并作出函数图像.归纳小结强化思想本次课学了哪些内容?重点和难点各是什么?自我反思目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?继续探索活动探究(1)读书部分:教材章节3.3;(2)书面作业:学习与训练3.3;(3)实践调查:调查生活中分段函数的实例.。

中职数学第三章《函数》全部教学设计教案(高教版)

中职数学第三章《函数》全部教学设计教案(高教版)

【课题】3.1函数的概念及其表示法【教学目标】知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.【教学重点】(1)函数的概念;(2)利用“描点法”描绘函数图像.【教学难点】(1)对函数的概念及记号y=/(x)的理解;(2)利用“描点法”描绘函数图像.【教学设计】(1)从复习初中学习过的函数知识入手,做好衔接;(2)抓住两个要素,突出特点,提升对函数概念的理解水平;(3)抓住函数值的理解与计算,为绘图奠定基础;(4)学习"描点法”作图的步骤,通过实践培养技能;(5)重视学生独立思考与交流合作的能力培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学教师学生教学时过程行为行为意图间教学教师学生教学时过程行为行为意图间*揭示课题3.1函数的概念及其表示法介绍了解*创设情景兴趣导入从实问题播放观看际事学校商店销售某种果汁饮料,售价每瓶2.5元,购买果汁例使饮料的瓶数与应付款之间具有什么关系呢?课件课件学生解决质疑思考自然设购买果汁饮料X瓶,应付款为则计算购买果汁饮料的走应付款的算式为向知y=2.5x.识点归纳因为X表示购买果汁饮料瓶数,所以X可以取集合{0,1,2,3,}中的任意一个值,按照算式法则y=2.5x,应付款y有唯一的值与之对应.两个变量之间的这种对应关系叫做函数关系.引导分析自我分析引导启发学生体会对应5*动脑思考探索新知带领概念学生在某一个变化过程中有两个变量x和y,设变量x的取值仔细思考总结范围为数集D,如果对于。

内的每一个x值,按照某个对应法分析理解上述则y都有唯一确定的值与它对应,那么,把x叫做自变量,讲解问题把y叫做x的函数.关键得到表示词语记忆函数将上述函数记作'=/(X).概念变量工叫做自变量,数集。

中职数学函数的概念教案

中职数学函数的概念教案

中职数学函数的概念教案一、教学目标:1.知识目标:掌握数学函数的概念、函数的定义域、值域、反函数以及函数的图象特性。

2.能力目标:能够正确理解和运用函数的概念和相关定理,解决函数相关的问题。

3.情感目标:培养学生对于数学函数的兴趣,增强他们的自学能力和数学思维能力。

二、教学重难点:1.重点:函数的概念、定义域、值域、反函数以及函数的图象特性。

2.难点:函数的图象特性。

三、教学过程:Step 1:导入新知(10分钟)1.让学生回顾一元二次方程的函数图像,回顾函数的概念。

2.提问:什么是函数?回答学生提出的问题,引导学生思考。

Step 2:概念解释与讲解(15分钟)1.讲解函数的定义:函数是一个有序对集合的规律关系,即每个自变量(x)只对应一个唯一的因变量(y)。

2.讲解函数的记号:y=f(x)表示函数,y是因变量,x是自变量,f(x)是函数名称。

3.通过例题解释函数的概念,让学生理解函数的定义。

Step 3:函数的定义域和值域(15分钟)1.讲解定义域:定义域是自变量可能取值的集合,记作D(f)。

2.讲解值域:值域是因变量可能取值的集合,记作R(f)。

3.通过例题解释定义域和值域的概念,让学生掌握如何确定函数的定义域和值域。

Step 4:反函数(15分钟)1.讲解反函数的概念:如果函数f的定义域和值域分别为D(f)和R(f),则对于任意y∈R(f),都存在唯一的x∈D(f)使得f(x)=y。

此时,由y关于x的关系式y=f(x)确定一个关于y的函数g,称为函数f的反函数。

2.通过例题,让学生理解反函数的概念,掌握如何求反函数。

Step 5:函数的图象特性(20分钟)1.讲解函数图象的基本概念:函数图象是反映函数f(x)经过点(x,f(x))的轨迹。

2.讲解函数图象的性质:单调性、奇偶性、周期性、最值点等。

3.通过例题,让学生掌握函数图象的特性及如何根据函数图象确定函数的性质。

Step 6:练习与巩固(15分钟)1.分发练习题,让学生根据所学知识完成练习。

函数的实际应用举例教学设计

函数的实际应用举例教学设计

函数的实际应用举例教学设计一、教材分析本课选用《中等职业教育课程改革国家规划新教材配套教学用书》基础模块上册,第三章第3节《函数的实际应用举例》第一课时主要介绍分段函数,此知识点是函数这一章中的一个重要内容,我们可通过分析分段函数的基本性质进一步巩固基本函数的性质,提高对函数的认识,而且它在现实生活中有着广泛的实际应用,如:水费问题、邮资问题.纳税问题、出租车的计费问题等等.本课题是在学习了函数概念和函数图像基础上进行的一堂探究式的课堂教学,通过学习,让学生了解数学知识来源于生活,又服务于实际,从而培养学生的应用意识.而在学习过程中所渗透的分类讨论与整合思想、对生活中的问题建立函数意识及分析问题与解决问题的能力,都是学生今后学习和工作中必备的数学素养.通过学习分段函数的基本性质,进一步巩固基本函数的性质,提高对函数的认识,加深对函数思想的理解.另一方面又可进一步加深对函数本身的认识,起到承上启下的作用.(二)教学目标1、知识技能目标:理解分段函数的概念,建立简单实际问题的分段函数的关系式,会求分段函数x处的函数值,掌握分段函数的作图方法,在此基础上,能应用分段函的定义域和分段函数在点数来解决与之有关的问题.2、过程与方法目标:通过对生活中实际问题的分析与探讨,引导学生积极思维,培养学生团结合作的意识与分析问题、解决问题的能力及数形之间转换等能力.3、情感,态度与价值观:培养学生勇于探索、敢于创新的精神,初步具备应用数学知识分析、解决实际问题的意识,从探索中获得成功的体验.(三)重点、难点分析1、重点(1)分段函数的概念;(2)分段函数的图像.2、难点:(1)建立实际问题的分段函数关系;(2)分段函数的图像.3、关键点:(1)创设问题情境,在学生临近区提出问题(2)调动学生主动参与的积极性,发挥学生主体作用,并给学生一些探索性质和解决问题的时间和空间.二、学情分析(一)教学对象:中等职业高一的学生.大部分学生由于厌学情绪较浓,学习兴趣较差, 思维不够活跃,缺乏分析问题和解决问题的能力(二)学生的已有的知识结构:了解正比例函数、反比例函数、一次函数、二次函数的解析式及图像.掌握了函数的概念,函数的三种表示法,函数的单调性与奇偶性.(三)从学生的认知角度来看:学生对生活中发生的事件有较强的好奇心,喜欢究根问底,应因势利导让其了解函数在生活中的实际应用.不利因素是:学生对分段函数的表示方法是完全陌生的,接受需要一个过程,分段函数是一个函数还是两个,或多个函数,学生可能会理解错误,正确理解建立实际问题的分段函数关系和如何画出分段函数的图象对学生来讲是个难点.三、教法与学法分析为了实现本节课的教学目标,突出教学重点,在教法上我采取了:1、情境导入:通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,激发学生求知欲,调动学生主体参与的积极性.2、引导探究:教师在课堂教学中只起着引导作用,让学生在教师的提问中自觉的发现新知,探究新知.在学法上我重视了:1、合作探究:让学生从问题中探究——质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.2.小组讨论:组内成员合作,组间成员竞争的讨论不失为一种有效的教学策略;能使师生、生生之间有更多的交往、互动的机会.四、教学过程:教具:常规教学用具及多媒体课件在整个教学过程中,师生合作探究贯穿始终.复习提问以旧引新——创设情境直观感受——引导探索观察发现——引导运用理解领悟——练习巩固深化认识——归纳小结引导反思(一)复习提问以旧引新1 、学过的基本函数有哪些?(正比例函数,反比例函数,一次函数,二次函数)设计意图——以旧引新,利于学生建构知识网络,本题较简单可让一些学习较差的学生来回答,并给予鼓励,树立其学习的信心.2、这些函数的一般形式及图像?设计意图——本节的学习会充分的运用到图象法和解析式法,,而且本节的学习会充分的运用到图象法和解析式法,为分段函数的学习做好铺垫.(二)创设情境直观感受(概念引入)问题:夏天,大家都喜欢吃西瓜,而西瓜的价格往往与西瓜的重量有关,某人到一个水果店买西瓜,价格表上写的是:6斤以下,每斤0.4元:6斤以上9斤以下,每斤0.5元:9斤以上,每斤0.6元。

职业高中数学函数教案

职业高中数学函数教案

职业高中数学函数教案
教学对象:高职数学专业学生
教学目标:
1. 了解函数的定义和基本性质
2. 掌握常见的函数类型及其图像
3. 能够求函数的值域和定义域
4. 能够应用函数解决实际问题
教学内容:
1. 函数的概念及表示方法
2. 常见函数类型:线性函数、二次函数、指数函数、对数函数、三角函数等
3. 函数的图像及性质
4. 求函数的值域和定义域
5. 实际问题中的函数应用
教学过程:
第一课时:
1. 引入函数的概念,讲解函数的定义和表示方法
2. 讲解线性函数及其图像,让学生练习画出线性函数图像
3. 练习题:求线性函数在不同点的函数值
第二课时:
1. 讲解二次函数的概念和图像,讲解二次函数的性质
2. 练习题:求二次函数的顶点和对称轴
3. 讲解指数函数和对数函数的基本性质
第三课时:
1. 讲解三角函数的概念和图像
2. 练习题:求三角函数的周期和振幅
3. 讲解函数的值域和定义域的求法
第四课时:
1. 讲解函数在实际问题中的应用
2. 练习题:应用函数解决实际问题
3. 总结本节课的内容,做一次小测验
教学评估:
1. 学生在课堂上积极参与讨论和练习
2. 学生在小测验中能够正确解答问题
3. 学生能够在实际问题中灵活运用函数的知识
教学反思:
根据学生的学习情况和反馈,及时调整教学内容和方法,确保学生对函数的理解和掌握达到预期目标。

中职数学基础模块上册《函数的实际应用举例》-课堂

中职数学基础模块上册《函数的实际应用举例》-课堂

水费 种类
不超过 超过10
10m3 m3 的
的部分 部分
用水费 1.3 2.0
污水处 0.3 0.8 理费
中职课堂
9
例2 一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价 格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个 月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但 每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月 所获得的利润最大?并计算每月最多能赚多少钱?
• 通过利用函数的图象突破难点直观分析函 数的性质,来提高数形结合解决问题的能 力
• 运用引导发现方法来进行教学 • 运用多媒体课件提高课堂效率
中职课堂
5
引入
• 思考函数 y x , 当 x 0, y=?
当 x 0, y=?
当 x 0, y=?
思考 如何画出该函数的图像?
中职课堂
6

200
时,配方整理得
h(t)


1 200
(t

50)2
100,
所以当
t 50 时, h(t) 取得 [0, 200] 上的最大值100 ;当 200 t 300
时,配方整理得
h(t) 1 (t 35ห้องสมุดไป่ตู้)2 100 200
,所以当
t
300
时,
h(t) 取得
(200,300] 上的最大值87.5.
综此上时,由t =15000,即二87月.5一.可日知开,始h的(t)在第50天[0时,30,上0上]市可的以西取红得柿最纯大收值益100
最大.
中职课堂

(完整版)人教版中职数学基础上册《函数的应用》表格式教案

(完整版)人教版中职数学基础上册《函数的应用》表格式教案

函数的应用
【教学目标】
1. 会应用一次函数和二次函数解决有关简单实际问题.
2. 培养学生建立简单的数学模型及应用模型去解决实际问题的能力.
3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.
【教学重点】
应用函数知识解决一些简单的实际问题.
【教学难点】
从实际问题中抽象出函数模型.
【教学方法】
这节课主要采用讲练结合法.教师将四个例题与练习穿插在一起,教师引导与学生主动参与相结合,培养学生的审题能力,以及从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.
【教学过程】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的实际应用教案
一、条件分析
1.学情分析
函数的实际应用是函数这个章节的第五节课,通过前四节课的情景教学,学生对函数的概念、表示方法、单调性、奇偶性的知识进行了系统的学习,所以,在进行教学设计的时候,我们仍然坚持情景教学,从学生身边熟悉的事物入手做到由浅入深,循序渐进。

2.教材分析
一次函数和二次函数在实际生活与生产中应用广泛,教材中对一次函数和二次函数的应用举了五个例子,目的是启发学生应用函数知识去思考问题,解决问题。

让学生明白学有所用,学以致用。

二、三维目标
知识与技能目标
A层:
1. 理解分段函数的概念;
2. 理解分段函数的图像;
3. 掌握分段函数的作图方法;
4. 能建立简单实际问题的分段函数的关系式。

B层:
1. 理解分段函数的概念;
2. 理解分段函数的图像;
3. 掌握分段函数的作图方法;
C层:
1. 理解分段函数的概念;
2. 理解分段函数的图像;
过程与方法目标
情景教学法、讨论法、讲授法。

通过创设情景让学生合作、探究分段函数图像的概念和性质,直观感受函数的实际应用;通过讲授法让学生掌握分段函数的概念和作图方法;通过练习加强对新知识的巩固。

情感态度和价值观目标
通过对函数的实际应用的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对分段函数的概念和作图方法的学习,提高学生对理论知识的实际应用的能力。

三、教学重点
分段函数的概念和作图方法
四、教学难点
能建立简单实际问题的分段函数的关系式
五、主要参考资料:
中等职业教育课程教材数学基础模块(上)、学生学习指导用书、教学参考书。

六、教学进程:
复习导入:
函数的概念——什么函数?如何确定函数的定义域?
函数的表示方法——函数有那些表示方法?
函数单调性——如何判断函数的单调性?
函数的奇偶性——如何判断函数的奇偶性?
讲授新课:
创设情景:某天,奉节职教中心校长到我校参观,由于时间紧迫,所以决定坐出租车。

从职教中心到我校全程17公里。

出租车按如下方法收费:起步价5元,可行3公里(含3公里);3公里到7公里(含7公里)按1.6元/公里计价(不足1公里,按1公里计算);7公里以后按2.4元/公里计价(不足1公里,按1公里计算)。

试写出以行车里程为自变量,车费为函数值的函数解析式,并画出这个函数图像。

请问假如职教中心校长坐出租车打表到我校参观,他需要付多少车费?
分析:当行车里程在3公里及以内时,我们需要付车费5元,当行车里程在3公里以上,7公里时,我们需要付车费[5元+1.6元(x-3)]元,当行车里程在4公里以上,5公里时,我们需要付车费5元+1.6元+1.6=8.2元,当行车里程在7公里以上,我们需要付车费[5元+1.6元⨯4+2.4⨯(x-7)]元





<
-
+
-
+

<
-
+

<
=
)
7
)(
7
(4.2
)3
7(6.1
5
)7
3(),
3
(6.1
5
)3
0(,5
x
x
x
x
x
y
因为职教中心到我校全程17公里,大于7公里,所以应付车费为
5+1.6x4+2.4x (17-7)=35.4。

归纳:这个函数与前面所见到的函数不同,在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示。

像这种在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数. 定义域 分段函数的定义域是自变量的各个不同取值范围的并集.
如车费问题的定义域是(0,3]∪(3,7]∪(7,+∞).即(0,+∞)。

函数值
求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,然后再把0
x 代入到相应的解析式中进行计算.
注意
分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示.
分组练习:p78练习1
如图,折线ABC 为甲地向乙地打长途电话所需付的电话费与时间之间的函数图像。

求:(1)当t ≥3时,该函数的解析式;(2)通话2分钟需付话费多少元?
(3)通话7分钟需付话费多少元?
例:奉节脐橙价格为40元一箱时,月销量为10000箱,价格每提高2元,月销量就会减少400件,在不考虑其他因素时,
(1)试求这种商品的月销量与价格之间的函数关系;
(2)当价格提高到多少元时,这种商品就会卖不出去?
解:设月销售量为y ,售价为x.
2
4040010000-⨯-=x y =x 20018000-
商品卖不出去,即销量为y=0。

∴18000-200x=0;x=90
答:这种商品销量与价格函数表达式为x
40
x。

当价
,

[
y200
90
18000-
=,]
格提高到90元时,商品就会卖不出去。

练习:某商品售价为10元时,销售量为1000件,没件价格没提高0.2元,会少卖出10件。

(1)求销售量与价格的一次函数关系式;(2)当商品价格为多少时,收入最多?
例题:七、课堂修炼:P85综合练习三A组8
八、预习导案:
1. 了解指数函数
2. 了解整数指数幂。

相关文档
最新文档