圆心角与圆周角的专题练习

合集下载

圆心角圆周角练习题

圆心角圆周角练习题

圆心角圆周角练习题圆心角和圆周角是圆内角的一种特殊形式,它们在几何学中具有重要的地位。

本文将介绍关于圆心角和圆周角的一些练习题,帮助读者加深对这一概念的理解。

一、选择题1. 在同一个圆中,圆心角和对应的圆周角的关系是:A. 圆心角大于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角小于对应的圆周角2. 已知在同一个圆中,圆心角的度数为56°,则对应的圆周角的度数为:A. 56°B. 112°C. 224°3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数为:A. 30°B. 60°C. 120°4. 若∠ACD是圆O中的圆心角,且其度数为72°,则弧AB所对应的圆周角的度数为:A. 72°B. 144°C. 288°5. 在同一个圆中,圆心角和对应的弧所对应的圆周角之间的关系是:A. 圆心角小于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角大于对应的圆周角二、填空题1. 在同一圆中,一条弧的度数等于其所对应的圆周角的度数,则这条弧所对应的圆心角的度数为________。

2. 在圆O中,已知∠ACB是圆心角,则它所对应的圆周角的度数为________。

3. 在同一个圆中,圆心角的度数等于所对应的弧所对应的圆周角的度数,则该弧所对应的圆周角的度数为________。

三、解答题1. 在同一个圆中,圆心角和对应的圆周角的关系是什么?为什么?2. 已知在同一个圆中,圆心角的度数为60°,则对应的圆周角的度数是多少?并通过计算或推理进行解答。

3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数是多少?并通过计算或推理进行解答。

4. 若∠ACD是圆O中的圆心角,且其度数为90°,则弧AB所对应的圆周角的度数是多少?并通过计算或推理进行解答。

总结:本文通过选择题、填空题和解答题的形式,对圆心角和圆周角的概念进行了练习和探讨。

垂径定理和圆心角,圆周角练习题

垂径定理和圆心角,圆周角练习题

垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:平分(非直径)弦的直径垂直于弦,并且平分弦所对的两条弧.练习:1.如图,在⊙O中,弦AB的长为8 cm.圆心O到AB的距离为3cm.求⊙O的半径.2.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4m,EM=6m.求⊙O的半径。

圆心角:顶点在圆心的角叫做圆心角。

圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦也相等.推论:(1)在同圆或等圆中,如果两条弧相等、那么它们所对的圆心角相等.所对的弦相等;(2)在同圆或等圆中,如果两条弦相等。

那么它们所对的圆心角相等,所对的优弧和劣弧分别相等.练习:1.如图,在⊙O中,AB=AC,∠ACB=60°,求证:AOB=∠BOC=∠AOC.圆周角:顶点在圆上,并且两边都与圆相交,所形成的角为圆周角。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论:(1)同弧或等弧所对的圆周角相等;(2)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;(3)同弦或等弦所对的圆周角相等或互补;练习:1.如图,⊙O的直径AB为10 cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,求BC,AD, BD的长。

2.如图,圆内接四边形ABCD的对角线AC、BD把它的4个内角分成8个角,这些角中哪些相等?为什么?如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。

圆内接四边形性质:圆内接四边形的对角互补。

练习:1.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,求∠ADE的度数。

2.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,判断△ABC的形状,并证明你的结论.。

初中数学 圆周角和圆心角的关系同步练习及答案

初中数学  圆周角和圆心角的关系同步练习及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在同圆中,同弦所对的圆周角 ( )A.相等 B.互补 C.相等或互补 D.互余试题2:如图3-63所示,A,B,C,D在同一个圆上,四边形ABCD的两条对角线把四个内角分成的8个角中,相等的角共有 ( )A.2对 B.3对 C.4对D.5对试题3:如图3-64所示,⊙O的半径为5,弦AB=,C是圆上一点,则∠ACB的度数是.试题4:如图,四边形 ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为()A.50° B.80° C.100° D.130°试题5:如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是() A.180° B.15 0° C.135° D.120°试题6:下列命题中,正确的命题个数是()①顶点在圆周上的角是圆周角;②圆周角度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④圆周角相等,则它们所对的弧也相等。

A、1个B、2个C、3个D、4个试题7:如图3-65所示,在⊙O中,∠AOB=100°,C为优弧ACB的中点,则∠CAB=.试题8:如图3-66所示,AB为⊙O的直径,AB=6,∠CAD=30°,则弦DC=.试题9:如图3-67所示,AB是⊙O的直径,∠BOC=120°,CD⊥AB,求∠ABD的度数.试题10:如图,已知AB是⊙O的直径,AD ∥ OC弧AD的度数为80°,则∠BOC=_________ 试题11:如图,⊙O内接四边形ABCD中,AB=CD则图中和∠1相等的角有______。

圆的定义圆心角圆周角训练题(含答案)

圆的定义圆心角圆周角训练题(含答案)

圆的定义圆心角圆周角训练题一、单选题(共17题;共34分)1.(2020九上·江苏月考)下列说法错误的是()A. 长度相等的两条弧是等弧B. 直径是圆中最长的弦C. 面积相等的两个圆是等圆D. 半径相等的两个半圆是等弧2.(2019九上·台安期中)下列说法中,不正确的个数是()①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆心的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A. 1个B. 2个C. 3个D. 4个3.(2019九上·沭阳月考)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A. ①③B. ①③④C. ①②③D. ②④4.(2019九上·贾汪月考)下列说法中,错误的是()A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦5.(2018九上·下城期末)下列命题中是真命题的为()A. 弦是直径B. 直径相等的两个圆是等圆C. 平面内的任意一点不在圆上就在圆内D. 一个圆有且只有一条直径6.(2020九上·浙江期中)如图,是的直径,,,则的度数是().A. 52°B. 57°C. 66°D. 78°7.(2019九上·柳江月考)如图,AB是⊙O的直径,,∠COD=34°,则∠AOE的度数是( )A. 51°B. 56°C. 68°D. 78°8.(2019九上·邯郸月考)如图,AB是O的直径, ,∠BOC=40°,则∠AOE的度数为()A. 30°B. 40°C. 50°D. 60°9.(2019九上·余杭期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A. 45º-αB. αC. 45º+αD. 25º+α10.(2020九下·南召月考)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A. AB=ADB. BC=CDC.D. ∠BCA=∠DCA11.(2020九上·无锡月考)在半径为的圆中,长度等于的弦所对的弧的度数为()A. B. C. 或 D. 或12.(2020·西湖模拟)如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°13.(2020·衢州模拟)如图,在⊙O中,=,∠A=40°,则∠B的度数是()A. 60°B. 40°C. 50°D. 70°14.(2020·乾县模拟)如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB 的度数是()A. 70°B. 80°C. 82°D. 85°15.(2019九上·龙湖期末)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°16.(2019九上·道外期末)如图,,是的直径,,若,则的度数是()A. 32°B. 60°C. 68°D. 64°17.(2019九上·光明期中)如图,已知AB是⊙O的直径,∠CBA=25°,则∠D的度数为()A. B. C. D.参考答案一、单选题1.【答案】A【解析】【解答】解:A、等弧就是指能完全重合的两段弧,所以长度相等的弧的度数不一定是等弧,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确.故答案为:A.2.【答案】C【解析】【解答】在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.故答案为:C.3.【答案】A【解析】【解答】解:①直径相等的两个圆能重合,所以是等圆,①是真命题;②长度相等的弧不一定能重合,所以不一定是等弧,②是假命题;③圆中最长的弦是直径,通过圆心的弦是直径,③是真命题;④一条弦把圆分成两条弧,这两条弧可以是半圆,所以可能是等弧,④是假命题.故答案为:A.4.【答案】C【解析】【解答】解:A、半圆是弧,所以A选项的说法正确;B、半径相等的圆是等圆,所以B选项的说法正确;C、过圆心的弦为直径,所以C选项的说法错误;D、直径是弦,所以D选项的说法正确.故答案为:C.5.【答案】B【解析】【解答】解:弦不一定是直径,A是假命题;直径相等的两个圆是等圆,B是真命题;平面内的任意一点在圆上、圆内或圆外,C是假命题;一个圆有无数条直径,D是假命题;故选:B.6.【答案】C【解析】【解答】解:∵AB是⊙O的直径,,∠COD=38°,∴∠BOC=∠COD=∠DOE=38°.∴∠BOE=114°,∴∠AOE=180°-114°=66°.故答案为:C.7.【答案】D【解析】【解答】解:∵,∠COD=34°,∴∠BOC=∠COD=∠DOE=34°,∴∠AOE=180°-∠BOC-∠COD-∠DOE=180°-34°-34°-34°= 78° .故答案为:D.8.【答案】D【解析】【解答】解:∵,∠BOC=40°∴∠BOC=∠COD=∠EOD=40°∴∠BOE=120°∴∠AOE=180°-∠BOE=60°.9.【答案】A【解析】【解答】解:如图,连接CD,∵的度数为,∴∠DCE= ,∵BC=CD,∴∠CBD=∠BDC= ,∵∠C=90°,∴∠CBD+∠A=90°,∴,∴;故选择:A.10.【答案】B【解析】【解答】解:A.∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B.∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C.∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D.∠BCA与∠DCA的大小关系不确定,故本选项错误。

中考圆专题基础练习题

中考圆专题基础练习题

圆专题一、圆心角、圆周角1.如图,设⊙O的半径的为R,且AB=AC=R,则∠BAC=_______.2.如图,AB为⊙O的弦,∠OAB=75O ,则此弦所对的优弧是圆周的______。

4.如图,在△ABC 中,∠C 是直角,∠A=32O 18’ ,以点C 为圆心、BC 为半径作圆,交AB 于点D,交AC 于点E,则⋂BD 的度数是______。

5.如图,点O 是△ABC 的外心,已知∠ACB=100O ,则劣弧⋂AB 所对的∠AOB=______度。

6.如图,AB 是⊙O 的直径,CD 与AB 相交于点E, ∠ACD=60O , ∠ADC=50O ,则∠AEC=______度。

7.如图,以等腰△ABC 的边AB 为直径的半圆,分别交AC 、BC 于点D 、E,若AB=10, ∠OAE=30O,则DE=______。

8.在锐角△ABC 中,∠A=50O ,若点O 为外心,则∠BOC=_____;若点I 为内心,则∠BIC=______;若点H 为垂心,则∠BHC=________.9.若△ABC 内接于⊙O ,∠A=n O,则∠BOC=_______.10.如图,已知AB 和CD 是⊙O 相交的两条直径,连AD 、CB ,那么α和β的关系是( ) A.α=β B.β>21α C.β<21α D.β=2α 11.如图,在⊙O 中,弦AC 、BD 交于点E ,且⋂⋂⋂==CDBC AB ,若∠BEC=130O ,则∠ACD 的度数为( )A.15OB.30OC.80OD.105O12.如图,AB 为半圆的直径,AD ⊥AB,点C 为半圆上一点,CD ⊥AD,若CD=2,AD=3,求AB 的长。

13.如图,AO ⊥BO,AO 交⊙O 于点D ,AB 交⊙O 于点C, ∠A=27O,试用多种方法求⋂DC 、⋂BC 的度数。

14.求证:如果AB 和CD 为⊙O 内互相垂直的两条弦,那么∠AOC 和∠BOD 互补。

圆周角和圆心角的关系中考题目完整版

圆周角和圆心角的关系中考题目完整版

圆周角和圆心角的关系中考题目Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】圆周角和圆心角的关系-----中考链接能力提升题一.选择题(共12小题)1.(2013?自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A. 3 B.4 C.5 D.82.(2013珠海)如图,ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°3.(2013?湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A.25°B.35°C.55°D.70°4.(2013?宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°5.(2013?绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A. 4 B.5 C.6 D.76.(2013?苏州)如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°7.(2013?日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥AC B.AC2=2AB?AEC.△ADE是等腰三角形D.BC=2AD8.(2013?南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A. 4B.5 C.4 D.39.(2013?济南)如图,AB是⊙O的直径,C是⊙O上一点,AB=10,AC=6,OD⊥BC,垂足是D,则BD的长为()A. 2 B.3 C.4 D.610.(2013?临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.60°C.45°D.30°11.(2013?红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A. AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA12.(2013?黑龙江)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A. 3 B.2C.3D.2二.填空题(共6小题)13.(2013?淄博)如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=_________ .14.(2013?黔西南州)如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为_________ .15.(2013?盘锦)如图,⊙O直径AB=8,∠CBD=30°,则CD= _________ .16.(2013?常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC= _________ .17.(2012?徐州)如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,AC=8,BC=6.则sin∠ABD=_________ .18.(2012?泰安)如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为_________ .三.解答题(共4小题)19.(2013?武汉)如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.20.(2013?温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.21.(2013?哈尔滨)如图,在△ABC中,以BC为直径作半圆O,交AB于点D,交AC于点E,AD=AE.(1)求证:AB=AC(2)若BD=4,BO=2,求AD的长.22.(2012?大庆)如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.参考答案一.选择题(共12小题)1. C2. A.3. B.4. C.5. B.6. C.7. D.8. B.9. C.10. B.11. D.12. A.二.填空题(共6小题)13..14.50°.15. 4.16. 2.17..18..三.解答题(共4小题)19.解:(1)∵∠BPC=60°,∴∠BAC=60°,∵AB=AC,∴△ABC为等边三角形,∴∠ACB=∠ABC=60°,∴∠APC=∠ABC=60°,而点P是的中点,∴∠ACP=∠ACB=30°,∴∠PAC=90°,∴tan∠PCA==tan30°=,∴AC=PA;(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,如图,∵AB=AC,∴AD平分BC,∴点O在AD上,连结OB,则∠BOD=∠BAC,∵∠BPC=∠BAC,∴sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,∴OD==7x,在Rt△ABD中,AD=25x+7x=32x,BD=24x,∴AB==40x,∵点P是的中点,∴OP 垂直平分AB,∴AE=AB=20x,∠AEP=∠AEO=90°,在Rt△AEO中,OE==15x,∴PE=OP﹣OE=25x﹣15x=10x,在Rt△APE中,tan∠PAE===,即tan∠PAB的值为.20.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.21.解:(1)连接BE,CD,∵BC是半圆O的直径,∴∠BDC=∠BEC=90°,∴∠ADC=∠AEB=90°,在Rt△ABE和Rt△ACD中,∵,∴△ABE≌△ACD,∴AB=AC.(2)∵BO=2,∴BC=4,在Rt△BDC中,CD==8,设AD=x,则AC=AB=x+4,在Rt△ADC中,82+x2=(x+4)2,解得:x=6.即AD=6.22.解:(1)连接BD,∵以BC为直径的⊙O交AC于点D,∴∠BDC=90°,∵D是AC中点,∴BD是AC的垂直平分线,∴AB=BC,∴∠A=∠C,∵∠ABC=120°,∴∠A=∠C=30°,即∠ACB=30°;(2)过点A作AE⊥BC于点E,∵BC=3,∠ACB=30°,∠BDC=90°,∴cos30°==,∴CD=,∵AD=CD,∴AC=3,∵在Rt△AEC中,∠ACE=30°,∴AE=×3=.。

圆心角与圆周角的关系(1)

圆心角与圆周角的关系(1)

O.
B
y= -
1 x 2
+900
D
2.如图,在⊙O中,点A、B、C在圆上, ∠C=300,AB=4cm. C 求⊙O的半径. .
O A B

二、能力提升:

一、基础演练: 课本P111习题3.4
在圆中,若一条弦所对的圆心角是500 ,求其所 对的圆周角.
三、问题解决: 当球员站在B,D, E的位置(点B、D、E在 同一个圆上)射球时,对 球门AC的张角的大小相 等吗?
练一练(一) 1.下列各图形中的角是不是圆周角? 请说明理由.
A
B
C D
D
2.点A、B、C、D在同一个 圆上,AC、BD交于点E,请找 A 出图中的圆周角.
C E
B
做一做:
在圆上确定一条劣弧,画出它所对的圆 心角与圆周角。 A
A C C A C O
O B ① B ②
O
B

猜一猜:
∠ABC与∠AOC有什么等量关系?
1 ∠ABC= ∠AOC。 2
证明: 作直径BD ∵ ∠AOD是△ABO的外角
A D O C
∴ ∠AOD=∠A+∠ABO
∵ OA=OB
∴ ∠A=∠ABO
1 ∴ ∠ABO= ∠AOD 2 1 同理 ∠CBO= ∠COD 2 1 2 1 即∠ABC= ∠AOC 2
B ②
∴ ∠ABO +∠CBO=
( ∠AOD+ ∠COD)
如图,在射门游戏中,球员射中球门的
难易与他所处的位置(如点B)对球门AC的
张角(∠ABC)有关.
当他站在B,D,E的位置(点B、D、E 在同一个圆上)射球时,对球门AC的张角的大 小相等吗?

圆中角度计算

圆中角度计算

B图2OBDCA图3圆中的角度计算专项训练圆心角定理推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

圆周角定理推论:1.在同圆或等圆中,同弧或等弧所对的圆周角相等:相等的圆周角所对的弧也相等。

2.半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径。

例1. 如图,点A、B、C在⊙O上,∠ACB=20°,则∠AOB的度数是()变式:如图,点A、B、C在⊙O上,AO∥BC,∠OAC=20°,则∠AOB的度数是()例2. 如图,若圆心角∠ABC=100°,则圆周角∠ADC=()变式:如图,若圆心角∠ABC=n°,则圆周角∠ADC=()小结:做题方法,数学定理练习:11. 如图2,在⊙O中,弦AD平行于弦BC,若80AOC=∠,则∠ABC 度, DAB∠= 度.2. 如图3,AB和CD都是⊙O的直径,50AOC=∠,则C∠的度数是3. 如图4,点A,B,C在⊙O上,80AOC=∠,则ABC∠的度数是5. 如图,已知AB是⊙O的直径,⌒ = ⌒ = ⌒ = ∠BOE=400,那么∠AOE =度例3.如图,已知AB是⊙O的直径, C,D 是⊙O上的两点,∠D=1300,则∠BAC= 度例2CD DE EBC图480_C_A_B_E_O_D例2”例1 例1”图7E 图96. 如图,AB为O ⊙的直径,C D ,是O⊙上两点,若50ABC =∠,则D ∠的度数为________.7. 如图,AB 是O ⊙的直径,点C 在O 上,连结OC ,BC ,若30OCB ∠=,则AO C ∠的度数为________.8. 如图所示,在⊙O 中,AB 是⊙O 的直径,∠ACB 的角平分线CD 交⊙O 于D ,则∠ABD =_____________度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆心角与圆周角 练习题1.圆周角是24°,则它所对的弧的度数是( ) A .12°;B .24°;C .36°;D .48°.2.在⊙O 中,∠AOB=84°,则弦AB 所对的圆周角是( )A .42°;B .138°;C .84°;D .42°或138°.3.如图,圆接四边形ABCD 的对角线AC ,BD 把四边形的四个角分成八个角,这八个角中相等的角的对数至少有( )A .1对;B .2对;C .3对;D .4对.4.如图,AC 是⊙O 的直径,AB ,CD 是⊙O 的两条弦,且AB ∥CD .如果∠BAC=32°,则∠AOD=( )A .16°;B .32°;C .48°;D .64°.5.直角三角形的斜边长是17,斜边上的高线长是120/17,求三角形外接圆半径长及各锐角的正切值.6.如图,AD 是△ABC 外接圆的直径,AD=6cm ,∠DAC=∠ABC .求AC 的长.7.已知:△DBC 和等边△ABC 都接于⊙O ,BC=a ,∠BCD=75°(如图).求BD 的长.8.如图,半圆的直径AB=13cm ,C 是半圆上一点,CD ⊥AB 于D ,并且CD=6cm .求AD 的长.、9.如图,圆接△ABC 的外角∠MAB 的平分线交圆于E ,EC=8cm .求BE 的长.10.已知:如图,AD 平分∠BAC ,DE ∥AC ,且AB=a .求DE 的长.11.如图,在⊙O 中,F ,G 是直径AB 上的两点,C ,D,E 是半圆上的三点,如果弧AC 的度数为60°,弧BE 的度数为20°,∠CFA=∠DFB ,∠DGA=∠EGB .求∠FDG 的大小.12.如图,⊙O 的接正方形ABCD 边长为1,P 为圆周上与A ,B ,C ,D 不重合的任意点.求PA2+PB2+PC2+PD2的值.13.如图,在梯形ABCD 中,AD ∥BC ,∠BAD=135°,以A 为圆心,AB 为半径作⊙A 交AD ,BC 于E ,F 两点,并交BA 延长线于G 求弧BF 的度数.14.如图,⊙O 的半径为R ,弦AB=a ,弦BC ∥OA ,求AC 的长.15.如图,在△ABC 中,∠BAC ,∠ABC ,∠BCA 的平分线交△ABC 的外接圆于D ,E 和F ,如果,,分别为m °,n °,p °,求△ABC 的三个角.16.如图,在⊙O 中,BC ,DF 为直径,A ,E 为⊙O 上的点,AB=AC ,EF=21DF .求∠ABD+∠CBE 的值.17.如图,等腰三角形ABC 的顶角为50°,AB=AC ,以AB 为直径作圆交BC 于点D ,交AC 于点E ,求弧BD ,弧DE ,弧AE 的度数.18.如图,AB 是⊙O 的直径,AB=2cm ,点C 在圆周上,且∠BAC=30°,∠ABD=120°,CD ⊥BD 于D .求BD 的长.19.如图,△ABC 中,∠B=60°,AC=3cm ,⊙O 为△ABC 的外接圆.求⊙O 的半径.20.以△ABC 的BC 边为直径的半圆,交AB 于D ,交AC 于E ,EF ⊥BC 于F ,AB=8cm ,AE=2cm ,BF ∶FC=5∶1(如图).求CE 的长.21.已知等腰三角形的腰长为13cm ,底边长为10cm ,求它的外接圆半径.22.如图,△ABC 中,AD 是∠BAC 的平分线,延长AD 交△ABC 的外接圆于E ,已知AB=a ,BD=b ,BE=c .求AE 的长.23.如图,△ABC 中,AD 是∠BAC 的平分线,延长AD 交△ABC 的外接圆于E ,已知AB=6cm ,BD=2cm ,BE=2.4cm .求DE 的长.24.如图,梯形ABCD 接于⊙O ,AB ∥CD ,的度数为60°,∠B=105°,⊙O 的半径为6cm .求BC 的长.25.已知:如图,AB 是⊙O 的直径,AB=4cm ,E 为OB 的中点,弦CD ⊥AB 于E .求CD 的长.26.如图,AB 为⊙O 的直径,E 为OB 的中点,CD 为过E 点并垂直AB 的弦.求∠ACE 的度数.27.已知:如图,在△ABC 中,∠C=90°,∠A=38°,以C 为圆心,BC 为半径作圆,交AB 于D ,求的度数.28.如图,△ABC 接于圆O ,AD 为BC 边上的高.若AB=4cm ,AC=3cm ,AD=2.5cm ,求⊙O 的半径.29.设⊙O 的半径为1,直径AB ⊥直径CD ,E 是OB 的中点,弦CF 过E 点(如图),求EF 的长.30.如图,在⊙O 中直径AB ,CD 互相垂直,弦CH 交AB 于K ,且AB=10cm ,CH=8cm .求BK ∶AK 的值.31.如图,⊙O 的半径为40cm ,CD 是弦,A 为的中点,弦AB 交CD 于F .若AF=20cm ,BF=40cm ,求O 点到弦CD 的弦心距.32.如图,四边形ABCD 接于以AD 为直径的圆O ,且AD=4cm ,AB=CB=1cm ,求CD 的长.33.如图,已知△ABC 接于半径为R 的⊙O ,A 为锐角.求证:A BCsin =2R34.已知:如图,在△ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交△ABC 的外接圆于E ,连接BE .求证:BE=DE .35.如图,已知D 为等边三角形ABC 外接圆上的上的一点,AD 交BC 边于E .求证:AB 为AD 和AE 的比例中项.36.已知:如图,在△ABC 中,AB=AC ,以AB 为直径的圆交BC 于D .求证:D 为BC 的中点.37.已知:如图,⊙O 是△ABC 的外接圆,AD ⊥BC 于D ,AE 平分∠BAC 交⊙O 于E .求证:AE 平分∠OAD .38.已知:如图,△ABC 的AB 边是⊙O 的直径,另两边BC 和AC 分别交⊙O 于D ,E 两点,DF ⊥AB ,交AB 于F ,交BE 于G ,交AC 的延长线于H .求证:DF2=HF ·GF .39.已知:如图,圆接四边形ABCD 中,BC=CD .求证:AB ·AD+BC2=AC2.40.已知:如图,AB 是半圆的直径,AC 是一条弦,D 是中点,DE ⊥AB 于E ,交AC 于F ,DB 交AC 于G .求证:AF=FG .41.如图,AB 是⊙O 的弦,P 是AB 所对优弧上一点,直径CD ⊥AB ,PB 交CD 于E ,延长AP 交CD 的延长线于F .求证:△EPF ∽△EOA .42.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,M为上一点,AM的延长线交DC于F.求证:∠AMD=∠FMC.43.已知:如图,AB,AC分别为⊙O的直径与弦,CD⊥AB于D,E为⊙O外一点,且AE=AC,BE交⊙O于F,连结ED,CF.求证:∠ACF=∠AED.44.如图,⊙O的半径OD,OE分别垂直于弦AB和AC,连结DE交AB,AC于F,G.求证:AF2=AG2=DF·GE.45.如图,△ABC接于圆,D是AB上一点,AD=AC,E是AC延长线上一点,AE=AB,连接DE交圆于F,延长ED交圆于G.求证:AF=AG.46.已知:如图,⊙O的两条直径AB⊥CD,E是OD的中点,连结AE,并延长交⊙O于M,连结CM,交AB于F.求证:OB=3OF.47.已知:如图,△ABC是等边三角形,以AC为直径作圆交BC于D,作DE⊥AC交圆于E.(1)求证:△ADE是等边三角形;(2)求S△ABC∶S△ADE.48.已知:如图,半径都是5cm的两等圆⊙O1和⊙O2相交于点A,B,过A作⊙O1的直径AC与⊙O交于点D,且AD∶DC=3∶2,E为DC的中点.(1)求证:AC⊥BE;(2)求AB的长.阶段测试1.如图1,等边三角形ABC的三个顶点都在⊙O上,D是弧AC上任一点(不与A、C重合),则∠ADC的度数是________.2.如图2,四边形ABCD的四个顶点都在⊙O上,且AD∥BC,对角线AC与BC相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.3.已知,如图3,∠BAC的对角∠BAD=100°,则∠BOC=_______度.4.如图4,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度.5.如图5,AB是⊙O的直径,弧 BC=弧BD,∠A=25°,则∠BOD的度数为________.6.如图6,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个10.如图10,∠AOB=100°,则∠A+∠B等于( )A.100°B.80°C.50°D.40°11.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°12.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°, ∠CBD 的度数是( )A.40°B.50°C.70°D.110°13.如图,⊙O的直径AB=8cm,∠CB D=30°,求弦DC的长.14.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC的长.15.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值.16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是弧CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.17.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)18.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大的圆钢?。

相关文档
最新文档