2018-2019学年八年级下学期第一次月考数学试题(有答案)
2018-2019学年人教版八年级下学期第一次月考数学试卷

2018-2019学年八年级下学期第一次月考数学试卷一、选择题(3分×8=24分)1.(3分)若有意义,则a的取值范围是()A.任意实数B.a≥1 C.a≤1 D.a≥02.(3分)下列变形正确的是()A.=×B.=×=4×=2C.=|a+b| D.=13﹣12=13.(3分)是整数,正整数n的最小值是()A.4B.3C.2D.04.(3分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.()C.()D.()5.(3分)最简二次根式的被开方数相同,则a的值为()A.B.C.a=1 D.a=﹣16.(3分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和57.(3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP 长不可能是()A.3.5 B.4.2 C.5.8 D.78.(3分)一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里二、填空题(共8小题,每小题3分,满分24分)9.(3分)等式成立的条件是.10.(3分)在Rt△ABC中,∠C=90°,c=20,a:b=3:4,则a=,b=.11.(3分)如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是.12.(3分)如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.13.(3分)已知x,y为实数,且满足=0,那么x2011﹣y2011=.14.(3分)计算:=.15.(3分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.16.(3分)将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hc m,则h的取值范围是.三、解答题(3×6分=18分)17.(6分)计算(1)(﹣3)0﹣+|1﹣|+(2)﹣(π﹣)+|﹣2|﹣()2.18.(6分)先化简,再求值:()÷(﹣1),其中a=2﹣.19.(6分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?为什么?四.(8分×3=24分)20.(8分)如图,为修通铁路凿通隧道AC,量出∠A=40°∠B=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AC凿通?21.(8分)如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于D,交AB 于E,求证:BE2﹣EA2=AC2.22.(8分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE 折叠,使点A落在对角线BD上的点A′处,求AE的长为多少?五.(10分×1=10分)23.(10分)台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220km的B处有一台风中心,其中心最大风力为12级,每远离台风中心20km,风力就会减弱一级,该台风中心现在正以15km/h的速度沿北偏东30°的方向移动,且台风中心风力不变,如图,若城市所受的风力达到或超过4级,则称为受台风影响.(1)该城市是否受到这次台风的影响?请说明理由;(2)若会受台风影响,那么台风影响该城市的持续时间有多长?该城市受到台风影响的最大风力为几级?江西省上饶市铅山县瓢泉中学2014-2015学年八年级下学期第一次月考数学试卷参考答案与试题解析一、选择题(3分×8=24分)1.(3分)若有意义,则a的取值范围是()A.任意实数B.a≥1 C.a≤1 D.a≥0考点:二次根式有意义的条件.专题:计算题.分析:二次根式有意义:被开方数是非负数.解答:解:根据题意,得a﹣1≥0,解得,a≥1.故选B.点评:此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(3分)下列变形正确的是()A.=×B.=×=4×=2C.=|a+b| D.=13﹣12=1考点:二次根式的乘除法.分析:根据二次根式的乘法法则和除法法则结合选项求解.解答:解:A、=×,原式计算错误,故本选项错误;B、==,原式计算错误,故本选项错误;C、=|a+b|,计算正确,故本选项正确;D、=5,原式计算错误,故本选项错误.故选C.点评:本题考查了二次根式的乘除法,掌握运算法则是解答本题的关键.3.(3分)是整数,正整数n的最小值是()A.4B.3C.2D.0考点:二次根式的定义.分析:如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.解答:解:∵=2,∴要使是整数,正整数n的最小值是2,故选C.点评:本题主要考查二次根式的基本概念,解题的关键是对二次根式先化简,再求正整数n的最小值.4.(3分)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0)B.()C.()D.()考点:勾股定理;实数与数轴;矩形的性质.专题:数形结合.分析:在RT△ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标.解答:解:由题意得,AC===,故可得AM=,B M=AM﹣AB=﹣3,又∵点B的坐标为(2,0),∴点M的坐标为(﹣1,0).故选C.点评:此题考查了勾股定理及坐标轴的知识,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般.5.(3分)最简二次根式的被开方数相同,则a的值为()A.B.C.a=1 D.a=﹣1考点:最简二次根式.分析:最简二次根式是被开方数中不含开得尽方的因数或因式,被开方数相同,令被开方数相等,列方程求a.解答:解:∵最简二次根式的被开方数相同,∴1+a=4﹣2a,解得a=1,故选C.点评:本题主要考查最简二次根式的知识点,关键是理解概念,比较简单.6.(3分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5考点:估算无理数的大小.专题:计算题.分析:先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.解答:解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选C.点评:此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.(3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP 长不可能是()A.3.5 B.4.2 C.5.8 D.7考点:含30度角的直角三角形;垂线段最短.分析:利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.解答:解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.点评:本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.(3分)一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里考点:勾股定理的应用.分析:根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了48,36.再根据勾股定理,即可求得两条船之间的距离.解答:解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×3=48,12×3=36海里,根据勾股定理得:=60(海里).故选C.点评:本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.二、填空题(共8小题,每小题3分,满分24分)9.(3分)等式成立的条件是a≥1.考点:二次根式的乘除法.分析:根据二次根式的乘法法则•=成立的条件:a≥0且b≥0,即可确定.解答:解:根据题意得:,解得:a≥1.故答案是:a≥1.点评:本题考查了二次根式的乘法法则,理解二次根式有意义的条件是关键.10.(3分)在Rt△ABC中,∠C=90°,c=20,a:b=3:4,则a=12,b=16.考点:勾股定理.分析:假设a=3x,b=4x,根据勾股定理列方程即可求出x,从而求出a,b.解答:解:设a=3x,b=4x,则c=5x.又∵c=20,即5x=20,∴x=4,∴a=3x=12,b=4x=16.故答案为:12,16.点评:考查了勾股定理,能够根据勾股定理得到第三边所占的份数,从而求得一份的长,注意勾股定理的熟练运用.11.(3分)如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是19.考点:勾股定理;正方形的性质.专题:计算题.分析:在直角三角形ABE中,由AE与BE的长,利用勾股定理求出AB的长,由正方形面积减去直角三角形面积求出阴影部分面积即可.解答:解:∵AE⊥BE,∴∠AEB=90°,在Rt△ABE中,AE=3,BE=4,根据勾股定理得:AB==5,则S阴影=S正方形﹣S△ABE=52﹣×3×4=25﹣6=19,故答案为:19.点评:此题考查了勾股定理,以及正方形的性质,熟练掌握勾股定理是解本题的关键.12.(3分)如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.考点:勾股定理.分析:首先根据勾股定理求得AB的长,再根据勾股定理求得AD的长.解答:解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.点评:熟练运用勾股定理进行计算.13.(3分)已知x,y为实数,且满足=0,那么x2011﹣y2011=﹣2.考点:非负数的性质:算术平方根;有理数的乘方.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵=0,∴+=0,∴x+1=0,y﹣1=0,解得x=﹣1,y=1,∴x2011﹣y2011=(﹣1)2011﹣12011,=﹣1﹣1,=﹣2.故答案为:﹣2.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)计算:=1.考点:二次根式的混合运算.专题:计算题.分析:先利用积的乘方得到原式=[(﹣2)(+2)]2010,然后根据平方差公式计算.解答:解:原式=[(﹣2)(+2)]2010=(3﹣4)2010=1.故答案为1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.15.(3分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有4m.考点:勾股定理的应用.分析:利用勾股定理,用一边表示另一边,代入数据即可得出结果.解答:解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.点评:本题主要是考查学生对勾股定理的熟练掌握,解题的关键是从实际问题中整理出直角三角形并正确的利用勾股定理.16.(3分)将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是2cm≤h≤3cm.考点:勾股定理的应用.分析:根据杯子内筷子的长度取值范围得出杯子外面长度的取值范围,即可得出答案.解答:解:∵将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,h=12,最长时等于杯子斜边长度,即:h==13,∴h的取值范围是:(15﹣13)≤h≤(15﹣12),即2cm≤h≤3cm.故答案为:2cm≤h≤3cm.点评:此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.三、解答题(3×6分=18分)17.(6分)计算(1)(﹣3)0﹣+|1﹣|+(2)﹣(π﹣)+|﹣2|﹣()2.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:(1)根据零指数幂、绝对值的意义和分母有理化得到原式=1﹣3+﹣1+﹣,然后合并即可;(2)根据零指数幂、绝对值的意义和分母有理化得到原式=2+﹣1+2﹣﹣5,然后合并即可.解答:解:(1)原式=1﹣3+﹣1+﹣=﹣2;(2)原式=2+﹣1+2﹣﹣5=﹣2.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.18.(6分)先化简,再求值:()÷(﹣1),其中a=2﹣.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的交集法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.解答:解:原式=[﹣]÷=•=•=,把a=2﹣代入得:原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?为什么?考点:勾股定理;勾股定理的逆定理.专题:计算题.分析:(1)在Rt△ABD和R t△ACD中,先根据勾股定理求出AB和A C的长,继而即可求出△A BC的周长;(2)根据勾股定理的逆定理,看△ABC的三边是否符合勾股定理,即可判断出△ABC是否是直角三角形.解答:解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理得:AB2=AD2+BD2,AC2=AD2+CD2,又AD=12,BD=16,CD=5,∴AB=20,AC=13,△ABC的周长=AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.点评:本题考查勾股定理及其逆定理的知识,属于基础题,关键是熟练掌握勾股定理公式.四.(8分×3=24分)20.(8分)如图,为修通铁路凿通隧道AC,量出∠A=40°∠B=50°,AB=5公里,BC=4公里,若每天凿隧道0.3公里,问几天才能把隧道AC凿通?考点:勾股定理的应用.分析:由题意知:∠A=50°,∠B=40°则∠C为90°,在直角△ABC中,已知AB,BC根据勾股定理即可求AC,则需要天数可求.解答:解:∵∠A=50°,∠B=40°,∴∠C=90°,∴AC2=AB2﹣BC2=(3km)2∴AC=3km,∵3÷0.3=10,∴10天才能将隧道凿通.答:10天才能将隧道凿通.点评:本题考查了勾股定理在实际生活中的应用,解本题的关键是正确的计算AC的长度.21.(8分)如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于D,交AB 于E,求证:BE2﹣EA2=AC2.考点:勾股定理;线段垂直平分线的性质.专题:证明题.分析:连接CE,根据线段垂直平分线性质求出BE=CE,根据勾股定理得出CE2﹣EA2=AC2,代入求出即可.解答:证明:连接CE,∵D是BC中点,DE⊥BC,∴BE=CE,∵∠A=90°,∴CE2﹣EA2=AC2,∴BE2﹣EA2=AC2.点评:本题考查了勾股定理,线段垂直平分线性质的应用,解此题的关键是能正确作出辅助线,注意:线段垂直平分线上的点到线段两个端点的距离相等,直角三角形的两直角边的平方和等于斜边的平方.22.(8分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE 折叠,使点A落在对角线BD上的点A′处,求AE的长为多少?考点:翻折变换(折叠问题).分析:首先利用勾股定理计算出BD的长,再根据折叠可得AD=A′D=5,进而得到A′B的长,再设AE=x,则A′E=x,BE=12﹣x,再在Rt△A′EB中利用勾股定理可得方程:(12﹣x)2=x2+82,解出x的值,可得答案.解答:解:∵AB=12,BC=5,∴AD=5,∴BD==13,根据折叠可得:AD=A′D=5,∴A′B=13﹣5=8,设AE=x,则A′E=x,BE=12﹣x,在Rt△A′EB中:(12﹣x)2=x2+82,解得:x=.故AE的长为.点评:此题主要考查了图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.五.(10分×1=10分)23.(10分)台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220km的B处有一台风中心,其中心最大风力为12级,每远离台风中心20km,风力就会减弱一级,该台风中心现在正以15km/h的速度沿北偏东30°的方向移动,且台风中心风力不变,如图,若城市所受的风力达到或超过4级,则称为受台风影响.(1)该城市是否受到这次台风的影响?请说明理由;(2)若会受台风影响,那么台风影响该城市的持续时间有多长?该城市受到台风影响的最大风力为几级?考点:勾股定理的应用;方向角.分析:(1)求是否会受到台风的影响,其实就是求A到BC的距离是否大于台风影响范围的半径,如果大于,则不受影响,反之则受影响.如果过A作AD⊥BC于D,AD就是所求的线段.直角三角形ABD中,有∠ABD的度数,有AB的长,AD就不难求出了.(2)受台风影响时,台风中心移动的距离,应该是A为圆心,台风影响范围的半径为半径,所得圆截得的BC上的线段的长即EF得长,可通过在直角三角形AED和AFD中,根据勾股定理求得.有了路程,有了速度,时间就可以求出了,风力最大时,台风中心应该位于D 点,然后根据题目给出的条件判断出时几级风.解答:解:(1)该城市会受到这次台风的影响.理由是:如图,过A作AD⊥BC于D.在Rt△ABD中,∵∠ABD=30°,AB=220,∴AD=,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为20×(12﹣4)=160.∵110<160,∴该城市会受到这次台风的影响;(2)如图以A为圆心,160为半径作⊙A交BC于E、F.则AE=AF=160.∴台风影响该市持续的路程为:EF=2DE=2=60.∴台风影响该市的持续时间t=60÷15=4(小时),∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(110÷20)=6.5(级).点评:本题考查了勾股定理的应用,解题的关键是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,使问题解决.。
2018-2019学年浙江省杭州市八年级下第一次月考数学试卷含答案

2018-2019学年浙江省杭州市八年级下第一次月考数学试卷含答案一、选择题(30分)1.要使式子有意义的x的取值范围是()A.x<3B.x≠3C.x≤3D.x为一切实数2.下列计算中正确的是()A .B .C .=1D .3.方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)2030355010051051510学生数(人)在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35B.50,35C.50,50D.15,505.若关于x的方程(m+1)x2+x+m2﹣2m﹣3=0有一个根为0,则m的值是()A.﹣1B.3C.﹣1或3D.1或﹣36.为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x)2=1.2B.2500(1+x)2=12000C.2500+2500(1+x)+2500(1+x)2=1.2D.2500+2500(1+x)+2500(1+x)2=120007.我校生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组互赠182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x﹣1)=182C.2x(x+1)=182D.x(x﹣1)=182×28.已知x1,x2,x3,x4,x5的方差为m,则2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差是()A.2m+1B.2m C.4m D.4m+19.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或310.小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4)D.(2)(3)(4)二、认真填一填.(本题有6小题,每小题4分,共24分)11.已知x<0,化简二次根式的结果是.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.13.已知x2﹣2(n+1)x+4n是一个关于x的完全平方式,则常数.14.已知x,y为实数,求代数式x2+y2+2x﹣4y+7的最小值.15.已知有理数a,满足|2016﹣a|+=a,则a﹣20162=.16.已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为.三、全面答一答.(共66分)17.(6分)计第:(1)(﹣)2﹣+(2).18.(12分)用适当的方法解下列方程:(1)x2+2x﹣1=0(2)(3x﹣7)2=﹣2(7﹣3x)(3)2x2﹣6x﹣1=0(4)9(x﹣2)2=4(x+1)219.(8分)某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如表:甲8984888487818582乙8590809590808575(1)请你计算这两组数据的中位数、平均数;(2)现要从中选派一个成绩较为稳定的人参加操作技能比赛,你认为选派哪名工人参加合适?请说明理由.20.(10分)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程一定有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.21.(8分)诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.22.(12分)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1•x2=q,请根据以上结论,解决下列问题:(1)若p=﹣4,q=3,求方程x2+px+q=0的两根.(2)已知实数a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求+的值;(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.23.(10分)如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,点P从点C开始沿CB向点B以1cm/s的速度移动,点Q从A开始沿AC向点C以2cm/s的速度移动,如果点P,Q同时从点C,A出发,试问:(1)出发多少时间时,点P,Q之间的距离等于2cm?(2)出发多少时间时,△PQC的面积为6cm2?(3)点P,Q之间的距离能否等于2cm?参考答案与试题解析一、选择题(30分)1.要使式子有意义的x的取值范围是()A.x<3B.x≠3C.x≤3D.x为一切实数【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.2.下列计算中正确的是()A.B.C.=1D.【分析】根据二次根式的性质、合并同类二次根式法则、二次根式的运算法则逐一计算即可得.【解答】解:A、=13,错误;B、===2,错误;C、2﹣=,错误;D、=|2﹣|=﹣2,正确;故选:D.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的性质与运算法则.3.方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的个数是()A.1个B.2个C.3个D.4个【分析】本题根据一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程,依据定义即可解答.【解答】解:在方程①2x2﹣9=0②=0③xy+x2④7x+6=x2⑤ax2+bx+c=0中,一元二次方程的是①④这2个,故选:B.【点评】本题考查了一元二次方程的概念,解答要判断方程是否是整式方程,若是整式方程,再化简,观察化简的结果是否只含有一个未知数,并且未知数的最高次数是2.4.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数51051510(人)在这次活动中,该班同学捐款金额的众数和中位数分别是()A.30,35B.50,35C.50,50D.15,50【分析】根据众数、中位数的定义,结合表格数据进行判断即可.【解答】解:捐款金额学生数最多的是50元,故众数为50;共45名学生,中位数在第23名学生处,第23名学生捐款50元,故中位数为50;故选:C.【点评】本题考查了众数及中位数的知识,解答本题的关键是熟练掌握众数及中位数的定义.5.若关于x的方程(m+1)x2+x+m2﹣2m﹣3=0有一个根为0,则m的值是()A.﹣1B.3C.﹣1或3D.1或﹣3【分析】根据关于x的方程x2+mx﹣2m2=0的一个根为1,可将x=1代入方程,即可得到关于m的方程,解方程即可求出m值.【解答】解:把x=0代入方程可得m2﹣2m﹣3=0,∴m2﹣2m﹣3=0,解得:m=3或﹣1.故选:C.【点评】此题主要考查了方程的解的意义和一元二次方程的解法.熟练运用公式法求得一元二次方程的解是解决问题的关键.6.为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+x)2=1.2B.2500(1+x)2=12000C.2500+2500(1+x)+2500(1+x)2=1.2D.2500+2500(1+x)+2500(1+x)2=12000【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2014年投入教育经费+2014年投入教育经费×(1+增长率)+2014年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.【解答】解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.我校生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组互赠182件,如果全组有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x﹣1)=182C.2x(x+1)=182D.x(x﹣1)=182×2【分析】如果全组有x名同学,那么每名学生要赠送的标本数为x﹣1件,全组就应该赠送x(x﹣1)件,根据“全组互赠182件”,那么可得出方程为x(x﹣1)=182.【解答】解:根据题意得x(x﹣1)=182.故选:B.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.8.已知x1,x2,x3,x4,x5的方差为m,则2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差是()A.2m+1B.2m C.4m D.4m+1【分析】根据方差的意义分析,数据都加+1,方差不变,原数据都乘2,则方差是原来的4倍.【解答】解:∵样本x1,x2,x3,x4,x5的方差是m,则样本2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差为S22=4m,故选:C.【点评】本题考查方差的计算公式及其运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.9.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或3【分析】由整体思想,用因式分解法解一元二次方程求出x2﹣x的值就可以求出结论.【解答】解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.【点评】本题考查了整体思想在一元二次方程的解法中的运用,因式分解法解一元二次方程的运用,代数式求值的运用,解答时因式分解法解一元二次方程是关键.10.小聪、小明、小伶、小刚私人共同探究代数式2x2﹣4x+6的值的情况他们做了如下分工:小聪负责找值为0时x的值,小明负责找值为4时x的值,小伶负责找最小值,小明负责找最大值,几分钟后,各自通报探究的结论,其中正确的是()(1)小聪认为找不到实数x,使2x2﹣4x+6得值为0;(2)小明认为只有当x=1时,2x2﹣4x+6的值为4;(3)小伶发现2x2﹣4x+6没有最小值;(4)小刚发现2x2﹣4x+6没有最大值.A.(1)(2)B.(1)(3)C.(1)(2)(4)D.(2)(3)(4)【分析】解一元二次方程,根据判别式即可判断(1)(2),将式子转化为抛物线,经配方成顶点式的形式,根据抛物线的性质即可判断(3)(4).【解答】解:(1)2x2﹣4x+6=0,△=42﹣4×2×6<0,方程无实数根,故小聪找不到实数x,使2x2﹣4x+6得值为0正确,符合题意,(2)2x2﹣4x+6=4,解得x1=x2=1,方程有两个相等的实数根x=1,故小明认为只有当x=1时,2x2﹣4x+6的值为4正确,符合题意,(3)令y=2x2﹣4x+6,二次项系数为2>0,用配方法整理成y=2(x﹣2)2+4,抛物线开口向上,有最小值,故小伶发现2x2﹣4x+6没有最小值错误,不符合题意,(4)令y=2x2﹣4x+6,二次项系数为2>0,用配方法整理成y=2(x﹣2)2+4,抛物线开口向上,没有最大值,故小刚发现2x2﹣4x+6没有最大值正确,符合题意,故选:C.【点评】本题考查配方法的应用,和抛物线的性质,掌握一元二次方程求根公式和抛物线的性质是解决本题的关键.二、认真填一填.(本题有6小题,每小题4分,共24分)11.已知x<0,化简二次根式的结果是﹣x.【分析】根据二次根式有意义,可知y≤0,再由二次根式的性质解答.【解答】解:∵x<0,﹣x2y≥0,∴y≤0,∴=﹣x.故答案为:﹣x.【点评】本题主要考查了二次根式的性质和化简,难度适中,容易丢负号.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79 分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.13.已知x2﹣2(n+1)x+4n是一个关于x的完全平方式,则常数 1 .【分析】利用完全平方公式的结构特征判断即可确定出n的值.【解答】解:∵x2﹣2(n+1)x+4n是一个关于x的完全平方式,∴(n+1)2=4n,解得:n=1,故答案为:1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.已知x,y为实数,求代数式x2+y2+2x﹣4y+7的最小值 2 .【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性解答.【解答】解:x2+y2+2x﹣4y+7=x2+2x+1+y2﹣4y+4+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2的最小值是2,即代数式x2+y2+2x﹣4y+7的最小值是2,故答案为:2.【点评】本题考查的是配方法的应用、非负数的性质,掌握配方法的一般步骤、偶次方的非负性是解题的关键.15.已知有理数a,满足|2016﹣a|+=a,则a﹣20162=2017 .【分析】根据二次根式有意义的条件可得a﹣2017≥0,解不等式可得a的取值范围,然后再去绝对值可得a﹣2016+=a,再整理可得答案.【解答】解:由题意得:a﹣2017≥0,解得:a≥2017,|2016﹣a|+=a,a﹣2016+=a,=2016,a﹣20162=2017,故答案为:2017.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.。
2018-2019学年(下)八年级第一次月考

2018-2019学年(下)八年级第一次月考数学试卷(试卷满分:150分,考试时间:120分钟)班级 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.如果有意义,那么x 的取值范围是( ) A .x >1B .x ≥1C .x ≤1D .x <12.下列各组数中以a ,b ,c 为边的三角形不是直角三角形的是( ) A .a=2,b=3,c=4 B .a=7,b=24,c=25 C .a=6,b=8,c=10 D .a=1.5,b=2,c=2.5 3.下列二次根式中不能与3合并的是( )A .31B .31 C .32 D .124.如图1,在平行四边形ABCD 中,点E 在边AD 上,AB =AE ,则∠ABC =( ) A .∠A B .∠AEBC .∠DEBD .2∠AEB5.四边形ABCD 中,AB =CD ,AB ∥CD ,则下列结论中错误的是( ).A .∠A =∠B B .AD ∥BC C .∠A =∠CD .对角线互相平分 6.下列运算中错误的是( ) A .•=B .÷=2 C .+=D .(﹣)2=37.在Rt △ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( ) A . B . C . D .8.在四边形ABCD 中,∠A =∠C ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .∠B =∠D B .AB =CDC .AB∥CD D .AD ∥BC 9.化简(3―2)2002•(3+2)2003的结果为( )A .―1B .3―2C .3+2D .―3―2图110.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A .3cm 2 B .4cm 2 C .6cm 2 D .12cm 2二、填空题(本大题有6小题,第11题4分,其它各小题每题4分,共24分) 11.计算:(1) (-2= ;(2)2)3( = .12.命题“如果一个三角形中的两个锐角互余,那么这个三角形是直角三角形”的逆命题是 . 13.比较大小: 32 23(填“ > ” 或 “ < ”) 14.在□ABCD 中,如果∠A +∠C =140°,那么∠B = 度.15.如图,在□ABCD 中,AB =4,AC =6,BD =10,则□ABCD 的周长为 .16.△ABC 中,∠C=90°,AB= ,△ABC 的面积为4,则△ABC 的周长为三、解答题(本大题有9小题,共86分) 17.计算(本题10分)(1) (2)÷﹣×﹣.18. (本题7分)在Rt△ABC 中,∠C =90° , 若∠B =60°, BC =3 , 求△ABC 的周长.ABCDO19. (本题9分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.以格点为顶点画一个三角形,使三角形三边长分别为AB=3,AC=10 , BC=13. 并求..AC ..上的高...20. (本题10分)已知:x =+1,y =﹣1,求下列代数式的值.(1)x 2+2xy +y 2(2)(4+ )y 221. (本题9分)如图,将长为2.5米长的梯子AB 斜靠在墙上,BE 长0.7米.如果梯子的顶端A 沿墙下滑0.4米(即AC=0.4米),则梯脚B 将外移(即BD 长)多少米?22. (本题9分)如图,AC 是平行四边形ABCD 的一条对角线,DE ⊥AC ,BF ⊥AC ,垂足分别是E ,F . 求证 四边形DEBF 是平行四边形.FECDBA图23. (本题9分)如图是一块地的平面图,AD=4m ,CD=3m ,AB=13m ,BC=12m ,∠ADC=90°,求这块地的面积.24. (本题11分)如图,在平行四边形ABCD 中, DE 垂直于对角线AC ,垂足是E ,连接BE , 若△ABE 是等边三角形,BC=73,(1)求证BE =2CE (2)求对角线AC 的长.25.(本题12分)如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间我t 秒. (1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ 第一次把直角三角形周长分成相等的两部分?DEABC。
2018-2019年八年级下第一次月考数学试卷(含答案)

八年级数学下册期中复习题(含答案)一、选择题:1.要使函数y=有意义,自变量x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x<12.在下列各式中,3的同类二次根式是()A.B.2C.D.3.计算的结果估计在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间4.关于变量x,y有如下关系:①x﹣y=5;②y2=2x;③:y=|x|;④y=3x-1.其中y是x函数的是()A.①②③B.①②③④C.①③D.①③④5.下列各组数,可以作为直角三角形的三边长的是( )A.2,3,4 B.7,24,25 C.8,12,20 D.5,13,15.6.如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=4,则AB长为()A.4 B.3 C.2.5 D.27.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形8.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.75°B.60°C.55°D.45°函数y=﹣2x+3的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限10.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=()A.3 B.4 C.5 D.612.如图,正方形ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3.若h1=2,h2=1,则正方形ABCD的面积为( )A.9 B.10 C.13 D.25二、填空题:13.式子在实数范围内有意义,则x的范围是.14.3x﹣y=7中,变量是,常量是.把它写成用x的式子表示y的形式是.15.如图,已知OA=OB,那么数轴上点A所表示的数是____________.如果一次函数y=(m﹣2)x+m的函数值y随x的值增大而增大,那么m的取值范围是.17.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.18.如图,点E是矩形ABCD内任一点,若AB=3,BC=4.则图中阴影部分的面积为.三、作图题:19.在如图的直角坐标系中,画出函数y=-2x+3的图象,并结合图象回答下列问题:(1)y的值随x值的增大而(填“增大”或“减小”);(2)图象与x轴的交点坐标是;图象与y轴的交点坐标是;(3)当x 时,y <0 ;(4)直线y=-2x+3与两坐标轴所围成的三角形的面积是: .四、解答题:20.计算:21.计算:22.如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.23.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.24.为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3元/m3,(1)根据题意,填写下表:(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.25.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.参考答案1.A.2.A.3.C4.D5.B6.B7.D8.B.9.D10.C11.C12.C.13.答案为:x≥1且x≠2.14.答案是:x和y;3和7;y=3x﹣7.15.略16.答案为:m>2;17.答案为:AD=BC;18.答案为:6;19.(1)减小;(2)(1.5,0)(0,3);(3)x>1.5;(4)2.25.20.解:原式=21.解:原式=122.解:(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+82=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×=2,∴四边形ABCD的面积为: AD•EB+DB•CD=×4×+×4×8=4+16.23.证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.24.25.解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴5k+b=0,k+b=4,解得k=-1,b=5,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴y=-x+5,y=2x-4.解得x=3,y=2,∴点C(3,2);(3)根据图象可得x>3.。
2018-2019年度第一次月考初二数学试题试题

ABCDMN HE 2018-2019学年第一次月考八年级数学试卷2.下列说法中正确的是( )A.全等三角形是指形状相同的三角形B.全等三角形的周长和面积分别相等C.所有的等边三角形是全等三角形D.有两个角对应相等的两个三角形全等 3.在平面直角坐标系中,点P (-1,2 ) 关于x 轴的对称点的坐标为( )A.(-1,-2 )B.(1,2 )C.(2,-1 )D.(-2,1 ) 4.如图,△ABC ≌△BAD ,如果AB =6cm ,BD =4cm ,AD =5cm ,那么BC 的长是( ) A.4cm B.5cm C.6cm D.无法确定5 如图,已知:在ABC ∆和DEF ∆中,如果=,BC=EF .在下列条件中不能保证ABC ∆≌DEF ∆的是( )A.∠B =∠DEFB.AC =DFC. AB ∥DED.∠A =∠D6. △ABC 中,AD 为角平分线,DE ⊥AB 于E ,DF ⊥AC 于F , AB=10厘米,AC =8厘米,△ABC 的面积为45平方厘米,则DE 的长为 。
7. 如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿 AH 和DH 剪下,这样剪得的三角形中 ( )A ,AD DH AH ≠=B ,AD DH AH ==C ,DH AD AH ≠= D ,AD DH AH ≠≠8.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A /O /B /=∠AOB 的依据是( )A.SASB.ASAC.AASD.SSS9. 如左下图,AC=AD ,BC=BD ,则( ) A.CD 垂直平分AD B.AB 垂直平分CD C.CD 平分∠ACBD.以上结论均不对10.如右上图,△ABC 中,AB 的垂直平分线交AC 于D ,如果AC=5 cm ,BC=4cm ,那么△DBC 的周长是( ) A.6 cmB.7 cmC.8 cmD.9 cm11. 等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为( )。
八年级2018-2019第二学期第一次月考数学试卷

2018-2019学年度第二学期八年级自主检测数学试卷一、选择题(共8小题,满分24分,每小题3分)1.以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高2.列一组数据的频数分布表时,落在各个小组内的数据的个数叫做()A. 组距B. 频数C. 频率D. 样本容量3. 下列事件中的不可能事件是()。
A: 通常加热到100℃时,水沸腾B: 抛掷2枚正方体骰子,都是6点朝上C: 经过有交通信号灯的路口,遇到红灯D: 任意画一个三角形,其内角和是360°4.某校对初三年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为()。
A. 640人B. 480人C. 400人D. 40人5. 下列所给图形中是中心对称图形但不是轴对称图形的是()。
A: B: C: D:6.如图,在□ABCD中,AB>AD,按以下步骤作图:以点A为圆心,,小于AD的长为半径画弧,分别交AB,AD于点E,F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DABB.AD=DHC.DH=BCD.CH=DH7.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为()A. 5cmB. 10cmC. 4.8cmD. 9.6cm8. (B题)如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是( )A. 15B. 16C. 19D. 208. (A题)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为 ,另两张直角三角形纸片的面积都为 ,中间一张正方形纸片的面积为 ,则这个平行四边形的面积一定可以表示为()A:B:C:D:二、填空题(共8小题,满分24分,每小题3分)9.五十中数学教研组有25名教师,将他们按年龄分组,在38-45岁组内的教师有8名教师,那么这个小组的频率是10.一个口袋里装有只有颜色不同的红球和蓝球,已知红球30个,蓝球20个.闭上眼睛从口袋里拿出一个球是蓝球的可能性是11. 下列事件: 其中是随机事件①掷一枚六个面分别标有1~6的数字的均匀骰子,骰子停止转动后偶数点朝上;②抛出的篮球会下落;③任意选择电视的某一频道,正在播放动画片;④在同一年出生的367名学生中,至少有两人的生日是同一天.有(只需填写序号).12.为估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,每条鱼做好标记后放回,再从鱼塘中打捞出50条鱼,发现只有1条鱼是有记号的,假设鱼在鱼塘是均匀分布的,则可估计该鱼塘的条数约为.13.在平面直角坐标系中,点P(1,1),N(2,0),和的顶点都在格点上,与是关于某一点中心对称,则对称中心的坐标为.14.如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是__________.15.如图,在Rt△ABC中,,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是 ________16.(B题)已知菱形ABCD的两条对角线长分别是3和4,M,N分别是边BC、CD的中点,点P是对角线BD上的一点,则PM+PN的最小值是16.(A题)如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN∥AB,连接NH,如果∠D=68∘,则∠CHN=_______.三、解答题(共12小题,满分102分)17. (5分)小明家的鱼塘养了某种鱼2000条,现准备打捞出售,为了估计鱼塘中的这种鱼的总质量,现从鱼塘中捕捞了3次,得到数据如下:(1)鱼塘中这种鱼平均每条质量约是___千克,鱼塘中所有这种鱼的总质量约是___千克;若将这些鱼不分大小,按每千克7.5元的价格出售,小明家约可收入___元;(2)若鱼塘中这种鱼的总质量是(1)中估计的值,现在鱼塘中的鱼分大鱼和小鱼两类出售,大鱼每千克10元,小鱼每千克6元,要使小明家的此项收入不低于(1)中估计的收入,问:鱼塘中大鱼总质量应至少有多少千克?18.(5分)望江中学为了了解学生每天“朗诵经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≦20分钟的学生记为A类,20分钟<t≦40分钟的学生记为B类,40分钟<t≦60分钟的学生记为C类,t>60分钟的学生记为D类四种。
中学18—19学年下学期八年级第一次月考数学试题(附答案)

2018-2019学年下期第一次月考八年级数学试题一、选择题(每题3分,共30分)1.下列不等式变形中,错误的是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a≤b,则ac2≤bc2D.若ac2≤bc2,则a≤b2.如图所示,下列四个图案中,是中心对称图形的有()A.1个C.3个D.4个3.用反证法证明:“一个三角形中至多有一个角不小于90°”时,应假设() A.一个三角形中至少有两个角不小于90°B.一个三角形中至多有一个角不小于90°C.一个三角形中至少有一个角不小于90°D.一个三角形中没有一个角不小于90°4.下列命题:①若||||a b>,则a b>;②若0a b+=,则||||a b=;③等边三角形的三个内角都相等.④线段垂直平分线上的点到线段两个端点的距离相等.以上命题的逆命题是真命题的有()A.0个B.1个C.2个D.3个5.关于x的不等式组⎪⎩⎪⎨⎧+>++-<axxxx4231)3(32有四个整数解,则a的取值范围是()A.25411-≤<-a B.25411-<≤-a C.25411-≤≤-a D.25411-<<-a6.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=4,△ABC的面积是()A.25B.84 C.427.如图,已知正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣2时,y1>y2.其中正确的是()A.①②B.②③C.①③D.①④8.如图,在ABC△中,AB AC=,点E在BC边上,在线段AC的延长线上取点D,使得CD CE=,连接DE,CF是CDE△的中线,若52FCE∠=︒,则A∠的度数为() A.38︒B.34︒C.32︒D.28︒9.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了两次才停止,那么x的取值范围是()A.x>23x≤47 C.11≤x<10.如图,D为等边三角形ABC内的一点,DA=5,DB=4,DC=3,将线段AD以点A为旋转中心逆时针旋转60°得到线段AD',下列结论:①点D与点D'的距离为5;②∠ADC =150°;③△ACD'可以由△ABD绕点A逆时针旋转60°得到;④点D到CD'的距离为3;⑤S四边形ADCD′=6+,其中正确的有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.不等式5(2)62x x-≤+的正整数解共有个.12.等腰三角形周长为cm13,其中一边长为cm3,则其底边长为cm.13.某次知识竞赛试卷有20道题,评分办法是答对一道记5分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对道题.14.若不等式组⎩⎨⎧--3212b>xa<x的解集为11<x<-,那么)1)(1(-+ba的值等于.15.若不等式组122x ax x+⎧⎨->-⎩…无解,则a的取值范围是.16.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为.17.已知CD 是△ABC 的边AB 上的高,若CD =,AD =1,AB =2AC ,则BC 的长为 .18.如图,在平面直角坐标系中,A (0,2),B (0,6),动点C 在直线y =x 上.若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数是 . 三、解答题(共5大题,共46分)19.(8分)解不等式组,并把它的解集在数轴上表示出来.20.(9分)已知方程组的解满足x 为非正数,y 为负数.(1)求m 的取值范围; (2)化简:|m ﹣3|﹣|m +2|;(3)在m 的取值范围内,当m 为何整数时,不等式2mx +x <2m +1的解为x >1. 21.(9分)如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作 PE ⊥AB 于E ,连接PQ 交AB 于D . (1)若AE =1时,求AP 的长; (2)当∠BQD =30°时,求AP 的长;(3)在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果发生变化,请说明理由.22.(10分)某水果基地组织20辆汽车装运A 、B 、C 三种苹果共100吨到外地销售.每辆汽车只能装运同一种苹果,且必须装满.根据下表信息解答问题. 设装运A 种苹果的车有x 辆,装运B 种苹果的车有y 辆.(1)求 y 与 x 之间的函数关系式;(2)如果装运每种苹果的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)在(2)的条件下,若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润。
最新西片18—19学年下学期八年级第一次月考数学试题(附答案)

2018-2019学年度第二学期第一次月考八年级数学试卷一.选择题(共8小题)1.下列交通标志是中心对称图形的为()A.B.C.D.2.下列调查中,最适合采用全面调查(普查)方式的是()A.对中央电视台2019年春节联欢晚会满意度的调查B.对某品牌手机电池待机时间的调查C.对全国中学生观看电影《流浪地球》情况的调查D.对“神州十一号”飞船零部件安全性的调查3.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.随机事件B.确定事件C.必然事件D.不可能事件4.如图,点A、B、C、D、O都在方格纸上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°5.已知平行四边形ABCD,对角线AC,BD相较于点O,要使▱ABCD为矩形,需添加下列的一个条件是()A.OA=OB B.∠BAC=∠DAC C.AC⊥BD D.AB=BC6.如图,在平行四边形ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB7.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(8,0),点A的纵坐标是2,则点B的坐标是()A.(4,2)B.(4,﹣2)C.(2,﹣6)D.(2,6)8.如图,将△ABC绕点C顺时针旋转m°得到△EDC,若点A、D、E在同一直线上,∠ACB=n°,则∠ADC的度数是()A.(m﹣n)°B.C. D.(180﹣2n﹣m)°二.填空题(共8小题)9.如图是某中学七、八、九年级为贫困山区儿童捐款的统计图,已知该校七、八、九年级共有学生2000人,请根据统计图计算七、八、九年级共捐款元.10.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加上述同种型号的1个球,使得从中随机抽取1个球,白颜色的球被抽到的可能性是,那么添加的球是.11.在平面直角坐标系xOy中,若点B与点A(﹣2,3)关于点O中心对称,则点B的坐标为.12.“Iamagoodstudent.”这句话的所有字母中,字母“a”出现的频率是13.矩形两条对角线的夹角是60°,一条边长为4cm,则此矩形的对角线最长.14.已知,如图在平行四边形ABCD中,对角线AC、BD相交于点O,且AC+BD=18,△AOB的周长为13,则CD=.15.如图,在△ABC中,BC=9,AD是BC边上的高,M、N分别是AB、AC边的中点,DM=5,DN=3,则△ABC的周长是.16.如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=,平行四边形CDEB为菱形.三.解答题(共10小题)17.下面第一排表示十张扑克牌的不同情况,任意摸一张.请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用线连起来.18.某校八(1)班同学为了解2018年姜堰某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:(1)本次调查采用的调杳方式是(填“普査”或“抽样调查”),样本容量是;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?19.如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.20.某公司的一批某品牌衬衣的质量抽检结果如下:(1)求从这批衬衣中任抽1件是次品的概率.(2)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换?21.如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,E,F分别为垂足.(1)求证:四边形AECF是平行四边形;(2)如果AE=3,EF=4,求AF、EC所在直线的距离.22.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E,若AB=10,AC=12,求四边形CODE的周长.23.已知:▱ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.24.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.25.如图,在▱CBCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.26.如图所示,四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是36,求DP的长.2018-2019学年度第二学期第一次月考八年级数学答题纸一.选择题(每题4分,共32分)二.填空题(每题4分,共32分)9._____ _.10._____ _.11.______ .12.______ .13.______ .14.______ .15.______ .16.______ .三.解答题(共10小题)17.(5分)18.(8分)(1)本次调查采用的调杳方式是(填“普査”或“抽样调查”),样本容量是;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15<x≤20”的圆心角度数是;(4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?19.(6分)20.(8分)(1)求从这批衬衣中任抽1件是次品的概率.(2)如果销售这批衬衣600件,至少要准备多少件正品衬衣供买到次品的顾客退换? 21.(10分)(1)求证:四边形AECF是平行四边形;(2)如果AE=3,EF=4,求AF、EC所在直线的距离.22.(8分)23.(8分)24.(12分)(1)(2)(3)25.(10分)(1)(2)26.(11分)参考答案1、C2、D3、A4、D5、A6、B7、B8、B9、25180 10、红球或黄球11、(2,﹣3)12、13、814、415、2516、17、略18、解:(1)本次调查采用的调杳方式是抽样调查,样本容量为6÷0.12=50,故答案为:抽样调查,50;(2)m=50×0.32=16,补全直方图如下:(3)∵n=10÷50=0.2,∴月均用水量“15<x≤20”的圆心角度数是360°×0.2=72°,故答案为:72°;(4)该小区月均用水量超过20t的家庭大约有5000×(0.08+0.04)=600(户).19、解:(1)甲图:平行四边形,(2)乙图:等腰梯形,(3)丙图:正方形.20、略21、(1)证明:∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,∴AE∥CF,在▱ABCD中,∵AD∥BC,∴∠ADE=∠CBF,又∵AD=CB,∴△ADE≌△CBF(AAS),∴AE=CF,∴四边形AECF是平行四边形;(2)解:在▱AECF中,AF∥EC,设AF、EC所在直线的距离为h,∵AE⊥BD,∴∠AEF=90°,∴AF=,∵S四边形AECF=AE•EF=AF•h,∴h==2.4,∴AF、EC所在直线的距离是2.4.22、解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是菱形∴∠DOC=90°,∴四边形CODE是矩形;∵四边形ABCD为菱形,∴AO=OC=AC=6,OD=OB,∠AOB=90°,由勾股定理得:BO2=AB2﹣AO2,而AB=10,∴DO=BO==8,由(1)得四边形CODE是矩形,∴四边形CODE的周长=2(6+8)=28.23、解:根据题意得:点B的坐标为(5,0),过点D作DE⊥x轴于点E,在Rt△ADE中,∠DAE=60°,AD=2,∴AE=1,DE=,故可得点D的坐标为(﹣1,),又∵四边形ABCD是平行四边形,CD=AB=5,∴点C的坐标为(4,);综上可得:B(5.0)、C(4,)、D(﹣1,).24、解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.25、证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF在△ADE与△BCF中,∴△ADE≌△BCF(SAS).(2)四边形ABFE是菱形理由:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠AED+∠AEB=180°,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABFE是菱形.26、解:作DE⊥BC,交BC延长线于E,如图,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,,∴△ADP≌△CDE,∴DP=DE,S△ADP=S△CDE,∴四边形BEDP为正方形,S四边形ABCD=S矩形BEDP,∴DP2=36,∴DP=6.。