deform基础

合集下载

DEFORM-3D基本操作技巧入门基础

DEFORM-3D基本操作技巧入门基础

DEFORM-3D基本操作入门QianRF前言有限元法是根据变分原理求解数学物理问题的一种数值计算方法。

由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。

有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。

随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。

现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。

所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。

有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。

通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。

通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。

利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。

通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。

一、刚(粘)塑性有限元法基本原理刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。

这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。

在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。

刚塑性有限元法的理论基础是Markov变分原理。

根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式其中罚函数法应用比较广泛。

根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中对应于真实速度场的总泛函为:∏≈∑π(m)=∏(1,2,…,m)(1)对上式中的泛函求变分,得:∑=0(2)采用摄动法将式(2)进行线性化:=+Δun(3)将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。

Deform详细教程

Deform详细教程
材料热物理性质
输入材料的热物理性质,如热导率、比热容、热膨胀系数 等,以便在模拟过程中考虑温度对材料性能的影响。
材料失效准则
根据实际需要,选择适当的材料失效准则,如最大主应力 准则、等效塑性应变准则等,并设置相应的失效参数。
边界条件设置
几何边界条件
定义模型的几何形状、尺寸和边 界类型,如固定边界、自由边界 、对称边界等。
04 Deform软件基本操作
用户界面介绍
主界面
包括菜单栏、工具栏、模型树、属性窗口等,提供全 面的操作功能和视图展示。
图形界面
支持多种图形显示模式,如实体、网格、轮廓等,方 便用户进行模型分析和后处理。
自定义界面
用户可根据个人习惯自定义界面布局,提高工作效率 。
基本操作命令
鼠标操作
通过鼠标左键选择、拖拽、旋转等操作,实现模型的交互操作。
未来发展趋势预测
A
随着计算机技术的不断发展,有限元分析软件 的计算能力和效率将不断提高,使得更大规模 、更复杂的仿真分析成为可能。
人工智能、机器学习等技术的引入,将为 有限元分析提供更强大的数据处理和挖掘 能力,进一步提高分析的精度和效率。
B
C
多物理场耦合分析将成为未来发展的重要方 向,Deform等软件将不断完善多物理场分 析功能,满足更广泛的应用需求。
配置环境变量和启动软件
启动软件 在完成安装和环境变量配置后,可以通过以下方式启动Deform软件 1. 点击桌面或开始菜单中的Deform图标。
配置环境变量和启动软件
2. 在命令行中输入Deform的可执行 文件名并回车。
3. 如果设置了文件关联,可以直接双 击与Deform关联的文件类型来启动 软件并打开相应文件。

DEFORM基本操作指南

DEFORM基本操作指南

,更加直观地了解变形过程和结果。
数据提取、分析和报告生成
在DEFORM软件中,可以通 过选择“分析”菜单下的不 同选项,提取模拟结果中的 各种数据,如位移、应力、
应变、温度等。
提取的数据可以以图表形式 展示,方便进行数据分析和
比较。
可以将提取的数据和图表导 出为报告文件,如Word、 PDF等格式,供后续分析和交 流使用。
解决方法
检查安装目录是否正确,并确保已将DEFORM添加到 系统路径中。
使用过程中遇到的常见问题及解决方法
问题1
DEFORM启动失败或崩溃
01
解决方法
02 检查是否有最新的更新或补丁
可用,并尝试重新安装或修复 安装。

问题2
03 在使用特定功能时出现问题
解决方法
04 查阅DEFORM的官方文档或
用户手册,了解该功能的使用 方法和限制。
快捷键
支持多种快捷键组合,如Ctrl+C(复制)、Ctrl+V(粘贴)、Ctrl+S(保存)等,提高操作效率。
03
前处理操作指南
导入几何模型
支持的几何模型格式
DEFORM支持多种CAD软件输出 的几何模型格式,如IGES、STEP 、STL等。
导入步骤
在DEFORM前处理界面中,选择 “文件”->“导入”->选择对应 的几何模型格式进行导入。
网格划分与边界条件设置
网格类型
DEFORM支持多种网格类型,如四面体网 格、六面体网格等,用户可以根据模型特点 和计算精度要求进行选择。
网格划分
对几何模型进行网格划分,可以通过设置网格大小 、密度等参数来控制网格质量和计算精度。
边界条件

Deform培训教程

Deform培训教程

Deform培训教程Deform培训教程是一种专门为开发人员和设计师设计的培训课程,此课程涵盖了Deform的基础知识,以及如何使用Deform创建美观,直观和优化的用户界面。

Deform是一个基于Python的开源表单框架,它可以生成高度功能的Web表单,并允许用户与表单进行交互和处理。

Deform使用HTML5,CSS3和JavaScript等技术来创建美观,高度自定义的Web表单。

Deform培训教程的目的是教授如何使用Deform阅读,建立和处理Web表单。

此教程适用于新手到中级开发人员和设计师,他们可以从这个课程中获得想要的知识,以便使用Deform构建自己的Web表单。

Deform培训教程包括以下内容:基础知识:介绍Deform的概念和原理,包括如何安装和配置Deform,如何读取和处理Web表单,以及如何优化Web 表单的性能。

表单构建:介绍如何使用Deform构建表单的基本元素,包括文本框,下拉列表,复选框,单选按钮和日期选择器等等。

表单验证:详细介绍如何使用Deform进行表单验证,包括如何创建自定义的表单验证逻辑,以确保输入数据的合法性,从而避免表单数据的混乱和错误。

表单布局:详细介绍如何使用Deform创建复杂的表单布局,以达到美观,直观和易用的目的。

包括格式化表单元素的样式,布局以及排列表单元素。

界面优化:掌握如何使用Deform优化表单性能,包括从客户端和服务器端的角度来处理表单数据,并提高对大规模数据量的处理性能。

Deform培训教程的优点在于它简单易懂,针对不同的用户和设计需求,提供了许多实用的技术和示例。

一个好的教程不仅需要提供基础知识,还需要帮助用户通过实践来深入了解并实现应用。

通过这个培训教程,用户可以:了解Deform的基本知识和配置。

建立自定义的Web表单,并理解如何处理表单数据。

了解跨浏览器兼容性和Web表单性能优化的技巧。

设计具有美感和易用性的Web表单布局。

Deform入门教程

Deform入门教程

Deform入门教程教学内容:1. Deform软件的安装与界面介绍2. 基本几何体的创建与操作3. 网格的与编辑4. 材料属性的设置与模拟5. 动画的创建与渲染教学目标:1. 学生能够熟练安装并使用Deform软件,掌握其基本操作。

2. 学生能够理解并运用Deform软件进行简单的几何体创建和网格编辑。

3. 学生能够设置材料属性并完成简单的动画渲染。

教学难点与重点:重点:Deform软件的基本操作,包括几何体的创建、网格的与编辑,以及材料属性的设置。

难点:网格的编辑操作以及动画的创建与渲染。

教具与学具准备:教具:多媒体教学设备、Deform软件安装光盘。

学具:每人一台计算机,已安装Deform软件。

教学过程:1. 实践情景引入:教师通过展示一个简单的动画案例,引导学生思考如何利用Deform软件进行制作。

2. 基本几何体的创建与操作:教师演示如何创建基本几何体(如球体、长方体等),并引导学生进行实际操作练习。

3. 网格的与编辑:教师讲解网格的与编辑方法,并通过实际操作演示。

学生跟随教师操作,进行网格的创建、缩放、平移等操作。

4. 材料属性的设置与模拟:教师讲解如何设置材料属性,如颜色、透明度等,并展示模拟结果。

学生进行实际操作,尝试不同材料属性的设置。

5. 动画的创建与渲染:教师演示如何创建动画并渲染输出,学生进行实际操作,尝试制作简单的动画。

板书设计:板书设计将包括本节课的主要内容,如基本几何体的创建、网格的与编辑、材料属性的设置等,以及操作步骤和示例。

作业设计:1. 请学生利用Deform软件,制作一个简单的几何体动画,并渲染输出。

2. 请学生尝试设置不同的材料属性,观察动画模拟结果。

课后反思及拓展延伸:教师在课后应对本节课的教学效果进行反思,看是否达到了教学目标,学生是否掌握了Deform软件的基本操作。

同时,教师可以引导学生进行拓展延伸,如尝试更复杂的网格编辑操作,或者利用Deform软件进行更复杂的动画制作。

Deform入门教程[1]

Deform入门教程[1]

Deform入门教程DEFORM系列软件介绍1. DEFORM-2D(二维)适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT微机平台。

可以分析平面应变和轴对称等二维模型。

它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。

2. DEFORM-3D(三维)适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT微机平台。

可以分析复杂的三维材料流动模型。

用它来分析那些不能简化为二维模型的问题尤为理想。

3. DEFORM-PC(微机版)适用于运行Windows 95,98和NT的微机平台。

可以分析平面应变问题和轴对称问题。

适用于有限元技术刚起步的中小企业。

4. DEFORM-PC Pro(Pro版)适用于运行Windows 95,98和NT的微机平台。

比DEFORM-PC功能强大,它包含了DEFORM-2D 的绝大部分功能。

5. DEFORM-HT(热处理)附加在DEFORM-2D和DEFORM-3D之上。

除了成形分析之外,DEFORM-HT还能分析热处理过程,包括:硬度、晶相组织分布、扭曲、残余应力、含碳量等。

DEFORM功能1. 成形分析冷、温、热锻的成形和热传导耦合分析(DEFORM所有产品)。

丰富的材料数据库,包括各种钢、铝合金、钛合金和超合金(DEFORM所有产品)。

用户自定义材料数据库允许用户自行输入材料数据库中没有的材料(DEFORM所有产品)。

提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息(DEFORM所有产品)。

刚性、弹性和热粘塑性材料模型,特别适用于大变形成形分析(DEFORM所有产品)。

弹塑性材料模型适用于分析残余应力和回弹问题(DEFORM-Pro, 2D, 3D)。

烧结体材料模型适用于分析粉末冶金成形(DEFORM-Pro, 2D, 3D)。

完整的成形设备模型可以分析液压成形、锤上成形、螺旋压力成形和机械压力成形(DEFORM 所有产品)。

deform基本操作

deform基本操作

DEFORM-3D基本操作入门QianRF前言有限元法是根据变分原理求解数学物理问题的一种数值计算方法。

由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。

有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。

随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。

现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。

所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。

有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。

通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。

通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。

利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。

通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。

一、刚(粘)塑性有限元法基本原理刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。

这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。

在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。

刚塑性有限元法的理论基础是Markov变分原理。

根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式 其中罚函数法应用比较广泛。

根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为:∏≈∑π(m)=∏(1,2,…,m)(1)对上式中的泛函求变分,得:∑=0(2)采用摄动法将式(2)进行线性化:=+ Δu n(3)将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。

DEFORM-3D基本操作入门

DEFORM-3D基本操作入门

DEFORM-3D基本操作入门QianRF前言有限元法是根据变分原理求解数学物理问题的一种数值计算方法。

由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。

有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。

随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。

现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。

所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。

有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。

通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。

通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。

利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。

通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。

一、刚(粘)塑性有限元法基本原理刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。

这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。

在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。

刚塑性有限元法的理论基础是Markov变分原理。

根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式其中罚函数法应用比较广泛。

根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中对应于真实速度场的总泛函为:∏≈∑π(m)=∏(1,2,…,m)(1)对上式中的泛函求变分,得:∑=0(2)采用摄动法将式(2)进行线性化:=+Δun(3)将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、刚(粘)塑性有限元法基本原理
刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。

这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。

在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。

刚塑性有限元法的理论基础是Markov变分原理。

根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式,其中罚函数法应用比较广泛。

根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中 对应于真实速度场的总泛函为:
∏≈∑π(m)=∏(1,2,…,m)(1)
对上式中的泛函求变分,得:
∑=0(2)
采用摄动法将式(2)进行线性化:
=+ Δu n(3)
将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。

二、Deform-3d基本模拟功能
切削machining(cutting)
成形forming
模具应力分析die stress analysis
滚轧shap and ring rolling
热处理heat treatment
三、Deform-3d基本结构与方法
包括前处理程序(Pre-processor)、模拟程序(simulator)和后处理程序(Post Processor)。

首先要在CAD软件(如Pro/E、UG等)中进行实体造型,建立模具和坯料的实体信息并将其转换成相应的数据格式(STL);然后在软件中设定变形过程的相应环境信息,进行网格剖分;再在应用软件上进行数值模拟计算;最后在后处理单元中将计算结果按需要进行输出。

事实上,由于设置了冷成形、工件材料、模具等信息后,环境条件几乎全是默认的。

因此只要熟悉了操作步骤,严格按要求操作可以顺利完成预设置工作(pre-processor);设置完成后,通过数据检查(check data)、创建数据库(generate data),将数据保存,然后关闭操作;开启模拟开关(switch simulation)、运行模拟程序(run simulation),进入模拟界面,模拟程序开始自动解算,在模拟解算过程中,可以打开模拟图表(simulation graphics)监视模拟解算进程,并进行图解分析,对变形过程、应力、应变、位移、速度等进行监视。

应用后处理器(post processor),分析演示变形过程,也可以打开动画控制开关(animation control),隐去工(模)具(single object mode),进行动画演示。

并同时可以打开概要(summary)和图表(graph),对荷栽、应力、应变、位移和速度等进行详细分析。

四、软件安装
Deform-3d软件的安装,只要按提示操作,可以顺利完成安装。

安装完成后,分别打开原始程序文件夹和已经安装好的程序文件夹,在原始文件夹中找到
MAGNiTUDE 文件夹并打开,将其中的文件拷贝到已经打开的安装文件夹中,重新启动计算机。

(to be continued)
五、操作步骤
1、问题设置(problem setup)
——打开程序,在打开的界面上,点击“文件file”
——在下拉菜单中,选择“新问题new problem”
——在问题设置(Problem Setup)菜单中的问题类型(Problem Type)栏,选择“成形forming”
——在问题位置(P roblem location)中,一般选家庭目录(Under problem home directory))
——修改问题名称problem name(可以不改)
—点击“完成finish”,打开操作界面。

操作的第一步,问题设置即宣告完成。

(to be continued)
五、操作步骤之二
有了前面的问题设置,就可以进入操作,本节主要介绍对象(工件)设置中的几何模型设置。

2、操作设置(operation setup)
——选择“公制SI”
——修改操作名称operation name(可以不改)
——选择加工形式Process type(选择冷成形cold forming)
——选择形状复杂度shape complexity(一般默认为适度)
——设置对象(工件)object (workpiece)
——工件形状选择workpiece shape(整体或对称)
——对象数量选择number of objects
—设置工件对象(温度、塑性等已经默认)
——对象模型,选择“导入或定义初级模型import geometry or define primitive geometry”,也可以点击“输入模型import geometry”从其它文件夹中导入对象模型,但模型一般要用Pro/E 等三维软件模型,并要转换为STL格式,才可以导入。

这里我们选择了“导入或定义初级模型”。

——在打开的界面对话框内,通过输入确定工件形状与尺寸,完成工件模型的导入。

(to be continued)
——通过输入确定工件形状与尺

——网络划分mesh,输入单元数,一般选2000~3000。

——选择材料material(从材料库中选择import material from library)
——设置边界条件boundary condition(一般为默认)
——上模设置top die
方法与工件设置类似。

如:输入或界定对象模型import object or define primitive geomitry等,不再重复。

——上模运动设置movement(一般选默认)
——速度可以修改,也可以选择默认一般不影响模拟
——下模设置bottom die,如工件设置类似。

如输入或界定对象模型import object or define primitive geomitry等,不再重复。

——工件与上下模设置完毕后,需要对对象定位position(选择自动或手动)
——设置接触条件contact(一般为默认)
——设置上模行程primary die stroke
——停止设置stopping control(可以不选)
——模拟设置simulation control(一般选默认)
——创建数据库database generation(如果前面的操作正常,情形显示为“输入正确”),点击“检查数据check data”和“创建数据库generate database”并关闭操作close opr,完成操作设置。

(to be continued)
3、模拟解算(simulation)
——打开模拟开关switch to simulation
——运行模拟程序run simulation
——启动模拟(点击“OK”程序开始自动模拟解算)
——打开模拟图表simulation graphics(模拟监视)
——选择右边的工具栏,进行模拟监视,从上至下分别是,无图形分析none——应变分析strain——应变率分析strain rate——应力分析stress——速度分析velocity——流量分析displacement——温度分析temperature——破坏分析damege
——在右上工具栏选择去除工具,便于观察。

——在右下工具拦选择光滑smooth,增加视觉效果。

——也可以通过右上工具拦选择网格效果。

——分析应力分布等。

在模拟解算过程中会碰到由于网格划分的不合理而中断模拟的情况,可以通过模拟界面下方的工具拦,选择需要的栏目,一般默认为信息Message栏,也可以点击message显示信息。

(to be continued)
4、后处理操作(post processor)
——打开后处理界面deform-3d post
——在问题对话框中选择需要分析处理的项目,
——打开数据库(显示对象模型)
——点击单个对象模式single object mode,消除工具模型,以便观测。

——点击播放按钮观测变形过程,或点击动画控制animation control,可以进行连续反复播放。

——点击概要summary或图表工具graph,打开对话框和图表,进行应力、应变、位移、速度、荷栽等分析。

——点击概要工具,打开对话框。

——选择步数和相应项目,点击小图表,显示图
表。

——打开图表工具,点击应用Apply显示图表。

——可以选择不同颜色的图表背景。

——显示模型变形色谱,观测起来更直
观。

结束语:
随着数值模拟在塑性成形方面的应用越来越深入,模拟工作逐步从模拟简单零件转向模拟复杂零件,从模拟单工步成形转向模拟多工步成形,从单纯的金属流动模拟转向温度场等多方面的复合模拟。

通过模拟所解决的问题不再单纯停留在学术上,而更多的与实际相结合,应用于生产之中。

数值模拟在冷挤压成形中的应用将会有以下趋势:①模拟复杂形状冷挤压件的成形过程;②模拟多工位冷锻成形过程;③模拟冷挤压成形过程中工件受力的同时考虑温度因素的影响,通过热力耦合得到更精确的结果;④研究工作将加深与实际生产的结合,更多解决生产实际问题。

(end)。

相关文档
最新文档