高二下学期理科数学周练(七)

合集下载

2021年高二下学期周末训练数学(理)试题(12)含答案

2021年高二下学期周末训练数学(理)试题(12)含答案

2021年高二下学期周末训练数学(理)试题(12)含答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题..卡.相应的位置上.......1.已知集合,则= .2.i+i2+i3+i xx= .3.命题“对所有的正数x,”的否定是 .4.命题“使x为31的约数”是命题。

(从“真”和“假”中选择一个填空)5.若A=+i,则A2= .6.“a=b”是“”的条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选择一个填空)7.复数z1,z2满足|z1|=|z2|=|z2-z1|=2,则|z1+z2|= .8.设a>1,函数在区间上的最大值与最小值之差为,则a= .9.如果复数是纯虚数,那么实数= .10.若关于的方程=3+a有实数根,则实数的取值范围是 .11.在等差数列中,若已知两项a p和a q,则等差数列的通项公式a n=a p+(n-p).类似的,在等比数列中,若已知两项a p和a q(假设pq),则等比数列的通项公式a n= .12.若是上的单调递增..函数,则实数的取值范围为 .13.从等式2c os,2c os,2c os,中能归纳出一个一般性的结论是 .14.已知f(x)=|x+1|+|x+2|+|x+3|++|x+xx|+|x-1|+|x-2|+|x-3|++|x-xx|(R),且则a的取值范围是 .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知命题p:∀x∈[1,12],x2-a≥0.命题q:∃x0∈R,使得x20+(a-1)x0+1<0.若p或q 为真,p且q为假,求实数a的取值范围.16.实数m分别取什么值时,复数z=m+1+(m-1)i是 (1)实数?(2)虚数?(3)纯虚数?17.证明:(1)>;(2)1,,3不可能是一个等差数列中的三项。

18.某地区的农产品第天的销售价格(元∕百斤),一农户在第天农产品的销售量(百斤)。

高二数学(理)第二学期周练试题(13套,有答案)

高二数学(理)第二学期周练试题(13套,有答案)

河南省正阳县第二高级中学2018-2019学年下期高二数学理科周练(一)一.选择题:1. 函数()332f x x x =-++的单调递增区间是 A. ()1,+∞ B. (),1-∞- C. ()1,1- D. ()2,2-2.关于函数2()2ln f x x x =- 的极值,下列说法正确的是( )A.有极大值点-1和极小值点1B.仅仅有极小值点-1C.仅仅有极小值点1D.无极值3.命题“,sin 1x R x ∀∈>”的否定是A. ,sin 1x R x ∀∈≤B. ,sin 1x R x ∀∈<C. ,sin 1x R x ∃∈≤D. ,sin 1x R x ∃∈< 4.椭圆22143x y +=的左右焦点为1F ,2F ,点P 为椭圆上异于长轴端点的任一点,则12PF F ∆的周长为( )A.4 B.2 C.5 D.65.与双曲线22:1169x y C -=有相同的渐近线的双曲线E 的离心率为 A. 53 B. 54 C. 53或54 D. 53或526."0,0"a b >>时“22222a b a b ++⎛⎫≤ ⎪⎝⎭”的 A. 充分不必要条件 B. 必要不充分条件C.充要条件D.既不充分也不必要条件7.平面内到x 轴于与到y 轴的距离之和为1的点的轨迹围成的图形的面积为A. 1B. 2C. 3D. 48.若""p q ∧⌝为假命题,""p q ⌝∨为真命题,p ⌝为假命题则,p q 的真假为A.p 假且q 假B.p 假且q 真C.p 真且q 假D.p 真q 真9.四面体A —BCD 的所有棱长均相等,E 为AB 的中点,则异面直线CE 和BD 所成的余弦值为( )A.6 B. 3 C. 13 D. 2310.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,点P 在此双曲线的右支上,若12211tan ,tan 22PF F PF F ∠=∠=-,则双曲线的离心率为( )A.55 D.511.已知12,F F 分别为双曲线22:145x y C -=的左、右焦点,P 为C 右支上一点,且122PF PF =,则12PF F ∆外接圆的半径为A.15 B. 15 C. 15 D.15 12.设△ABC 的内角A ,B ,C 所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C ,3b=20acosA ,则sinA∶sinB∶sinC 为( )(A)4∶3∶2 (B)5∶6∶7 (C)5∶4∶3 (D)6∶5∶4二.填空题:13.连接椭圆()222210x y a b a b+=>>的四个顶点构成的四边形的面积为4,其一个焦点与抛物线2y =14.已知12,F F 分别为双曲线22:143x y C -=的左、右焦点,抛物线29:4E y x =与C 的一个交点为P ,则12PF F ∆的面积为 .15.给出下列四个结论:①若,a b R ∈,则220a ab b ++≥ ②“若tan 1α=,则34πα=”的逆命题; ③“若2x y +≠,则1x ≠或1y ≠”的否命题;④“若()()22001x a y b -+-=,则点()00,x y 在圆()()221x a y b -+-=内”的否命题 其中正确的是 .(只填正确的结论的序号)16.设函数()x f x m π=,若存在f(x)的极值点0x 满足22200[()]x f x m +<,则实数m 的取值范围是_________________三。

晋江市养正中学周练(7)2013.4(教师版)

晋江市养正中学周练(7)2013.4(教师版)

晋江市养正中学周练(7)2013.4(教师版)晋江市养正中学周练(7)2013.4(教师版)数 学 试 题(理科)(命卷:郑明铿 审卷:高三备课组 考试时间:120分钟;满分:150分)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是满足题目要求的. (1)全集U=R ,集合{}02|2≥+=x xx A ,则[U A=(A )[]0,2- (B )()0,2- (C )(][)+∞⋃-∞-,02, (D )[]2,0(2)已知,54cos ,23,-=⎪⎭⎫ ⎝⎛∈αππα则)4tan(απ-等于 (A )7 (B )71 (C )71- (D )7-(3)如果等差数列{}na 中,15765=++a a a,那么943...a a a +++等于(A )21 (B )30 (C )35 (D )40(4)为了调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了附:)(2k K P >0.0500.010 0.001200位老年人,结构如下:性别男女是否需要志愿者需要70 40不需要30 60参照附表,得到的正确结论是( )(A)至少有99.9﹪的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”(B)至少有99.9﹪的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”(C)最多有99﹪的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”(D)最多有99﹪的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”(5)“1-=m”是“直线0+ym2-mx与直线+)12(= +myx垂直”的+3=3(A)充分而不必要条件(B)必要而不充分条件(C )充要条件 (D )既不充分也不必要条件(6)函数x x y sin =在[]ππ,-上的图象是(7)已知双曲线()0,012222>>=-b a by a x 的一条渐近线的斜率为2,且右焦点与抛物线xy 342=的焦点重合,则该双曲线的离心率等于(A )2 (B )3 (C )2 (D )23(8)一个几何体的三视图如图所示,其中主视图和左视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是(A )π12 (B )π24 (C )π32 (D )π48 (9)若()()()()()()923112012311132222xx a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为(A )0 (B )5- (C )5 (D )255(10)已知函数⎩⎨⎧>≤+=0,10,2)(x nx x kx x f ()k R ∈,若函数()y f x k=+有三个零点,则实数k 的取值范围是(A )2k ≤ (B )10k -<< (C )21k -≤<- (D )2k ≤-第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.(11)已知向量)0,2(),1,1(==b a ,则向量b a ,的夹角为 。

2021年高二下学期周末训练数学(理)试题(7)含答案

2021年高二下学期周末训练数学(理)试题(7)含答案

(第9题)2021年高二下学期周末训练数学(理)试题(7)含答案一、填空题1. 已知集合,,则 .2.命题“若实数满足,则”的否命题是_____命题(填“真”、“假”之一).3.函数在区间上的平均变化率为________.4.已知,则.5.若“”是“”的必要不充分条件,则实数的最大值是________.6.直线是曲线的一条切线,则实数的值为 。

7.函数在上的最大值_______.8.分别在曲线与直线上各取一点与,则的最小值为________.9. 10.杯中,当水深为时,则水面升高的瞬时变化率是________.11.已知函数,对任意的,恒成立,则的取值范围为_______. 12. 已知函数,曲线过点,且在点处的切线恰好与直线垂直,若在区间上单调递增,求的取值范围________.13. 已知集合,,其中,我们把集合,记作,若集合中的最大元素是,则的取值范围是 .14.已知函数为常数,为自然对数的底数的图像在点处的切线与该函数的图像恰有三个公共点,则实数的取值范围是_______.二解答题15.变换是逆时针旋转的旋转变换,对应的变换矩阵是;变换对应用的变换矩阵是.(Ⅰ)求点在作用下的点的坐标;(Ⅱ)求函数的图象依次在,变换的作用下所得曲线的方程.16.已知,.(1)若为真命题,求实数的取值范围;(2)若为成立的充分不必要条件,求实数的取值范围.17.已知矩阵的逆矩阵,向量.(1)求矩阵及矩阵的特征值;(2)求的值.18. 如图,两个工厂相距,点为的中点,现要在以为圆心,为半径的圆弧上的某一点处建一幢办公楼,其中.据测算此办公楼受工厂的“噪音影响度”与距离的平方成反比,比例系数是1,办公楼受工厂的“噪音影响度”与距离的平方也成反比,比例系数是4,办公楼受两厂的“总噪音影响度”是受两厂“噪音影响度”的和,设为.(1)求“总噪音影响度”关于的函数关系,并求出该函数的定义域;(2)当为多少时,“总噪音影响度”最小.19.已知,其中是自然常数,(Ⅰ)当时, 研究的单调性与极值;(Ⅱ)在(Ⅰ)的条件下,求证:;(Ⅲ)是否存在实数,使的最小值是?若存在,求出的值;若不存在,说明理由.20.设函数.(1)当时,讨论函数的单调性;(2)若对任意及任意,恒有成立,求实数的取值范围.K23371 5B4B 孋30792 7848 硈w38105 94D9 铙;-]l 32132 7D84 綄34533 86E5 蛥A33109 8155 腕。

淮北一中高二年级周练数学理科试卷

淮北一中高二年级周练数学理科试卷

2014-2015学年度淮北一中高二年级 数学周练试卷1.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( )A.(3,0)-B.()3,1--C.(]3,1--D.()3,3-2.设m ,n 是两条不同的直线,α、β、γ是三个不同的平面,给出下列命题,正确的是( ).A .若m β⊂,αβ⊥,则m α⊥B .若m//α,m β⊥,则αβ⊥C .若αβ⊥,αγ⊥,则βγ⊥D .若mαγ=,n βγ=,m//n ,则//αβ3.圆x 2+y 2=1和圆x 2+y 2﹣6y+5=0的位置关系是( ). A.外切 B.内切 C.外离 D.内含 4.函数y =-xcosx 的部分图象是( ).5. 已知向量b a ,满足1||||||=+==b a b a ,则向量b a ,夹角的余弦值为 ( )A 6.设△ABC 的内角CB A ,,所对边的长分别为c b a ,,,若a c b 2=+,B A sin 5sin 3=,)7.按如图的程序框图运行后,输出的S 应为( )A.7B.15C.26D.408.设偶函数()f x 在(0,)+∞上为减函数,且(2)0f =,则不等式( ). A .(2,0)(2,)-+∞ B .(,2)(0,2)-∞- C .(,2)(2,)-∞-+∞ D .(2,0)(0,2)-9.已知函数)(x f y =,将)(x f 图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得到的图象沿x 轴向左平移,这样得到的曲线与x y sin 3=的图象相同, 那么)(x f y =的解析式为( )A C 10.已知函数)(x f y =的周期为2,当x ∈[-1,1]时2)(x x f =,那么函数)(x f y =的图( ).A 、10个B 、9个C 、8个D 、1个二、填空题(题型注释)11.已知数列1是这个数列的第 项.12.函数()()πϕπϕ<≤-+=,2cos x y 的图像向右平移个单位后,与函数的图像重合,则ϕ= 。

2021年高二下学期数学周练试卷(理科实验班零班3.20) 含答案

2021年高二下学期数学周练试卷(理科实验班零班3.20) 含答案

2021年高二下学期数学周练试卷(理科实验班零班3.20)含答案一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.随机变量服从正态分布,若,则()A. B. C. D.2.某班有50人,从中选10人均分2组(即每组5人), 一组打扫教室, 一组打扫操场,那么不同的选派法有( )A. B. C. D.3.已知随机变量的分布列是其中,则-1 0 2PA、 B、 C、4.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x 1.99 3 4 5.1 6.12y 1.5 4.04 7.5 12 18.01( )A.y=2x-2 B.y=(12)x C.y=log2xD.y=12(x2-1)5.已知函数,则其导函数的图象大致是()A. B. C. D.6.某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的体积等于 ( )A. B. C. D.7.已知函数的导函数为,且满足关系式,则的值等于()A. B. C. D.8.已知,是的导函数,即,,…,,,则()A. B. C. D.9.如图是可导函数,直线:是曲线在x=3处的切线,令, 是的导函数,则=()A.-1 B.0 C.2 D.410.如图是函数的大致图象,则等于A. B. C. D.11. 下列判断错误..的是()A.若随机变量服从正态分布则B.若组数据的散点都在上,则相关系数C.若随机变量服从二项分布: ,则D.“”是“”的必要不充分条件12.定义域为的可导函数的导函数为,满足,且则不等式的解集为()A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分.)13.,则等于 ___________14.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线的周围,令z=ln y,求得线性回归方程为,则该模型的回归方程为________.15.若函数,是的导函数,则函数的最大值是.16.设、分别为具有公共焦点、的椭圆和双曲线的离心率,是两曲线的一个公共点,且满足,则的值为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽样100名市民, 按年龄情况进行统计的频率分布表Ⅰ和频率分布直方图2,频率分布表Ⅰ(1)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图统计这500名志愿者得平均年龄;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加的宣传活动,再从这20名中选取2名志愿者担任主要发言人.记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:(1)根据以上数据,(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“微信控”和“非微信控”的人数;(3)从(2)中抽取的5人中再随机抽取3人赠送200元的护肤品套装,记这3人中“微信控”的人数为,试求的分布列与数学期望.参考公式:,其中.参考数据:19、设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求20.已知函数,其中若在x=1处取得极值,求a的值;求的单调区间;21.如图,已知斜三棱柱中,平面平面,且,,求侧面与底面所成锐二面角的大小.22.如图,M是抛物线上上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB. (1)若M为定点,证明:直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹.丰城中学xx学年下学期高二周考试题答案(数学)一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C A D D C B D A B D D B 二、填空题(本大题共有4小题,每小题4分共16分.把答案填在题中横线上)13. 14.15. 16.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.平均年龄估值为:(45×0.05+55×0.2+65×0.35+75×0.3+85×0.1)=33.5(岁).(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2, , , ,∴X的分布列为:.18.(本小题满分12分)【答案】(1)没有60%的把握认为“微信控”与“性别”有关;(2)2人;(3)的分布列是的期望值是.. (10分)所以的分布列是所以X 的期望值是.(12分19.【答案】解:(Ⅰ)由已知得到:当两次摸到的球分别是红红时,此时;当两次摸到的球分别是黄黄,红蓝,蓝红时,此时;当两次摸到的球分别是红黄,黄红时,此时;当两次摸到的球分别是黄蓝,蓝黄时,此时;当两次摸到的球分别是蓝蓝时,此时;所以的分布列是:2 3 4 5 6 P(Ⅱ)由已知得到:有三种取值即1,2,3,所以的分布列是:1 2 3 P所以:2225233555253(1)(2)(3)9333a b c E a b c a b c a b c a b c D a b c a b c a b c ηη⎧==++⎪⎪++++++⎨⎪==-⨯+-⨯+-⨯⎪++++++⎩,所以.20. 解(Ⅰ)22222'(),1(1)(1)(1)a ax a f x ax x ax x +-=-=++++ ∵在x=1处取得极值, ∴解得 (Ⅱ)∵ ∴①当时,在区间∴的单调增区间为 ②当时,由22'()0,'()0,aaf x x f x x a a-->><<解得由解得 ∴()),a af x a a+∞2-2-的单调减区间为(0,单调增区间为(,). 21.解:过点A 1作A 1O ⊥AC,由题意O 为AC 的中点,过点O 作OD ⊥AC 交AB 于D ,平面平面ABC,平面ABC, (3分) 以O 为原点,OD,OC,OA 1分别为轴,建立如图所示的直角坐标系,则1263(0,3,0),(,,0),(0,0,3)33A B A - (6分),由题意平面ABC 的一个法向量为 设,平面的一个法向量为,则由 ,令,则设平面A 1ABB 1与平面ABC 所成锐二面角为, 则 (11分)所以平面A 1ABB 1与平面ABC 所成锐二面角为 (12分) 22.(本题12分)解:(1)设M (y,y 0),直线ME 的斜率为k(l>0) ——1分 则直线MF 的斜率为-k ,方程为 ——2分 ∴由,消 ——3分解得 ——5分∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值) ——6分 所以直线EF 的斜率为定值.(2)90,45,1,EMF MAB k ∠=∠==当时所以 ——7分 直线ME 的方程为由得——8分同理可得——9分设重心G(x, y),则有222200000000(1)(1)23333(1)(1)333M E FM E Fy y y yx x xxy y y yx x xx⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩——10分消去参数得——12分 D30999 7917 礗uWt30275 7643 癃31083 796B 祫21707 54CB 哋 35102 891E 褞 K。

江西省会昌中学2017-2018学年高二卓越班下学期周练7(5.9)

江西省会昌中学2017-2018学年高二卓越班下学期周练7(5.9)

江西省会昌中学2017-2017学年高二卓越班下学期周练7(5.9)一、单项选择1、区位指数是综合了区域发展的资源、环境、交通、能源、劳动力、经济、科技、政府管理等多项自然、社会指标的量化参数。

读“我国区位指数分布图”,回答1—2题1.关于我国区位指数的说法,正确的是()A.我国区位指数由南部向北部递减B.东部沿海省区位指数较高的主要是资源丰富C.乙地的区位指数小于10 的主要原因是环境恶劣D.丙地区位指数较低,其主要原因是交通闭塞2.甲地区的区位指数大于40,其中关于其优势的说法正确的是()①交通便利②老工业基地,经济基础好③矿产资源丰富④毗邻港澳,便于引进资金、技术A.①② B.①④ C.②③ D.③④2、“振兴东北要从发展现代农业开始”。

我国最大的商品粮基地黑龙江省2012年全省粮食总产量登上1 000亿千克新台阶,粮食商品量达到800亿千克。

今后黑龙江垦区将围绕“粮、牧、企”的结构模式对产业结构进行战略性调整,尽快实现从“北大荒”走向“北大仓”之后再走向“北大商”的合理构想。

据此完成1~2题。

1.下列粮食作物属于黑龙江垦区的是()A.冬小麦和高粱B.春小麦和玉米C.油菜籽和甜菜D.水稻和花生2.对黑龙江垦区进行产业结构调整,下列叙述正确的是()A.“粮、牧、企”结构模式中的“企”是指新建立一批国有大中型企业B.从“北大荒”走向“北大仓”的过程主要依靠加大科技投入C.“北大仓”要走向“北大商”必须依靠扩大耕地面积D.产业结构调整必须面向国际和国内市场,提高农产品的附加值3、下图是黄土高原外力作用示意图,读图,完成(1)~(2)题。

(1)黄土高原位置特殊表现在它位于()A.东南季风向西南季风的过渡地带B.森林带向荒漠带的过渡地带C.以流水作用为主向以风力作用为主的过渡地带D.湿润地区向半湿润地区的过渡地带(2)黄土高原的成因是()A.流水侵蚀B.风力侵蚀C.流水堆积D.风力堆积4、当今3S技术在生产、生活和科研中的作用越来越突出。

2021年高二下学期周末训练数学(理)试题(10) Word版含答案

2021年高二下学期周末训练数学(理)试题(10) Word版含答案

2021年高二下学期周末训练数学(理)试题(10) Word 版含答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡...相应位置上...... 1. 命题“,有”的否定是 ▲ .2. 若(为虚数单位),则的值为 ▲ .3. 观察下列式子:, ,,…,根据以上式子可以猜想 ▲ .4. 若(为虚数单位),则是的 ▲ 条件. (填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”)5.设的展开式中的系数为,二项式系数为,则 ▲ .6.已知函数是上的增函数,,命题“若,则”与它的逆命题,否命题,逆否命题四个命题中真命题的个数为 ▲ .7. 已知,,则可化简为▲ . (用含有的式子表示)8. 已知条件和条件,若是的充分条件,则实数的取值范是 ▲ .9. 现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为. 类比到空间,有两个棱长均为的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为 ▲ .10. 若()()()()99221091...112+++++++=++x a x a x a a m x ,且 ()()9293128203......=+++-+++a a a a a a ,则实数m 的值为 ▲ .11. 下列四个命题中,真命题的序号是 ▲ .①,使是幂函数,且在上递减;②,函数有零点;③,使;④,函数都不是偶函数.12.已知(其中为给定的正整数),则对任意整数(),恒为定值是▲.13. 已知二次函数的值域为,且当,时,不等式恒成立,则实数的最大值为▲.14. 设集合,选择的两个非空子集和,要使中最小的数大于中最大的数,则不同的选择方法共有▲种.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知是虚数,是实数.(1)求为何值时,有最小值,并求出|的最小值;(2)设,求证:为纯虚数.16.(本小题满分14分)已知命题:函数在定义域上单调递增;命题:不等式对任意实数恒成立,若是真命题,求实数的取值范围.颜色(其中一种为红色)对图中四个三角形进行染色,且每个三角形用一种颜色图染.(1)若必须使用红色,求四个三角形中有且只有一组相邻三角形同色的染色方法的种数;(2)若不使用红色,求四个三角形中所有相邻三角形都不同色的染色方法的种数.18.(本小题满分16分)已知函数(且),函数、分别是上的奇函数和偶函数,并且.(1)求和的解析式;(2)计算,探索它们之间的关系并推广到一般情形,并给予证明;(3)类比“两角和与差的正余弦公式”的形式,结合(2)的结论,试写出与(2)结果不相同的三个关于、的关系式,并给予证明.19.(本小题满分16分)已知数列满足,且.(1)计算的值,由此猜想数列的通项公式,并用数学归纳法证明;(2)求证:.20.(本题满分16分)已知函数和函数.(1)若方程在上有两个不同的解,求实数的取值范围;(2)若对,均,使得成立,求实数的取值范围.评分标准1.,有 2. 3. 4.充分不必要 5.4 6.4 7. 8. 9. 10.1或-3 11.①②③ 12. 13. 14. 4915.解:设,则i b a b b b a a a b a bi a bi a bi a bi a z z ⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛++=+-++=+++=+22222211 所以,,又可得 …………………………………4分(1)22)1()2()1()2(2-++=-++=-+b a i b a i z表示点到点的距离,所以最小值为 ………7分解方程组并结合图形得 …………………………………9分(2)()()()[]()[]()a bi ba bi a bi a bi a bi a z z u +-=++-+⋅--=++--=+-=1111111122 又,所以为纯虚数 ……………………………………………………………………14分16.解: ……………………………………………………………………5分当时恒成立; …………………………………………………………………7分当时,,解得:……………………………………………………………………………11分所以, ……………………………………………………………………………14分17.解:(1)同色的相邻三角形共有种,不妨假设为,①若同时染红色,则另外两个三角形共有种染色方法,因此这种情况共有种染色方法; ②若同时染的不是红色,则它们的染色有种,另外两个三角形一个必须染红色,所以这两个三角形共有,因此这种情况共有种染色方法.综上可知有且只有一组相邻三角形同色的染色方法的种数为种;……7分(2)因为不用红色,则只有四种颜色.若一共使用了四种颜色,则共有种染色方法;若只使用了三种颜色,则必有一种颜色使用了两次,且染在对顶的区域,所以一共有种染色方法;若只使用了两种颜色,则两种颜色都使用了两次,且各自染在一组对顶区域,所以共有种染色方法.综上可知所有相邻三角形都不同色的染色方法的种数为种. ………………14分18.解:(1)将代入 ①得,因为函数、分别是上的奇函数和偶函数,所以 ②,①②得,①②得; ………………………………4分(2),,,,,所以, ………………………………6分推广得到.证明:+; …………………………………………………………9分(3);;. …………………………………………………12分证明:+将和中用 代替得,因为函数、分别是上的奇函数和偶函数,所以,.…………16分19.解:(1),由此猜想数列 ……………………3分证明:当时,,符合;假设当时,成立,那么当时,1)1(21)1()1(1221++=+=++-+=+-=+k k k k k ka a a k k k所以,当时也成立. …………………………………………………………7分(2)即证 …………………………………………………………9分 2111...111111221=⋅+≥⋅++⋅+⋅+=⎪⎭⎫ ⎝⎛+n C n C n C n C n n n n n n n n ………………………11分 又1212...211!11...21!11-=⋅⋅⋅≤≤+-⋅⋅-⋅-⋅⋅=k k k nk n k n n n n n n n k n C , …………………13分 故有32123211211121...2121111112<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-+=+++++≤⎪⎭⎫ ⎝⎛+-n n n n n 综上:,即.……………………………………………16分20.(1)或或所以,且即且………………………………………5分(2)…………………………………………………………8分…………………………………………………………13分当时,,解得当时,,解得当时,,解得综上,…………………………………………………………16分L31758 7C0E 簎24168 5E68 幨;k21766 5506 唆36139 8D2B 贫31589 7B65 筥31143 79A7 禧27124 69F4 槴4qT32482 7EE2 绢j。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档