甘肃省张掖市2021版中考数学试卷D卷

合集下载

2021年甘肃省白银市、天水市、武威市、张掖市、平凉市、酒泉市、庆阳市、定西市、陇南市中考数学试卷

2021年甘肃省白银市、天水市、武威市、张掖市、平凉市、酒泉市、庆阳市、定西市、陇南市中考数学试卷

2021年甘肃省卷 数学一、选择题:本大题共10小题,每小题3分,共30分. 每小题只有一个正确选项. 1. 3的倒数是( ) A.-3B.3C.-13D.132. 2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是( )3. 下列运算正确的是( ) A.3+3=3B.45-5=4C.3×2=6D.32 ÷8 =44. 中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助. 预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献. 数据“50亿”用科学记数法表示为( )A.5×108B.5×109C.5×1010D.50×1085. 将直线y =5x 向下平移2个单位长度,所得直线的表达式为( ) A.y =5x -2B.y =5x +2C.y =5(x +2)D.y =5(x -2)6. 如图,直线DE ∥BF ,Rt △ABC 的顶点B 在BF 上, 若∠CBF =20°,则∠ADE =( ) A.70° B.60°C.75°D.80°7. 如图,点A ,B ,C ,D ,E 在⊙O 上,AB =CD ,∠AOB =42°, 则∠CED =( )A.48°B.24°C.22°D.21°8. 我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步. 问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( )A.⎩⎪⎨⎪⎧3(y -2)=x 2y -9=xB.⎩⎪⎨⎪⎧3(y +2)=x 2y +9=xC.⎩⎪⎨⎪⎧3(y -2)=x 2y +9=xD.⎩⎪⎨⎪⎧3(y -2)=x 2y +x =99. 对于任意的有理数a ,b ,如果满足a 2 +b 3 =a +b 2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ). 若(m ,n )是“相随数对”,则3m +2[3m +(2n -1)]=( )A.-2B.-1C.2D.310. 如图1,在△ABC 中,AB =BC ,BD ⊥AC 于点D (AD >BD ). 动点M 从A 点出发,沿折线AB →BC 方向运动,运动到点C 停止. 设点M 的运动路程为x ,△AMD 的面积为y ,y 与x 的函数图象如图2,则AC 的长为( )A.3B.6C.8D.9二、填空题:本大题共8小题,每小题3分,共24分. 11. 因式分解:4m -2m 2= .12. 关于x 的不等式13 x -1>12的解集是 .13. 关于x 的方程x 2-2x +k =0有两个相等的实数根,则k 的值是 .14. 开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如下表:体温(℃) 36.3 36.4 36.5 36.6 36.7 36.8 天数(天)233411这14天中,小芸体温的众数是 ℃.15. 如图,在矩形ABCD 中,E 是BC 边上一点,∠AED =90°, ∠EAD =30°,F 是AD 边的中点,EF =4cm ,则BE =cm.16. 若点A (-3,y 1),B (-4,y 2)在反比例函数y =a 2+1x的图象上,则y 1 y 2.(填“>”或“<”或“=”)17. 如图,从一块直径为4dm 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为 dm 2.18. 一组按规律排列的代数式:a +2b ,a 2-2b 3,a 3+2b 5,a 4-2b 7,…, 则第n 个式子是 .三、解答题:本大题共5小题,共26分. 解答时,应写出必要的文字说明、证明过程或演算步骤.19. (4分)计算:(2021-π)0+(12)-1-2cos45°.20. (4分)先化简,再求值:(2-2x x -2 )÷x 2-4x 2-4x +4,其中x =4.21. (6分)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理. 如图,已知AB ︵,C 是弦AB 上一点,请你根据以下步骤完成这个引理的作图过程. (1)尺规作图(保留作图痕迹,不写作法):①作线段AC 的垂直平分线DE ,分别交AB ︵于点D ,AC 于点E ,连接AD ,CD ;②以点D 为圆心,DA 长为半径作弧,交AB ︵于点F (F ,A 两点不重合),连接DF ,BD ,BF . (2)直接写出引理的结论:线段BC ,BF 的数量关系.22. (6分)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑. 宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”. 某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔CD 垂直于地面,在地面上选取A ,B 两处分别测得∠CAD 和∠CBD 的度数(A ,D ,B 在同一条直线上).数据收集:通过实地测量:地面上A ,B 两点的距离为58m ,∠CAD =42°,∠CBD =58°. 问题解决:求宝塔CD 的高度(结果保留一位小数).参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin58°≈0,85,cos58°≈0.53,tan58°≈1.60.根据上述方案及数据,请你完成求解过程.23. (6分)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).四、解答题:本大题共5小题,共40分. 解答时,应写出必要的文字说明、证明过程或演算步骤.24. (7分)为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成A,B,C,D,E 五个等级,并绘制了如下不完整的统计图. 请结合统计图,解答下列问题:(1)本次调查一共随机抽取了名学生的成绩,频数分布直方图中m=;(2)补全学生成绩频数分布直方图;(3)所抽取学生成绩的中位数落在等级;(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?25. (7分)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计). 小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图2所示.(1)小刚家与学校的距离为m,小刚骑自行车的速度为m/min;(2)求小刚从图书馆返回家的过程中,y与x的函数表达式;(3)小刚出发35分钟时,他离家有多远?26. (8分)如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OA C.过圆心O作BC的平行线交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.27. (8分)问题解决:如图1,在矩形ABCD中,点E,F分别在AB,BC边上,DE=AF,DE⊥AF于点G.(1)求证:四边形ABCD是正方形;(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DE =AF,∠AED=60°,AE=6,BF=2,求DE的长.28. (10分)如图,在平面直角坐标系中,抛物线y =12x 2+bx +c 与坐标轴交于A (0,-2),B (4,0)两点,直线BC :y =-2x +8交y 轴于点C.点D 为直线AB 下方抛物线上一动点,过点D作x 轴的垂线,垂足为G ,DG 分别交直线BC ,AB 于点E ,F .(1)求抛物线y =12 x 2+bx +c 的表达式;(2)当GF =12时,连接BD ,求△BDF 的面积;(3)①H 是y 轴上一点,当四边形BEHF 是矩形时,求点H 的坐标;②在①的条件下,第一象限有一动点P ,满足PH =PC +2,求△PHB 周长的最小值.甘肃省2021年中考数学试卷解析1.D 【解析】根据倒数的定义可知,3的倒数是13.2.B 【解析】A .不符合轴对称图形的定义,不合题意;B .符合轴对称图形的定义,符合题意;C .不符合轴对称图形的定义,不合题意;D .不符合轴对称图形的定义,不合题意.3.C 【解析】3+3=23,故A 选项错误;45-5=35,故B 选项错误;3×2=6,C 选项正确;32÷8=2,故D 选项错误.4.B 【解析】50亿即5000000000,故用科学记数法表示为5×109.5.A 【解析】直线y =5x 向下平移2个单位后所得直线的解析式为y =5x -2.6.A 【解析】∵在Rt △ABC 中,∠CBF =20°,∠ABC =90°,∴∠ABF =90°-∠CBF =90°-20°=70°,∵DE ∥BF ,∴∠ADE =∠ABF =70°.7.D 【解析】∵点A ,B ,C ,D ,E 在⊙O 上,AB =CD ,∠AOB =42°,∴AB ︵=CD ︵,∠CED =12∠AOB =12×42°=21°.8.C 【解析】设共有x 人,y 辆车,则⎩⎪⎨⎪⎧3(y -2)=x2y +9=x .9.A 【解析】∵(m ,n )是“相随数对”,∴m 2+n 3=m +n2+3,整理得9m +4n =0,∴3m +2[3m+(2n -1)]=3m +6m +4n -2=9m +4n -2=-2.10.B 【解析】根据函数图象可知,点M 的运动路程x =AB +BC =213,点 M 运动到点B 的位置时,△AMD 的面积y 达到最大值3,即△ABD 的面积为3.∵AB =BC ,BD ⊥AC ,∴AB =BC =13,AC =2AD ,12AD ·BD =3.∴AD 2+BD 2=AB 2=(13)2=13,2AD ·BD =12.∴AD 2+2AD ·BD +BD2=13+12=25,即(AD +BD )2=25,AD 2-2AD ·BD +BD 2=13-12=1,即(AD -BD )2=1.∵AD >BD ,∴AD +BD =5,AD -BD =1.两式相加,得2AD =6.∴AC =2AD =6.11. 2m (2-m ) 【解析】4m -2m 2=2m (2-m ).12.x >92 【解析】13x -1>12去分母,得2x -6>3, 移项,得2x >9,∴x >92.13. 1 【解析】根据一元二次方程根的判别式,可由方程有两个相等的实数根得b 2-4ac =4-4k =0,解得k =1.14. 36.6 【解析】根据表格数据可知众数是36.6 ℃.15. 6 【解析】∵∠AED =90°,F 是AD 边的中点,EF =4 cm ,∴AD =2EF =8, ∵∠DAE =30°,∴AE =AD ·cos 30°=8×32=43,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABE =90°,∴∠AEB =∠DAE =30°,∴BE =AE ·cos 30°=43×32=6. 16.< 【解析】∵a 2+1>0, ∴y =a 2+1x的图象在一,三象限,且在每一象限内,y 随x 的增大而减小,∵-3>-4, ∴y 1<y 2.17. 2π 【解析】如解图,连接AB , ∵∠ACB =90°,∴AB 为圆的直径,AB =4, ∴AC 2+BC 2=AB 2,AC =BC , ∴AC =BC =22.∴S =90°π×(22)2360°=2π.第17题解图18.a n +(-1)n +1·2b2n -1【解析】∵当n 为奇数时,(-1)n +1=1,当n 为偶数时,(-1)n+1=-1,∴第n 个式子是:a n+(-1)n +1·2b2n -1.19.解:(2021-π)0+(12)-1-2cos 45°=1+2-2×22=3- 2.20.解:原式=(2x -4x -2-2x x -2)·(x -2)2(x +2)(x -2)=-4x -2·x -2x +2=-4x +2,当x =4时,原式=-44+2=-23. 21.解:(1)作图如解图所示;第21题解图(2)结论:BC =BF .【解法提示】由作图可得:DE 是AC 的垂直平分线,DA =DF , ∴DA =DC =DF ,∴∠DAC =∠DCA ,AD ︵=FD ︵, ∴∠DBC =∠DBF ,∵四边形ABFD 是圆的内接四边形, ∴∠DAB +∠DFB =180°, ∵∠DCA +∠DCB =180°, ∴∠DFB =∠DCB , ∵DB =DB , ∴△DCB ≌△DFB , ∴BC =BF .小鹿提示:图画得这么标准,数量关系我一眼就看出来啦! 22.解:∵CD ⊥AB , 设CD =xm, 在Rt △ACD 中,AD =CD tan ∠CAD =x tan 42°=x 0.9,在Rt △CBD 中,BD =CDtan ∠CBD =xtan 58°=x1.6,∵AD +BD =AB , ∴x 0.9+x1.6=58, ∴125x =4176, 解得x ≈33.4.答:宝塔的高度约为33.4 m .23.解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右, ∴估计摸到红球的概率为0.75, 设白球有x 个,依题意得33+x =0.75.解得x =1.经检验:x =1是原分式方程的解,且符合题意, 所以箱子里可能有1个白球; (2)列表如下:或画树状图如解图:第23题解图由表格或树状图可知一共有16种等可能的结果,其中两次摸出的小球颜色恰好不同的有:(红1,白)、(红2,白)、(红3,白)、(白,红1)、(白,红2)、(白,红3)共6种.∴P (两次摸出的小球恰好颜色不同)=616=38.24.解:(1)200,16;【解法提示】B 等级人数40人,由扇形图可知B 等级的百分比为20%,∴本次调查一共随机抽取了40÷20%=200名学生的成绩,C 等级有200×25%=50人,∴m =200-40-50-70-24=16.(2)补全频数分布直方图如解图所示:第24题解图(3)C ;【解法提示】频数分布直方图已将数据从小到大排序,一共抽取了200个数据,根据中位数定义中位数位于第100,101两位置上成绩的平均数,16+40=56<100,16+40+50=106>101,∴中位数在C 等级内.(4)成绩80分以上的在D 、E 两等级中,人数为70+24=94人,占抽样的百分比为94÷200×100%=47%,全校共有2000名学生,成绩优秀的学生有2000×47%=940(人). 答:全校2000名学生中,估计成绩优秀的学生有940人.25.解:(1)3000,200;【解法提示】小刚骑自行车匀速从学校到图书馆,从起点3000 m 处的学校出发去5000 m 处的图书馆,∴小刚家与学校的距离为3000 m ,小刚骑自行车匀速行驶10分钟,从3000 m 走到5000 m ,行驶的路程为5000-3000=2000 m ,骑自行车的速度为2000÷10=200 m /min .(2)小刚从图书馆返回家的时间:5000÷200=25(min ). 总时间:25+20=45(min ).设返回时y 与x 的函数表达式为y =kx +b (k ≠0),把(20,5000),(45,0)代入得:⎩⎪⎨⎪⎧20k +b =500045k +b =0,解得:⎩⎪⎨⎪⎧k =-200b =9000,∴y =-200x +9000(20≤x ≤45); (3)小刚出发35分钟,即当x =35时,y =-200×35+9000=2000,答:此时他离家2000 m . 26. (1)证明:∵OA =OC , ∴∠OAC =∠OCA ,∵∠DCB =∠OAC , ∴∠OCA =∠DCB , ∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠OCA +∠OCB =90°,∴∠DCB +∠OCB =90°,即∠OCD =90°, ∴OC ⊥DC ,又∵OC 是⊙O 的半径, ∴CD 是⊙O 的切线;小鹿提示:证明切线就等于证明垂直,直径所对的圆周角是直角,只要证角相等就可以啦! (2)解:∵BC ∥OE ,∴BD OB =CD CE ,即BD OB =46=23, ∴设BD =2x ,则OB =OC =3x ,OD =OB +BD =5x , ∵OC ⊥DC , ∴OC 2+CD 2=OD 2,∴(3x )2+42=(5x )2,解得x =1, ∴OC =3x =3.即⊙O 的半径为3, ∵BC ∥OE , ∴∠OCB =∠EOC , 在Rt △OCE 中,tan ∠EOC =EC OC =63=2, ∴tan ∠OCB =tan ∠EOC =2. 27.解:问题解决:(1)证明:如题图1,∵四边形ABCD 是矩形, ∴∠ABC =∠DAB =90°. ∴∠BAF +∠GAD =90°.∵DE⊥AF,∴∠ADG+∠GAD=90°.∴∠BAF=∠ADG.又∵AF=DE,∴△ABF≌△DAE,∴AB=AD.∴矩形ABCD是正方形;(2)解:△AHF是等腰三角形.理由如下:∵AB=AD,∠ABH=∠DAE=90°,BH=AE,∴△ABH≌△DAE,∴AH=DE.又∵DE=AF,∴AH=AF,即△AHF是等腰三角形;类比迁移:如解图,延长CB到点H,使得BH=AE=6,连接AH. ∵四边形ABCD是菱形,∴AD∥BC,AB=AD,∴∠ABH=∠BAD.∵BH=AE,∴△ABH≌△DAE.∴AH=DE,∠AHB=∠DEA=60°.又∵DE=AF,∴AH=AF.∵∠AHB=60°,∴△AHF是等边三角形,∴AH=HF,∴DE=AH=HF=HB+BF=AE+BF=6+2=8.第27题解图28.解:(1)∵抛物线y=12x2+bx+c过A(0,-2),B(4,0)两点,∴⎩⎪⎨⎪⎧c=-28+4b+c=0,解得⎩⎪⎨⎪⎧b=-32c=-2,∴y=12x2-32x-2;(2)∵B(4,0),∴OB=4.同理OA=2.又∵GF⊥x轴,OA⊥x轴,∴在Rt△BOA和Rt△BGF中,tan∠ABO=OAOB=GFGB,即24=12GB,∴GB=1,∴OG=OB-GB=4-1=3.当x=3时,y D=12×32-32×3-2=-2,∴D(3,-2),即GD=2.∴FD=GD-GF=2-12=32,∴S△BDF=12FD·BG=12×32×1=34;(3)①如解图,连接BH ,交EF 于点N . ∵四边形BEHF 是矩形, ∴EF =BH ,BN =NH =12BH .又∵EF ∥AC ,,∴BN NH =BFAF=1, ∴BG OG =BE CE =BFAF=1. ∵四边形BEHF 是矩形, ∴HF ∥BC . ∴CH AH =BFAF=1, ∵当x =0时,y C =8, ∴OC =8,∵AC =OC +AO =8+2=10, ∴CH =5,∴OH =OC -CH =8-5=3, ∴H (0,3);第28题解图②在Rt △OBH 中,HB =OH 2+OB 2=32+42=5, ∵PH =PC +2.∴C △PHB =PH +PB +HB =PC +2+PB +5=PC +PB +7,∴要使C △PHB 最小,就要PC +PB 最小. ∵PC +PB ≥BC ,∴当点P 在BC 上时,PC +PB =BC 为最小. 在Rt △OBC 中,BC =OC 2+OB 2=82+42=4 5. ∴△PHB 周长的最小值是45+7.。

甘肃省张掖市2021版九年级上学期数学开学考试试卷D卷

甘肃省张掖市2021版九年级上学期数学开学考试试卷D卷

甘肃省张掖市2021版九年级上学期数学开学考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020八下·北京期末) 下图是利用平面直角坐标系画出的北京世园会部分景区图.若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示竹里馆的点的坐标为(-3,1),表示海坨天境的点的坐标为(-2,4),则下列表示国际馆的点的坐标正确的是()A . (8,1)B . (7,-2)C . (4,2)D . (-2,1)2. (2分)(2019·平邑模拟) 下列运算正确的是()A .B .C .D .3. (2分) (2019八下·定安期中) 已知分式的值是零,那么x的值是()A . -1B . 0C . 1D . ±14. (2分)小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()C . 85,85D . 85,84.55. (2分)(2020·开封模拟) 从4条长度分别为4,6,8,10的线段中,任取三条能围成直角三角形的概率是()A .B .C .D . 06. (2分)(2017·东胜模拟) 把下列图标折成一个正方体的盒子,折好后与“中”相对的字是()A . 祝B . 你C . 顺D . 利7. (2分)已知关于x的方程2x2﹣(4k+1)x+2k2﹣1=0有两个不相等的实数根,则k的取值范围是()A . k=﹣B . k≥﹣C . k>﹣D . k<﹣8. (2分) (2017七下·蒙阴期末) 如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()A . 5个B . 4个9. (2分)若△ABC的面积是8cm2 ,则它的三条中位线围成的三角形的面积是()A . 2cm2B . 4cm2C . 6cm2D . 无法确定10. (2分) (2019七下·长春期中) 小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付()小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A . 10元B . 11元C . 12元D . 13元11. (2分) (2020七上·兰州期末) 解方程-3x+4=x-8,下列移项正确的是()A . -3x-x=8-4B . -3x-x=-8+4C . -3x-x=-8-4D . -3x+x=-8+412. (2分)(2020·北京) 有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A . 正比例函数关系B . 一次函数关系C . 二次函数关系D . 反比例函数关系13. (1分)(2020·岑溪模拟) 若式子有意义,则x的取值范围是________14. (1分) (2020七上·海珠期末) 截止2019年10月底,广州建成5G基站约12000座,多个项目列入广东省首批5G融合应用项目,将数12000用科学记数法表示,可记为________-.15. (1分)分解因式:ax2﹣ay2= ________.16. (1分) (2019八下·闵行期末) 如果多边形的每个外角都是45°,那么这个多边形的边数是________.17. (1分) (2017九上·抚宁期末) 如图所示,⊙M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M的坐标是________.18. (2分)(2018·盘锦) 如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2 +4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN 的长为________.三、解答题 (共4题;共27分)19. (5分) (2020八上·常州期中) 求下列各式中的x(1);(2) .20. (5分) (2017七下·抚宁期末) 解不等式组,并把它的解集表示在数轴上.21. (2分)(2012·大连) 如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s 的速度分别沿CA、CB匀速运动.当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ′R.设点Q的运动时间为t(s),△PQ′R与△PAR重叠部分的面积为S(cm2).(1) t为何值时,点Q′恰好落在AB上?(2)求S与t的函数关系式,并写出t的取值范围;(3) S能否为 cm2?若能,求出此时的t值;若不能,说明理由.22. (15分)(2019·唐县模拟) 如图,已知反比例函数y= (x>0)的图象与直线l:y=kx+b都经过点P (2,m),Q(n,4),且直线l交x轴于点A,交y轴于点B,连接OP,OQ.(1)直接写出m,n的值及直线l的函数表达式;(2)△OAP与△OBQ的面积相等吗?写出你的判断,并说明理由;(3)若点M是y轴上一点,当MP+MQ的值最小时,求点M的坐标.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共7分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共4题;共27分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:。

2024年甘肃张掖中考数学试题及答案(1)

2024年甘肃张掖中考数学试题及答案(1)

2024年甘肃张掖中考数学试题及答案考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 下列各数中,比2-小的数是( )A. 1-B. 4-C. 4D. 12. 如图所示,该几何体的主视图是( )A. B. C. D.3. 若55A ∠=︒,则A ∠的补角为( )A. 35︒B. 45︒C. 115︒D. 125︒4. 计算:4222a b a b a b -=--( )A. 2 B. 2a b - C. 22a b - D. 2a ba b--5. 如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为( )A. 6B. 5C. 4D. 36. 如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是( )A. 20︒B. 25︒C. 30︒D. 35︒7. 如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为( )A. 3y x =B. 4y x =C. 31y x =+D. 41y x =+8. 近年来,我国重视农村电子商务发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是( )A. 2023年中国农村网络零售额最高的B. 2016年中国农村网络零售额最低C 2016—2023年,中国农村网络零售额持续增加D. 从2020年开始,中国农村网络零售额突破20000亿元9. 敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为( )A. 一亩八十步B. 一亩二十步C. 半亩七十八步D. 半亩八十四步10. 如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( ).A 2 B. 3D. 二、填空题:本大题共6小题,每小题4分,共24分.11. 因式分解:228x -=________.12. 已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13. 定义一种新运算*,规定运算法则为:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14. 围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D 位于棋盘的格点上)15. 如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16. 甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如.图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______ 2cm .(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17..18. 解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩19. 先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.20. 马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .21. 在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22. 习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23. 在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m ,n 的值:m =_______,n =_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24. 如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x =>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x=>的图象于C ,D 两点.是(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.25. 如图,AB 是O 的直径, BCBD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.26. 【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.27. 如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A两点,顶点为(2,B .点C 为OB的中点.的(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;②如图3,连接BD ,BF ,求BD BF +的最小值.参考答案考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 下列各数中,比2-小的数是( )A. 1- B. 4- C. 4 D. 1【答案】B【解析】【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.【详解】解;∵442211-=>-=>-=,∴42114-<-<-<<,∴四个数中比2-小的数是4-,故选:B .2. 如图所示,该几何体的主视图是( )A. B. C. D.【答案】C【解析】【分析】本题考查了简单组合体的三视图,根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到是图形是:故选:C .3. 若55A ∠=︒,则A ∠的补角为( )A. 35︒B. 45︒C. 115︒D. 125︒【答案】D【解析】【分析】根据和为180︒的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.【详解】55A ∠=︒。

2021年甘肃省张掖市中考数学试卷及解析

2021年甘肃省张掖市中考数学试卷及解析

2021年甘肃省张掖市中考数学试卷及解析2021年甘肃省张掖市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确答案。

1.(3分)-2021的相反数是()。

A。

-2021 B。

2021 C。

-1 D。

12.(3分)下列计算结果等于x³的是()。

A。

x⁶÷x² B。

x⁴-x C。

x+x² D。

x²·x3.(3分)若一个角为65°,则它的补角的度数为()。

A。

25° B。

35° C。

115° D。

125°4.(3分)已知a/b=2/3(a≠0,b≠0),下列变形错误的是()。

A。

a/b=2/3 B。

2a=3b C。

3a=2b D。

a=2b/35.(3分)若分式(x-1)/(x+2)的值为1/2,则x的值是()。

A。

2或-2 B。

2 C。

-2 D。

36.(3分)甲、乙、丙、___四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s²如下表:姓名 | 平均数(环) | 方差s² |甲。

| 11.1.| 1.1.|乙。

| 11.1.| 1.2.|丙。

| 10.9.| 1.3.|丁。

| 10.9.| 1.4.|若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()。

A。

甲 B。

乙 C。

丙 D。

丁7.(3分)关于x的一元二次方程x²+4x+k=0有两个实数根,则k的取值范围是()。

A。

k≤-4 B。

k<-4 C。

k≤4 D。

k<48.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()。

A。

5 B。

6 C。

7 D。

89.(3分)如图,⊙A过点O(2,-1),C(-3,2),D (-1,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()。

2021年甘肃省张掖市中考数学答案

2021年甘肃省张掖市中考数学答案

2021年甘肃省张掖市中考数学答案2021年甘肃省张掖市中考数学试卷参考答案和试题分析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2021?临夏州)下列图形中,是中心对称图形的是()a、 B.c.d。

2.(3分)(2022年临夏州)在1、2、0这四个数中,最大的数是()a.2b.0c.d、一,3.(3分)(2021?临夏州)在数轴上表示不等式x1<0的解集,正确的是()a.b。

c.d。

4.(3分)(2021?临夏州)下列根式中是最简二次根式的是()a.b。

c.d。

【解答】解:a、=,故此选项错误;b、对最简二次根式,故此选项正确;c、=3,故此选项目错误;d、 =2,故此选项错误;因此:B5.(3分)(2021?临夏州)已知点p(0,m)在y轴的负半轴上,则点m(m,m+1)在()a.第一象限b.第二象限c.第三象限d.第四象限[解决方案]解决方案:从Y轴负半轴上的点P(0,m)获得m<0。

根据不等式的性质,M>0,M+1>1,那么点M(M,M+1)在第一象限,所以选择:a.6。

(3分)(2022年临夏州)如图所示,ab‖CD,de⊥ 总工程师,∠ 1=34°,则∠ DCE是()a.34°b.54°c.66°d.56°[解决方案]解决方案:≓ab‖CD,≓∠d=∠ 1 = 34 °, ≓判定元件⊥ 总工程师,≔Dec=90°,a.b.c.d.‡∠ DCE=180°90°34°=56°。

因此,d.7。

(3点)(2022年?临夏州)如果两个相似三角形的面积比为1:4,则其周长比为()a.1:16b。

1:4c。

1:6d。

1:2.[解决方案]解决方案:∵ 两个相似三角形的面积比为1:4,∵ 解决方案:通过点a作为ah⊥ 不列颠哥伦比亚省,∵ △ ABC是平等的∵ 两个相似三角形的相似比为1:2,∵ 两个相似的三角形腰直角三角形,∴∠b=∠c=45°,bh=ch=ah=bc=2角形的周长比是1:2,故选:d.8.(3分)(2022年?临夏地区)一家工厂现在平均每天生产的机器比原计划多50台,生产800台机器所需的时间与原计划生产600台机器所需的时间相同。

甘肃省张掖市2021版数学中考一模试卷D卷

甘肃省张掖市2021版数学中考一模试卷D卷

甘肃省张掖市2021版数学中考一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题:本大题有10个小题,毎小题3分,共30分. (共10题;共29分)1. (3分)五个有理数的积是负数,则五个数中负因数的个数是()。

A . 1B . 4C . 5D . 1或3或52. (3分)(2020·扬州模拟) 据介绍,2020年央视春晚直播期间,全球观众参与快手春晚红包互动累计次数达639亿次.“639亿”用科学记数法表示为()A . 6.39×1010B . 0.639×1011C . 639×108D . 6.39×10113. (3分)下列各式计算正确的是A .B .C .D .4. (3分)(2020·滨江模拟) 如图,测得一商店自动扶梯的长为,自动扶梯与地面所成的角为,则该自动扶梯到达的高度为()A .B .C .D .5. (3分)国家规定存款利息的纳税办法是:利息税=利息×5%;银行一年定期储蓄的年利率为2.25%,今年小刚取出一年到期的本金及利息时,交了4.5元的利息税,则小刚一年前存入银行的钱为()A . 2400元B . 1800元C . 4000元D . 4400元6. (3分)(2016·海南) 某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A . 74B . 44C . 42D . 407. (3分) (2019九上·正定期中) 如图,已知直线,,分别交直线于点A,B,C,交直线l,于点D,E,F,且,若,,,则DE的长为()A . 5B . 6C . 7D . 88. (2分)(2014·南通) 如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A . 160°B . 140°C . 60°D . 50°9. (3分)如图,△ABC的两边AB和AC的垂直平分线分别交BC于D、E,如果边BC长为8cm,则△ADE的周长为()A . 16cmB . 8cmC . 4cmD . 不能确定10. (3分)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t 值的变化范围是()A . 0<t<1B . 0<t<2C . 1<t<2D . ﹣1<t<1二、填空题:本大题有6个小题,每小题4分,共24分 (共6题;共22分)11. (2分)(2019·金堂模拟) 因式分解:xy2﹣9x=________.12. (4分) (2020八下·铁东期中) 如图,四边形ABCD是平行四边形,,顶点A在y轴上,边BC在x轴上,且点B的坐标为(-4,0),设点P是边BC上(不与点B、C重合)的一个动点,则当为等腰三角形时点P的坐标是________.13. (4分)(2019·呼和浩特模拟) 某中学组织的“红歌大赛”,60名选手的成绩统计如图,已知成续在94.5分以上的选手中男生和女生各占一半,学校从中随机确定2名参加市“红歌大赛”,则恰好选到一名男生和一名女生的概率为________.14. (4分)(2019·河池) 如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=________°.15. (4分)(2019·丹东) 如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为________.16. (4分) (2019九上·郑州期中) 如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A′,当△A′FC为以FC为直角边的直角三角形时,对应的MA的长为________.三、解答题:本大题有7个小题,共66分. (共7题;共66分)17. (6分) (2020九下·江阴期中)(1)计算:(2)化简:18. (8.0分) (2016八下·固始期末) 固始县教体局举办”我的中国梦“为主题的知识竞赛,甲、乙两所学校参赛人数相等.比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并依据统计数据绘制了如下不完整的统计图表.乙校成绩统计表分数(分)70分80分90分100分人数(人)718(1)在图①中,“80分”所在扇形的圆心角度数为________.(2)请你将图②补充完整.(3)通过计算,说明哪所学校的学生成绩较整齐.19. (8分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.20. (10.0分)(2020·玉林) 南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x千立方米,总需用时间y天,且完成首期工程限定时间不超过600天.(1)求y与x之间的函数关系式及自变量x的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?21. (10分) (2015九上·宁波月考) 已知线段AB,只用圆规找AB的中点P.作法:②以A为圆心,AB长为半径作圆;②以B为圆心,AB长为半径在圆上连续截取,记截点为B1 , B2 , B3 , B4 , B5;③以B3为圆心,BB3长为半径画弧;以B为圆心,AB长为半径画弧,与前弧交于点C;④以C为圆心,CB长为半径画弧交线段AB于点P.结论:点P就是所求作的线段AB的中点.(1)配合图形,理解作法,根据作图过程给予证明:点P是线段AB的中点.(2)已知⊙O,请只用圆规把圆周四等分.(保留作图痕迹,不要求写作法)22. (12分)如图,抛物线y=x2+nx﹣2与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是直角三角形?如果存在,请直接写出点P的坐标,如果不存在,请说明理由;(3)点M是线段BC上的一个动点,过点M作x轴的垂线,与抛物线相交于点N,当点M移动到什么位置时,四边形CDBN的面积最大?求出四边形CDBN的最大面积及此时M点的坐标.23. (12分)(2019·宝山模拟) 如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC , DC=3,AB=5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E ,射线EP于射线CB交于点F .(1)若AP ,求DE的长;(2)联结CP ,若CP=EP ,求AP的长;(3)线段CF上是否存在点G ,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.参考答案一、选择题:本大题有10个小题,毎小题3分,共30分. (共10题;共29分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题:本大题有6个小题,每小题4分,共24分 (共6题;共22分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题:本大题有7个小题,共66分. (共7题;共66分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。

张掖市2021年中考数学试卷D卷

张掖市2021年中考数学试卷D卷

张掖市2021年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·昌平期中) -3的相反数是()A . -3B .C .D . 32. (2分)右边几何体的左视图是()A .B .C .D .3. (2分) (2018七下·郸城竞赛) 已知a,b满足方程组则a+b的值为()A . ﹣4B . 4C . ﹣2D . 24. (2分) (2016九上·怀柔期末) 如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=2,DB=4,则的值为()A .B .C .D .5. (2分) (2019八下·淮安月考) 以下说法合理的是:()A . “打开电视,正在播放新闻节日”是必然事件B . “抛一枚硬币,正面朝上的概率为”表示每抛两次就有一次正面朝上C . “抛掷一枚均匀的骰子,出现点数6的概率是”表示随着抛掷次数的增加“出现点数6”这一事件发生的频率稳定在附近D . 为了解某品牌火腿的质量,选择全面检测6. (2分) (2017七下·乌海期末) 估计的值在哪两个整数之间()A . 8和9B . 6和7C . 7和8D . 77和797. (2分) (2019八下·宜昌期中) 如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以OB为半径画圆,交数轴于点C,则OC的长为()A . 3B .C .D .8. (2分)(2019·随州) 下列运算正确的是()A .B .C .D .9. (2分)(2017·官渡模拟) 如图,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y=(x>0)的图象上,连接OA交⊙A于点C,且点C为OA中点,则图中阴影部分的面积为()A . 4 ﹣B . 4C . 2D . 210. (2分) (2019九上·南浔月考) 已知函数y1=x2与函数y2= x+3的图象大致如图所示,若y1<y2 ,则自变量x的取值范围是()A . <x<2B . x>2或x<C . x<-2 或x>D . -2<x<二、填空题 (共6题;共25分)11. (1分)若|x|=4,则x=________.12. (1分) (2018八上·抚顺期末) 计算 ________.13. (1分)(2020·南通模拟) 从平行四边形、菱形、正五边形、圆、角中随机抽取一个图形,抽到既是中心对称图形又是轴对称图形的概率是________.14. (1分)已知正方形ABCD在直角坐标系中,A(2,2),B(4,2).那么C点的坐标为________.15. (1分)(2020·镇平模拟) 如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限.将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么点C的坐标为________.16. (20分)如图,点A的坐标为(4,0).点P是直线y= x+3在第一象限内的点,过P作PMx轴于点M,O是原点.(1)设点P的坐标为(x,y),试用它的纵坐标y表示△OPA的面积S;(2) S与y是怎样的函数关系?它的自变量y的取值范围是什么?(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?(4)在直线y= x+3上求一点Q,使△QOA是以OA为底的等腰三角形.三、简答题 (共10题;共96分)17. (5分)计算:|﹣2|++2﹣1﹣cos60°.18. (5分) (2019八上·杭州期末) 解不等式组19. (5分) (2019八上·恩施期中) 如图,B、F、C、E在一条直线上,AB=DE,BF=CE,AC=DF.求证:AC∥DF.20. (5分) (2019七上·姜堰期末) 先化简,再求值:-2x2•4x4+(x4)2÷x2-(-3x3)2 ,其中x3= .21. (6分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:朝上的点数123456出现的次数1096988①填空:此次实验中,“1点朝上”的频率是________;②小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么?(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.22. (20分)某地区一天的气温变化较大,如图表示该地区一天24小时的气温变化情况.(1)图中描述的两个变量中自变量是什么?因变量是什么?(2)一天中哪个时间气温最高、哪个时间最低,最高最低气温分别是多少?(3)在什么时间范围内气温上升?(4)该地区一天的温差是多少?23. (15分)(2020·下城模拟) 已知点A (1,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)上一点.(1)用a的代数式表示b;(2)若1≤a≤2,求﹣的范围;(3)在(2)的条件下,设当1≤x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n(用a的代数式表示).24. (15分)(2017·潮南模拟) 如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.25. (10分)(2017·泰安模拟) 如图一,∠ACB=90°,点D在AC上,DE⊥AB垂足为E,交BC的延长线于F,DE=EB,EG=EB,(1)求证:AG=DF;(2)过点G作GH⊥AD,垂足为H,与DE的延长线交于点M,如图二找出图中与AB相等的线段,并证明.26. (10分)(2018·徐汇模拟) 已知一个二次函数的图象经过A(0,﹣6)、B(4,﹣6)、C(6,0)三点.(1)求这个二次函数的解析式;(2)分别联结AC、BC,求tan∠ACB.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共25分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、16-3、16-4、三、简答题 (共10题;共96分)17-1、18-1、19-1、20-1、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。

张掖市2021版中考数学一模试卷D卷

张掖市2021版中考数学一模试卷D卷

张掖市2021版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共10分)1. (1分) (2019七上·桐梓期中) 据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为________.2. (1分)函数的自变量x的取值范围是________ .3. (1分)(2018·潘集模拟) 如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③图中共有四对全等三角形;④四边形ABCD是平行四边形;其中正确结论的是________.4. (1分)(2017·高唐模拟) 若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.5. (1分)(2018·宁夏模拟) 已知不等式3x-a≤0的解集为x≤5,则a的值为________.6. (1分)在⊙O中,弦AB=2cm,∠ACB=30°,则⊙O的直径为________cm.7. (1分) (2015八下·孟津期中) 若关于x的分式方程无解,则a=________.8. (1分)(2019·慈溪模拟) 如图,在平面直角坐标系中,已知直线y=kx(k>0)分别交反比例函数y= 和y= 在第一象限的图象于点A、B,过点B作BD⊥x轴于点D,交y= 的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________ .9. (1分) (2019七上·新昌月考) 对于有理数a,b定义运算※如下:a※b=(a+b)a-b,则(-3)※4=________。

10. (1分) (2019八下·乌兰浩特期末) 菱形的边长为5,一条对角线长为8,则菱形的面积为________.二、选择题 (共10题;共20分)11. (2分)(2020·椒江模拟) 下列运算正确的是()A .B .C .D .12. (2分)请你观察下面四个图形,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .13. (2分)一个圆柱的侧面展开图是一个面积为10的矩形,这个圆柱的母线长l与这个圆柱的底面半径r 之间的函数关系为()A . 正比例函数B . 反比例函数C . 一次函数D . 二次函数14. (2分)(2020·湖州) 已知某几何体的三视图如图所示,则该几何体可能是()A .B .C .D .15. (2分) (2017八下·钦州期末) 某地区某月前两周从周一至周五每天的最低气温是(单位:℃)x1 , x2 ,x3 , x4 , x5 ,和x1+1,x2+2,x3+3,x4+4,x5+5,若第一周这五天的平均气温为7℃,则第二周这五天的平均气温为()A . 7℃B . 8℃C . 9℃D . 10℃16. (2分)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N 从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是()A .B .C .D .17. (2分) (2019七上·椒江期末) 如果∣ ∣ () =0,那么的值是().A . -2018B . 2018C . -1D . 118. (2分)(2018·辽阳) 如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC的距离为()A . 5B .C . 4D .19. (2分)雅安地震后,灾区急需帐篷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘肃省张掖市2021版中考数学试卷D卷
姓名:________ 班级:________ 成绩:________
一、填空题 (共6题;共6分)
1. (1分)若|x|=4,则x=________.
2. (1分) (2019九上·香坊期中) 反比例函数y=的图象经过点(1,﹣2),则k的值是________.
3. (1分) (2019九下·杭州期中) 2019年3月7日央视网消息:今年的政府工作报告指出,全年将减轻企业税收和社保缴费负担近2万亿元。

这个2万亿元的原数是2000000000000元,用科学计数法表示这个数是________元。

4. (1分) (2020九上·深圳开学考) 因式分解:2m2﹣12m+18=________.
5. (1分) (2017九上·姜堰开学考) 如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为________.
6. (1分)如图,在Rt△ABC中,∠ACB=90°,AB=12cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从C出发,在CB边上以每秒 cm的速度向B匀速运动,设运动时间为t秒(0<t<6),连接MN,若△BMN是等腰三角形,则t的值为________.
二、选择题 (共8题;共16分)
7. (2分) (2019八下·吴兴期末) 若式子有意义,则x的取值范围是()
A . x>0
B . x>1
C . x≥1
D . x≤1
8. (2分)(2020·宜昌) 诗句“横看成岭侧成峰,远近高低各不同”,意思是说要认清事物的本质,就必须从不同角度去观察.下图是对某物体从不同角度观察的记录情况,对该物体判断最接近本质的是().
A . 是圆柱形物体和球形物体的组合体,里面有两个垂直的空心管
B . 是圆柱形物体和球形物体的组合体,里面有两个平行的空心管
C . 是圆柱形物体,里面有两个垂直的空心管
D . 是圆柱形物体,里面有两个平行的空心管
9. (2分)正八边形的每个内角为()
A . 120º
B . 135º
C . 140º
D . 144º
10. (2分) (2020七上·合肥月考) 已知整数,,,,…满足下列条件:,,
,,…,依此类推,则的值为()
A . 0
B . -1
C . 1009
D . -1009
11. (2分) (2019八下·衢州期末) 中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()
A .
B .
C .
D .
12. (2分)将一张矩形纸片ABCD(如图)那样折起,使顶点C落在C'处,测量得AB=4,DE=8.则sin∠C'ED 为()
A . 2
B .
C .
D .
13. (2分)某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形统计图与扇形统计图:依据图中信息,得出下列结论:
(1)接受这次调查的家长人数为200人;
(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°;
(3)表示“无所谓”的家长人数为40人;
(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.
其中正确的结论个数为()
A . 4
B . 3
C . 2
D . 1
14. (2分) (2019八上·临洮期末) 下列式子正确的是()
A .
B .
C .
D .
三、解答题 (共9题;共87分)
15. (10分)解方程与计算
(1)利用平方根解方程:2(x﹣1)2﹣6=0
(2)计算:• ﹣ +() 2 .
16. (5分) (2017七下·长春期末) 如图,AC=AE,∠C=∠E,∠1=∠2.求证:△ABC≌△ADE.
17. (7分) (2020八下·横县期末) 某市射击队里,甲,乙两名队员射击训练成绩如下图所示:
根据图中信息,整理分析数据如表所示:
平均成绩中位数众数
甲77
乙77.5
(1)表格中 =________; =________ .
(2)请从平均数,中位数和众数的角度,比较甲,乙两名队员的射击训练成绩.
18. (5分)已知某项工程,乙工程队单独完成所需天数是甲工程队单独完成所需天数的两倍,若甲工程队单独做10天后,再由乙工程队单独做15天,恰好完成该工程的,共需施工费用85万元,甲工程队每天的施工费用比乙工程队每天的施工费用多1万元.
(1)单独完成此项工程,甲、乙两工程对各需要多少天?
(2)甲、乙两工程队每天的施工费各为多少万元?
(3)若要完成全部工程的施工费用不超过116万元,且乙工程队的施工天数大于10天,求甲工程队施工天数
的取值范围?
19. (10分)(2019·锦州) 对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.
(1)甲组抽到A小区的概率是多少
(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.
20. (15分)(2020·大庆) 如图,抛物线与轴交于,两点(在的右侧),且经过点和点.
(1)求抛物线的函数表达式;
(2)连接,经过点的直线与线段交于点,与抛物线交于另一点.连接,,,的面积与的面积之比为1:7.点为直线上方抛物线上的一个动点,设点的横坐标为.当为何值时,的面积最大?并求出最大值;
(3)在抛物线上,当时,的取值范围是,求的取值范围.(直接写出结果即可)
21. (15分)夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:
(1)求甲、乙两种空调每台的进价;
(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式;
(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的
最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.
22. (10分)(2018·南充) 如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.
(1)求证:PC是⊙O的切线.
(2)求tan∠CAB的值.
23. (10分) (2018八上·仁寿期中) 两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,在同一条直线上,连结.
(1) .请找出图②中的全等三角形,并给予证明。

(说明:结论中不得含有未标的字母);
(2)试证明:.
参考答案一、填空题 (共6题;共6分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、选择题 (共8题;共16分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题 (共9题;共87分)
15-1、
15-2、
16-1、
17-1、
17-2、
18-1、
19-1、19-2、
20-1、
20-3、
21-1、21-2、
21-3、22-1、
22-2、
23-1、23-2、。

相关文档
最新文档