万有引力与航天公式总结

合集下载

《万有引力与航天》知识点总结

《万有引力与航天》知识点总结

万有引力与航天知识点总结一、人类认识天体运动的历史1、“地心说”的内容及代表人物: 托勒密 (欧多克斯、亚里士多德)2、“日心说”的内容及代表人物: 哥白尼 (布鲁诺被烧死、伽利略) 二、开普勒行星运动定律的内容开普勒第二定律:v v >远近开普勒第三定律:K —与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系: 333222===......a a a T T T 水火地地水火 三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。

KT R =23 ① r T m F 224π= ② 22π4=r m K F 2m F r ∝ F F '= ③ 2r M F ∝' 2r Mm F ∝ 2r MmG F =2、表达式:221r m m GF = 3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r 的二次方成反比。

4.引力常量:G=6.67×10-11N/m 2/kg 2,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。

5、适用条件:①适用于两个质点间的万有引力大小的计算。

②对于质量分布均匀的球体,公式中的r 就是它们球心之间的距离。

③一个均匀球体与球外一个质点的万有引力也适用,其中r 为球心到质点间的距离。

④两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r 为两物体质心间的距离。

6、推导:2224mM G m R R T π= ⇒ 3224R GMT π= 四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。

2、在匀质球体内部距离球心r 处,质点受到的万有引力就等于半径为r 的球体的引力。

五、万有引力的成就1、测量中心天体的质量法一:在天体表面找一个物体m ,不计天体自转,万有引力=重力(=G F F 引)2Mm G mg R=⇒M = 黄金代换式中心天体的密度:233443gR M gG V GR R ρππ===法二:在中心天体周围找一颗卫星绕中心天体做圆周运动,万有引力提供向心力(=n F F 引)2Mm G r= 22232223224v v r m M r Gr mr M G r mr M T GT ωωππ⇒=⇒=⎛⎫⇒=⎪⎝⎭以 2324r M GT π=为例求中心天体的密度 2332233433r M r GT V GT R R ππρπ=== 若为近地卫星,则r=R ,则23GT πρ= T 为近地卫星的公转周期六、双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。

(完整版)万有引力与航天公式总结

(完整版)万有引力与航天公式总结

万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星 ,它们相互之间的万有引力提供各自转动的向心力。

3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。

第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴 R 的三次方跟公转周期 T 的二次方的比值都相等。

表达式为:R3 = K(K = GM ) k 只与中心天体质量有关的24π2T定值与行星无关2.牛顿万有引力定律1687 年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的 .两个物体间引力的方向在它们的连线上 ,引力的大小跟它们的质量的乘积成正比 ,跟它们之间的距离的二次方成反比 .Mm⑵.数学表达式 : F万= G r2⑶.适用条件 :a.适用于两个质点或者两个均匀球体之间的相互作用。

(两物体为均匀球体时,r 为两球心间的距离)b. 当r 0 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当r 0 时,引力F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义 .d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关 .与所在空间的性质无关 ,与周期及有无其它物体无关 .(5)引力常数G:①大小: G = 6.67 x 10一11N . m 2 / kg 2,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为 1kg 的物体,相距为 1 米时相互作用力为: 6.67 x10一11N四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F万= F 向 即: F 万 = G = ma n = m r v 2= mr= mr 负22. 天体对其表面物体的万有引力近似等于重力:Mm G = m gR 2即 GM = gR 2 (又叫黄金代换式)注意:①地面物体的重力加速度: g =R≈9.8m/s 2②高空物体的重力加速度: g '= (R)2〈 9.8m/s 2g'R 2③关系: — =g (R + h)2五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。

万有引力与航天公式总结归纳

万有引力与航天公式总结归纳

万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。

3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。

第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公转周期T 的二次方的比值都相等。

表达式为:)4(223πGM K K T R ==k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.⑵.数学表达式:r F Mm G 2=万⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。

(两物体为均匀球体时,r 为两球心间的距离)b.当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算c.认为当0→r 时,引力∞→F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :①大小:kg m N G 2211/67.610⋅⨯=-,由英国科学家卡文迪许利用扭秤测出 ②意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯四.两条思路:即解决天体运动的两种方法1.万有引力提供向心力:F F向万=即:222224n Mm v F G ma m mr mr r r T πω=====万 2.天体对其表面物体的万有引力近似等于重力: 即2gR GM =(又叫黄金代换式)注意:①地面物体的重力加速度:R GM g 2=≈9.8m/s 2 ②高空物体的重力加速度:〈+=2')(h R GM g 9.8m/s 2 ③关系:22')(h R g R g +=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。

物理万有引力与航天重点知识归纳

物理万有引力与航天重点知识归纳

万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。

其中k 值与太阳有关,与行星无关。

中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。

2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。

(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。

(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。

(4) 两个物体间的万有引力也遵循牛顿第三定律。

3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。

①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。

由以上分析可知,重力和重力加速度都随纬度的增加而增大。

(2) 物体受到的重力随地面高度的变化而变化。

在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。

考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。

万有引力与航天重点知识、公式总结

万有引力与航天重点知识、公式总结

万有引力与航天重点知识、公式总结万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。

3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。

第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公转周期T 的二次方的比值都相等。

表达式为:)4(223πGM K K TR == k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式:rF MmG 2=万⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。

(两物体为均匀球体时,r 为两球心间的距离)b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当0→r 时,引力∞→F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :①大小:kg m N G 2211/67.610⋅⨯=-,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯ 四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F F 向万= 即:222224n Mm v F G ma m mr mr r r T πω=====万2.天体对其表面物体的万有引力近似等于重力:g m RMm G =2即 2gR GM =(又叫黄金代换式)注意:9.8m/s 2②高空物体的重力加速度:〈+=2')(h R GMg 9.8m/s2 ③关系:22')(h R gRg+=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。

第4讲 万有引力定律与航天

第4讲  万有引力定律与航天

6.4×106
m/s
=7.9×103 m/s。 方法二:由 mg=mvR21得
v1= gR= 9.8×6.4×106 m/s=7.9× 103 m/s。 第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速
度,此时它的运行周期最短,Tmin=2π Rg=5 075 s≈85 min。
2.宇宙速度与运动轨迹的关系 (1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动。 (2)7.9 km/s<v 发<11.2 km/s,卫星绕地球运动的轨迹为椭圆。 (3)11.2 km/s≤ v 发<16.7 km/s,卫星绕太阳做椭圆运动。 (4)v 发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。
二、万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线
上,引力的大小与物体的质量 m1 和 m2 的 乘积成正比、与它们之间 距离 r 的 二次方 成反比。
2.表达式:F=Gmr1m2 2,G 为引力常量,其值为 G=6.67×10-11N·m2/kg2。
3.适用条件:(1)公式适用于 质点 间的相互作用。当两个物体
解析:近地轨道卫星的轨道半径稍大于地球半径,由万有引力提供向心力,可
得 GMr2m=mvr2,解得线速度 v=
GrM,由于地球静止轨道卫星的轨道半径大
于近地轨道卫星的轨道半径,所以地球静止轨道卫星的线速度较小,选项 B 错
误;由万有引力提供向心力,可得 GMr2m=mr2Tπ2,解得周期 T=2π GrM3 ,所
答案:D
对点清
1. 四个分析 “四个分析”是指分析人造卫星的加速度、线速度、角速度和周期与轨道半
径的关系。
GMr2m=mmmωvar→22→r→av=ω=G=rM2

万有引力与航天公式总结

万有引力与航天公式总结

万有引力与航天公式总结Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。

3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

二.两种学说1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。

第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R的三次方跟公转周期T 的二次方的比值都相等。

表达式为:)4(223πGM K K TR== k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.⑵.数学表达式:rF MmG 2=万⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。

(两物体为均匀球体时,r 为两球心间的距离)b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当0→r 时,引力∞→F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :①大小:kg m N G 2211/67.610⋅⨯=-,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:FF 向万= 即:222224n Mm v F G ma m mr mr r r Tπω=====万 2.天体对其表面物体的万有引力近似等于重力:即 2gR GM =(又叫黄金代换式)注意:②高空物体的重力加速度:〈+=2')(h R GM g 9.8m/s 2③关系:22')(h R g Rg+=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。

必修二第六章《万有引力与航天》知识点归纳与重点题型总结

必修二第六章《万有引力与航天》知识点归纳与重点题型总结

高中物理必修二第六章万有引力与航天知识点概括与要点题型总结一、行星的运动1、开普勒行星运动三大定律①第必定律(轨道定律):全部行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

②第二定律(面积定律):对随意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

推论:近期点速度比较快,远日点速度比较慢。

③第三定律(周期定律):全部行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

a3即:T 2k此中k是只与中心天体的质量相关,与做圆周运动的天体的质量没关。

推行:对环绕同一中心天体运动的行星或卫星,上式均成立。

K 取决于中心天体的质量例 . 有两个人造地球卫星,它们绕地球运行的轨道半径之比是1: 2,则它们绕地球运行的周期之比为。

二、万有引力定律1、万有引力定律的成立F G Mm①太阳与行星间引力公式r 2②月—地查验③卡文迪许的扭秤实验——测定引力常量 GG 6.67 10 11N2/ kg22、万有引力定律m①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量m1和 m2的乘积成正比,与它们之间的距离 r 的二次方成反比。

即:F G m1m2r 2②合用条件(Ⅰ)可当作质点的两物体间,r 为两个物体质心间的距离。

(Ⅱ)质量散布均匀的两球体间,r 为两个球体球心间的距离。

③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般状况下,可以为重力和万有引力相等。

忽视地球自转可得:mg G MmR2例 . 设地球的质量为 M ,赤道半径 R ,自转周期 T ,则地球赤道上质量为 m 的物体所受重力的大小为(式中 G 为万有引力恒量)(2)计算重力加快度G Mm地球表面邻近( h 《R ) 方法:万有引力≈重力mgMmR 2地球上空距离地心 r=R+h 处 mg ' G2 方法:( R h)在质量为 M ’,半径为 R ’的随意天体表面的重力加快度g ' ' 方法:mg''G M ' ' mR '' 2(3)计算天体的质量和密度Mm利用自己表面的重力加快度:GR 2mgMm v 2 24 2利用环绕天体的公转:G r 2m m rm 2 r 等等rT(注:联合 M4 R 3 获得中心天体的密度)3例 . 宇航员站在一星球表面上的某高处,以初速度 V 0 沿水平方向抛出一个小球,经过时间t ,球落到星球表面,小球落地时的速度大小为 V. 已知该星球的半径为 R ,引力常量为G ,求该星球的质量 M 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力与航天重点规律方法总结一.三种模型1匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点, 围绕中心天体(视为静止)做匀速圆周运动 2 •双星模型:将两颗彼此距离较近的恒星称为双星 ,它们相互之间的万有引力提供各自转动的向心力。

3.天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

二•两种学说 1. 地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 :所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 :对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。

:所有行星绕太阳运动的椭圆轨道的半长轴 R 的三次方跟公 转周期T 的二次方的比值都相等。

3表达式为:R 二K (K _ GM 2) k 只与中心天体质量有关的 T 2 47: 2 定值与行星无关2. 牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比 •⑵.数学表达式:F 万二G 啤r⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。

(两物体为均匀球体时,r 为两球心间的距离) b.当r > 0时,物体不可以处理为质点,不能直接用万有引力公式计算c.认为当r “ 0时,引力F r 的说法是错误的⑷.对定律的理解a. 普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b. 相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。

c. 宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d. 特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :1.开普勒定律:第一定律(又叫椭圆定律) 第二定律(又叫面积定律) 第三定律(又叫周期定律)_11 2 210一N m / kg①大小:G =6.67②意义:表示两个质量均为1kg的物体,相距为四•两条思路:即解决天体运动的两种方法,由英国科学家卡文迪许利用扭秤测出111米时相互作用力为:6.67 10 N1•万有引力提供向心力:F 万=F向 即:二=ma nr2 2v 42=mmr ―r 二 m 「.rT2 •天体对其表面物体的万有引力近似等于重力:MmG ——亍=m gR即 GM = gR 2 (又叫黄金代换式)注意:①地面物体的重力加速度:GM2 R2〜9.8m/s②高空物体的重力加速度:齐 9^/s 22③关系:g = Rg (R + h )五•万有引力定律的应用1•计算天体运动的线速度、角速度、周期、向心加速度。

GM2r2.计算中心天体的质量:方法一:根据转动天体运动周期2 34 ■:T 和转动半径 r 计算:M2GT方法二:根据中心天体半径R 和其表面的重力加速度 g 计算:2M 二9R (适合于没有行星、卫星转动的中心天体)G(适合于有行星、卫星转动的中心天体注意:转动天体的质量是求不出来的。

只能求中心天体的质量。

3. 计算中心天体的密度:方法一:根据转动天体运动周期T 、转动半径r 和中心天体半径 R 计算:3c 3兀 r 一r —3 (适合于有行星、卫星转动的中心天体)G T R方法二:根据中心天体半径 R 和其表面的重力加速度 g 计算:c 3g(适合于没有行星、卫星转动的天体)a.线速度:c 倜期:d.向心加速度:a向二b.角速度:⑷=翌(6)(5) ①由公式:线速度:v =向心加速度:GM角速度:尬=GM 周期:—2 二、「 r 3.GMa 向二分析可知:在同一中心天体做匀速圆周运动的所有卫星的V 、 ②离地面越高即 变轨:卫星的变轨实质是通过短时间内启动加速或减速火箭以改变卫星的速度,而使 万有引力与所需向心力不再相等。

当 F 引F向,卫星将做近心运动,轨道半径将减小;当 F 引F向时,卫星将做离心运动,轨道半径将增大。

对接:交会对接指两个航天器(宇宙飞船、航天飞机等)在太空轨道会合并连接成一 个整体•它是实现太空装配、回收、补给、维修、航天员交换等过程的先决条 件.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对 接•所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,「、T 、a 各量都只与轨道半径 r 有关。

r 越大,则卫星的 v 、、a 、越小, T 越大。

5.预测未知天体:6 •研究天体运动,发射人造卫星(1)分类:主要有:侦察卫星、通信卫星、导航卫星、气象卫星、地球资源卫星、勘 测科学研究卫星、预警卫星、测地卫星等种类。

(2) 轨道:由于是万有引力提供向心力,所以所有卫星都是围绕地心在转。

轨道有三种: a. 赤道平面内(如同步卫星)叫赤道轨道。

b. 与赤道平面垂直,通过地球两极,叫极地轨道。

c. 可以和赤道平面成任一角度,叫一般轨道。

注意:没有跟某一经度或某一纬度重合的轨道(除赤道平面) (3) 发射:由于卫星运动的分析是针对地心这个参考系的,故火箭发射时的初速度不等于零(自转速度),要充分利用地球的自转的惯性,就必须自西向东发射。

这 样可以更多地节省燃料和推力。

发射可分为三个阶段: ① 发射长空阶段 ② 漂移进入轨道阶段③ 在预定轨道上绕地球运行阶段 运行:稳定运行时,由万有引力提供向心力。

4.计算第一宇宙速度(环绕速度)简单说就是卫星或行星贴近中心天体表面的飞行速度, 方法一。

根据中心天体质量2=m v—R这时卫星或行星高度忽略r ~ RM 和半径R 计算: Mm由G 2R方法二。

根据中心天体半径GMR 和表面重力加速度计算:v = gR(4)而对接则为两个航天器相会后在结构上连成一个整体.同轨道上对接应先让后者减速使其在低轨道运行,然后再加速速度增大去跟高轨道上的对接。

不能在同轨道上加速对接,跟地面上同一直线上的运动不同。

(7)超重和失重:①超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与升降机”中物体超重相同•②失重”是卫星进入轨道后正常运转时,卫星上的物体完全失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用•如天平、水银气压计、单摆、密度计等。

(8)返回:当卫星返回时,只要推进器向前喷气即可使人造卫星减速,卫星即可从圆形轨道落入椭圆轨道向地球靠近,当卫星运行到椭圆轨道的近地点时推进器再次火箭发动机点火减速,即可从椭圆轨道运行到较低的圆形轨道。

(9)两种特殊的卫星i .近地卫星:卫星轨道半径约为地球半径,受到的万有引力等于重力.速度为第一宇宙速度ii.同步卫星(又叫通信卫星):(四定)①定周期:等于地球自转周期T=24小时②定轨道:在赤道的正上方即赤道平面③定高度:h=3.6 X07(m)④定线速度:v=3.1km/s注意:三颗同步卫星就能覆盖地球,实现全球通讯。

六•三个宇宙速度:①第一宇宙速度:v i =7.9km/s,它是地球卫星的最大环绕速度,也是卫星的最小发射速度②第二宇宙速度(脱离速度):v 2=11.2km/s ,使物体挣脱地球引力束缚的最小发射速度③第三宇宙速度(逃逸速度):v 3=16.7km/s ,使物体挣脱太阳引力束缚的最小发射速度七.双星、三星、多星1 •双星:(1)定义:将两颗彼此距离较近的恒星称为双星(2)向心力来源:在它们之间的万有引力作用下,绕两球连线上某点做匀速圆周运动(3).特点:①周期、角速度相同②表达式:mg2 2 2 ・G 2m p 冷一m2r2; L - 口③质量与半径成反比:m亠「2 .三星及多星:分析方法同双星问题一样,关键是分析它们万有引力的合力提供向心力。

八•容易混淆的几个问题:1.万有引力与重力2.随地球自转的向心加速度和环绕运行的向心加速度3.运行速度和发射速度4.两个半径:天体半径和卫星轨道半径5•两种周期:自转周期和公转周期=6•丙类运行:稳定运行和变轨运行7.同步卫星和一般卫星8.赤道上物体和近地卫星九.月球的特点:1.离地距离一定,轨道半径r=38万千米2 •周期约为27天3.速度约为1 km/s。

相关文档
最新文档