Ansys求解剪切锁定超弹性梁问题
ANSYS 入门教程 - 结构的弹性稳定性分析

ANSYS 入门教程- 结构的弹性稳定性分析2011-01-09 15:06:42| 分类:默认分类| 标签:|字号大中小订阅第7 章结构弹性稳定分析7.1 特征值屈曲分析的步骤7.2 构件的特征值屈曲分析7.3 结构的特征值屈曲分析一、结构失稳或结构屈曲:当结构所受载荷达到某一值时,若增加一微小的增量,则结构的平衡位形将发生很大的改变,这种现象叫做结构失稳或结构屈曲。
结构稳定问题一般分为两类:★第一类失稳:又称平衡分岔失稳、分枝点失稳、特征值屈曲分析。
结构失稳时相应的载荷可称为屈曲载荷、临界载荷、压屈载荷或平衡分枝载荷。
★第二类失稳:结构失稳时,平衡状态不发生质变,也称极值点失稳。
结构失稳时相应的载荷称为极限载荷或压溃载荷。
●跳跃失稳:当载荷达到某值时,结构平衡状态发生一明显的跳跃,突然过渡到非邻近的另一具有较大位移的平衡状态。
可归入第二类失稳。
★结构弹性稳定分析= 第一类稳定问题ANSYS 特征值屈曲分析(Buckling Analysis)。
★第二类稳定问题ANSYS 结构静力非线性分析,无论前屈曲平衡状态或后屈曲平衡状态均可一次求得,即“全过程分析”。
这里介绍ANSYS 特征值屈曲分析的相关技术。
在本章中如无特殊说明,单独使用的“屈曲分析”均指“特征值屈曲分析”。
7.1 特征值屈曲分析的步骤①创建模型②获得静力解③获得特征值屈曲解④查看结果一、创建模型注意三点:⑴仅考虑线性行为。
若定义了非线性单元将按线性单元处理。
刚度计算基于初始状态(静力分析后的刚度),并在后续计算中保持不变。
⑵必须定义材料的弹性模量或某种形式的刚度。
非线性性质即便定义了也将被忽略。
⑶单元网格密度对屈曲载荷系数影响很大。
例如采用结构自然节点划分时(一个构件仅划分一个单元)可能产生100% 的误差甚至出现错误结果,尤其对高阶屈曲模态的误差可能更大,其原因与形成单元应力刚度矩阵有关。
经验表明,仅关注第1 阶屈曲模态及其屈曲载荷系数时,每个自然杆应不少于 3 个单元。
ANSYS超弹性、粘超弹性模拟

2 3
单轴拉伸与压缩实验
11 2 12
1 W 1 W 2 I1 1 I 2
1 2 12 -
正交双轴拉伸实验
1 W 2 W 2 22 12 I1 I 2 1 W 2 W 1 22 12 I1 I 2
13
© 2011 ANSYS, Inc. September 2, 2013 Release 14.0
粘弹性模型 静态
其中剪切松弛模量的Prony级数表达式为
n t G t G0 i exp i 1 i
其中, G0——t = 0时的松弛模量 G∞——t =∞时的松弛模量
September 2, 2013
Release 14.0
粘弹性模型 动态 滞后
• 滞后:试样在交变应力作用下,应变变化落后于应力变化的 现象
(t ) 0 sin wt
σ(t) ε(t)
0 δ σ ε (粘弹性) π
(t ) 0 sin(wt )
3π ω t t
2π
材料的变形过程是可逆的,无其它不可逆伴随,变形过程中 的熵变为零,此种材料成为超弹性材料。
2
W W 1 B2 B pI I1 I 2
式中I──单位变形张量 p──球张量 Ii──为变形张量B的不变量 W──应变能函数 基于假设:各向同性、不可压缩
W W I1 , I 2 , I3
9
© 2011 ANSYS, Inc.
September 2, 2013
Release 14.0
粘弹性模型
钢筋混凝土梁的弹塑性分析ansys命令流

!(1)工作环境设置/FILENAME,RC-BEAM !指定工作文件名/TITLE,ALAL YSIS OF A RC-BEAM !指定图形标题!(2)进行前处理器/prep7!(3)定义单元类型ET,1,LINK8 !定义钢筋单元ET,2,SOLID65 !定义混凝土单元ET,3,MESH200 !用于拉伸成体单元KEYOPT,3,1,6!(4)定义钢筋截面积r,1,28.3r,2,50.3r,3,314.1!(5)为solid65单元定义一个实参数组r,4,!(6)定义混凝土材料MP,EX,2,2.55E10MP,PRXY,2,0.3TB,CONC,2,1,9, !定义混凝土的破坏参数TBDA TA,,0.3,0.55,1.55E6,-1,,TBDA TA,,,,0.6!(7)定义钢筋材料模型及参数mp,ex,2,2e5 !纵向受拉钢筋材料mp,prxy,2,0.3tb,bkin,2,1,2,1tbdata,,350mp,ex,3,2e5 !横向箍筋,架立钢筋材料mp,prxy,3,0.25tb,bkin,3,1,2,1tbdata,,200!(8) 创建以及复制节点/pnum,node,1/pnum,elem,1n,1n,9,200fill,1,9ngen,11,9,1,9,1,,30ngen,11,99,1,99,1,,,-150/view,1,1,1,1!(9)建立箍筋单元type,1real,1mat,3!水平箍筋*do,i,11,16,1e,i,i+1e,i+(83-11),i+(83-11)+1*enddo!坚直箍筋*do,i,11,74,9e,i,i+9e,i+6,i+6+9*enddo!产生整个模型的箍筋egen,11,99,all!(10)建立架立筋以及纵筋单元!创建上部的架立钢筋单元*do,i,83,node(25,270,-1500+150),99 e,i,i+99e,i+6,i+6+99*enddo!纵向受拉钢筋单元的属性type,1real,3mat,2!创建纵筋单元*do,i,11,node(25,30,-1500+150),99 e,i,i+99e,i+3,i+3+99e,i+6,i+6+99*enddo/view,1,1,1,1/pnum,elem,0/pnum,node,0/eshape,1eplot!(11)建立混凝土剖面并划分网格k,1K,2,200,k,3,200,300k,4,,300a,1,2,3,4lsel,s,loc,y,0lsel,a,loc,y,300lesize,all,,,8lsel,alllsel,s,loc,x,0lsel,a,loc,x,200lesize,all,,,10type,3amesh,all!(12)拉伸形成混凝土单元type,2real,3mat,1extopt,esize,20extopt,aclear,1vext,all,,,,,-1500/pnum,mat,1/pnum,node,0/pnum,elem,0eplotallsel!(13)合并压缩节点编号nummrg,allnumcmp,alleplot!(14)施加支座约束nsel,s,loc,y,0nsel,r,loc,z,-1500+75d,all,uyd,all,ux!(15)施加对称面约束asel,s,loc,z,0da,all,symm!(16)施加载荷nsel,allnsel,s,loc,y,300nsel,r,loc,z,-450d,all,uy,-30allsel!(17)退出前处理器fini!(18) 进入求解器/solu!(19)求解器选项设置nlgeom,onnsubst,200outres,all,allneqit,50pred,oncnvtol,f,,0.05,2,0.5allsel!(20)求解并退出求解器solvefini!(21)进入通用处理器并读入最后一个子步的结果/post1set,last!(22)后处理操作plnsol,u,y,0,1/device,vector,1plcrack,0,0!(23)退出通用后处理器finish。
梁ansys分析实例讲解

在ANSYS显示窗口选择编号为1的关键点,定义 位移(自由度)
选择Main Menu→Solution→Define Loads→Apply→Structural→Force/Moment→On KP
在ANSYS显示窗口选择编号为2的关键点,定义 载荷FY=-8000 FX=5000
Solution→Current LS(Load Step)
Preprocessor→Meshing→Mesh→Lines 拾取L1, 划分网格结束!
File→Save as (存盘)。
5.加载求解:
选择Main Menu→Solution→Analysis Type→New Analysis,在New Analysis中 选择Static(静态)
→Add→Real Constants for BEAM 3 Area(截面积):0.006655 TZZ(惯性力矩):0.00019 HEIGHT(高度):0.32
3.定义材料性能参数
Preprocessor→Material Props(材料性 能)→Material Model(材料模型)
Active CS(coordinate system)
输入关键点(KP)序号(number)及坐 标(X,Y,Z)
1(0,0,0)
2(1,0,0)
PlotCtrls(显示控制)→Numbering(编号 显示) 选中KP和LINE,使其状态Off变为 On。
Preprocessor→Modeling→Creat→Lines→ lines→In Active CS
挠度与荷载大小、构件截面尺寸以及构件 的材料物理性能有关。
求解步骤
1.定义工作文件名和工作标题(英文 only) File→Change Jobname File→Change Title
ANSYS简单框架问题及梁板

01简单框架问题及梁板复合计算(ANSYS)ANSYS 9.0版本启动的时候首先出现如下图所示的对话框,其中第一页提示用户选择需要的ANSYS功能模块,用户需要根据其购买的ANSYS模块和计算的问题内容来选择。
选择功能模块选择启动对话框的第二个页面,这里ANSYS提示用户给出操作所在的文件夹以及相应的任务名称。
而后ANSYS的计算过程及结果都存放在该文件夹中,一般都以任务命作为文件名,以扩展名表示文件的类型。
例如,在本次分析中,任务名为Case01,那么ANSYS的计算结果,一般会以Case01.rst文件的形式存放在D:\AnsysWork\Book\case01\文件夹中文件夹及任务名称以上设置好后点击“Run”按钮,就进入ANSYS的主操作界面,ANSYS操作界面主要包括以下4部分:(1)ANSYS窗口顶部菜单,提供一些常用功能开关选项;(2)ANSYS窗口顶部工具栏,提供一些常用功能件,比如打开文件、保存文件等;(3)在工具栏右侧为命令输入栏,ANSYS的所有操作都可以通过输入一定格式的命令来完成,ANSYS称其这套命令体系为APDL语言;(4)ANSYS窗口中央左侧为ANSYS的主菜单,ANSYS图形界面分析(GUI)的大部分功能都由这部分菜单完成。
主菜单中最常用的几个模块为前处理模块(Preprocessor),求解模块(Solution),通用后处理模块(General Postproc)和时程后处理模块(TimeHist Postproc);(5)ANSYS窗口中央右侧为ANSYS的显示窗口,GUI界面的各种操作和结果都在该窗口显示顶部菜单顶部工具栏命令输入栏主菜单显示窗口首先要选择分析所用的单元类型。
在本次分析中,我们将用到在土木工程中最常用的两种单元:三维梁单元Beam 188 和三维壳单元 Shell 63。
一般结构中梁柱可以用梁单元模拟,而剪力墙和楼板则可以用壳单元模拟。
ANSYS13.0 Workbench 结构非线性培训 超弹性

3. O.H. Yeoh, “Phenomenological Theory of Rubber Elasticity,” Comprehensive Polymer Science, ed. G. Allen, Elsevier, Oxford, 1996, Chapter 12.
– di 反比于体积模量. 默认地, 如曲线拟合(下一部分)中没引入体积试验数据, 则材料
假定为完全不可压缩的 (di=0).
N
iai
o
i 1
2
o
2 d1
... 体积容差
• 体积协调约束中的容差(vtol)可通过 Command Objects放松.
为接受后续的solc,,,vtol手动激活 Mixed u-P 是必要的
参考文献
一些关于橡胶机理的参考文献:
1. R.S. Rivlin, “Large Elastic Deformations,” Rheology: Theory & Applications - Vol. 1, ed. F.R. Eirich, Academic Press, Inc., New York, 1956, Chapter 10.
• 高弹体是一种聚合物, 具有如下性能
– 高弹体包括天然和合成橡胶, 它是非晶态的, 由 长的分子链组成
• 分子链高度扭转、卷曲, 且在未变形状态下取向任 意
• 在拉伸载荷作用下, 这些分子链部分变得平直、不 扭曲
• 去除载荷后, 这些分子链恢复最初的形态
ANSYS 梁的分析技巧

第一,定义单元与材料常数。
第二,如果是要求自己定义的特殊形状,则要先用平面单元划一个截面网格,然后再用SECWRITE,NANME,SECT,,1.命令保存截面网格。
然后把界面网格以及实体信息删除。
第三,读入自定义的截面信息。
或者读入软件里定义的截面信息并划分网格。
第四,建立梁的轴向线,然后对其进行线的网格划分。
这样在在PLOTCONTRAL 里可以看到梁的实体网格。
第五,约束和载荷施加。
第六,计算
第七,后处理。
绘剪力和弯矩图。
先在General postproc/element table/define talble/by sequence num/smisc/。
其中的I、J等设置可看梁单元的参数表。
list result/element table data可列表结果。
Contour plot/line elem res可在云图上显示剪力图和弯矩图。
弹性力学ansys求解实例详解

ANSYS 上机实验报告一、题目描述如图1所示,一简支梁横截面是矩形,其面积202.0m A =,对弯曲中性轴的惯性矩451067.6m I zz -⨯=,高m h 2.0=,材料的pa E 11101.2⨯=,横向变形系数3.0=μ。
该梁的自重就是均布载荷N q 4000=和梁中点处的集中力N F 2000=,试讨论在均布荷载作用下,简支梁的最大挠度。
二、问题的材料力学解答由叠加法可知:梁上同时作用几个载荷时,可分别求出每一载荷单独作用时的变形,把各个形变叠加即为这些载荷共同作用时的变形。
在只有均布载荷q 作用时,计算简支梁的支座约束力,写出弯矩方程,利用EI M dxw d =22积分两次,最后得出: 铰支座上的挠度等于零,故有0=x 时,0=w ,因为梁上的外力和边界条件都对跨度中点对称,挠曲线也应对该点对称。
因此,在跨度中点,挠曲线切线的斜率等于零,即:2l x =时,0=dx dw ,把以上两个边界条件分别代入w 和0=dxdw 的表达式,可以求出243ql C -=,0=D ,于是得转角方程及挠曲线方程为: x ql x q x ql EIw ql x q x ql EI dx dw EI 2424122464343332--=--==θ (1) 在跨度中点,挠曲线切线的斜率等于零,挠度为极值,由(1)中式子可得:即EIql w q c 3845)(4-=。
在集中力F 单独作用时,查材料力学中梁在简单载荷作用下的变形表可得EIFl w F c 48)(3-=。
叠加以上结果,求得在均布载荷和集中力共同作用下,梁中点处的挠度是EIFl EI ql w w w F c q c c 483845)()(34--=+=,将各参数代入得m w c 410769.0-⨯=三、问题的ansys 解答3.1建立几何模型此问题为可采用Beam 分析,所以该几何模型可用线表示。
命令流为:K ,1,0,0 !建立关键点1,为结构的A 点;K ,2,1,0 !建立关键点2,为结构的C 点;K ,3,2,0 !建立关键点3,为结构的B 点;L ,1,2 !建立线1,为结构的AC ;L ,2,3 !建立线2,为结构的CB ;3.2网格划分具体操作是Main Menu >Preprocessor >Meshing >MeshTool ,在弹出的对话框中设定单元类型Lines ,设定单元密度为0.05m ,指定网格划分对象,然后划分网格如图33.3加载求解根据问题的约束及荷载,对有限元模型施加边界条件及作用力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ansys求解剪切锁定超弹性梁问题
目的:比较关于剪切锁定的不同单元公式。
目标:使用三种单元公式求解梁的非线性分析: B-Bar、URI 和增强应变。
模型描述:二维平面应变 PLANE182 单元,300mmx10mm 悬臂梁 (3 个).使用非线性超弹材料 (2 项Mooney-Rivlin)
1. :选 PLANE182 (四边形 4 节点)
在 Option 中有三个梁单元模型,与 3 个不同单元公式对应(B-Bar, URI 和增强应变)。
Main Menu →Preprocessor →Element Type →Add/Edit/Delete …→选择“Type 1 PLANE182”→点击[Options] →验证单元选项, 然后点击[OK]→对单元类型 2 和 3 重复操作→选择[Close]
提示:
单元类型 1 应选择“Full Integration”, 即 B-Bar 方法。
单元类型 2 应选择“Reduced Integr”, 即 URI 公式。
单元类型 3 应选择“Enhanced Strain”公式。
2.
Main Menu →Preprocessor →Material Props →Material Models …→选择“Structural →Nonlinear→Elastic →Hyperelastic → Mooney-Rivlin → 2 parameters”→“C10”输入“8”→“C01”输入“2”→“d”输入“2e-4”→点击 [OK]→选择“Material → Exit”
提示:将比较使用超弹性材料特性的三种单元公式。
3.建立几何体并划分网格
建三个个矩形:Width=0.3m,Height=0.01m 划分网格:沿 x 方向,划分数=40,沿 y 方向,划分数=5
划分网格
这里需要注意,给每个几何面分配不同的单元类型
Main Menu: Preprocessor →Meshing → Mesh Tool → Element Attribute → Areas → Set → 选取相应的几何面 → OK → TYPE →分别选择不同的单元类型1/2/3
Main Menu: Preprocessor →Meshing → Mesh Tool → Size controls → Lines → Set,分别选中上边和左边,OK,NDIV填40或5,OK,
mesh,完成。
4 指定非线性分析的求解选项。
Main Menu→Solution→Analysis Type→Static →Sol’n Control …→选择“Analysis Options”下的“Large Displacement Static”→“Number of substeps”输入“10”→“Max no. of substeps”输入“1e3”→“Min no. of substeps”输入“1”→点击 [OK]
提示:如果想检查中间结果(例如画出力-挠度响应曲线), 可存储所有子步的输出。
2)每个梁的端部被约束。
完全约束端部的所有自由度会使模型趋于过分约束, 因此约束每个梁 X=0 处的所有 UX 和底部 UY 。
施加的剪切载荷是作用于 SURF153 表面效应单元面 2 上的压力,该 0.01单位压力将作为一个随动力, 总是与梁的端部相切。
提示:施加表面效应单元之前,要在前处理加上SURF152单元,并在梁端面创建面单元,此处不赘述。
5 查看结果
变形结果
查询 Y 向位移结果
Main Menu → General Postproc → Query Results →Subgrid Solu …→选择左侧“DOF Solution”, 然后选择右侧的“Translation UY”→
点击 [OK]→用拾取光标, 选择梁顶部的任意一个节点。
检查 von Mises 应力结果
更多精彩关注公众号:工科小学生。