高考数学模拟复习试卷试题模拟卷21612
高考数学模拟复习试卷试题模拟卷12912

高考模拟复习试卷试题模拟卷【考情解读】1.理解复数的基本概念. 2.理解复数相等的充要条件.3.了解复数的代数表示形式及其几何意义.4.会进行复数代数形式的四则运算.5.了解复数的代数形式的加、减运算的几何意义. 【重点知识梳理】 1.复数的有关概念内容 意义备注复数的概念 形如a +bi(a ∈R ,b ∈R)的数叫复数,其中实部为a ,虚部为b若b =0,则a +bi 为实数;若a =0且b≠0,则a +bi 为纯虚数复数相等 a +bi =c +di ⇔a =c 且b =d 共轭复数a +bi 与c +di 共轭⇔a =c 且b =-d(a ,b ,c ,d ∈R)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数复数的模设OZ →对应的复数为z =a +bi ,则向量OZ →的长度叫做复数z =a +bi 的模|z|=|a +bi|=a2+b2 2.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +bi复平面内的点Z(a ,b)(a ,b ∈R).(2)复数z =a +bi(a ,b ∈R)平面向量OZ →.3.复数的运算(1)复数的加、减、乘、除运算法则设z1=a +bi ,z2=c +di(a ,b ,c ,d ∈R),则 ①加法:z1+z2=(a +bi)+(c +di)=(a +c)+(b +d)i ;②减法:z1-z2=(a +bi)-(c +di)=(a -c)+(b -d)i ; ③乘法:z1·z2=(a +bi)·(c +di)=(ac -bd)+(ad +bc)i ; ④除法:z1z2=a +bi c +di =(a +bi )(c -di )(c +di )(c -di )=ac +bd +(bc -ad )ic2+d2(c +di≠0).(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C ,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).(3)复数加、减法的几何意义①复数加法的几何意义:若复数z1,z2对应的向量OZ1→,OZ2→不共线,则复数z1+z2是以OZ1→,OZ2→为两邻边的平行四边形的对角线OZ →所对应的复数.②复数减法的几何意义:复数z1-z2是OZ1→-OZ2→=Z2Z1→所对应的复数. 【高频考点突破】 考点一 复数的概念【例1】 (1)设i 是虚数单位.若复数a -103-i (a ∈R)是纯虚数,则a 的值为()A .-3B .-1C .1D .3(2)若3+bi 1-i=a +bi(a ,b ∈R),则a +b =________.【答案】(1)D(2)3规律方法 处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从定义出发,把复数问题转化成实数问题来处理.【变式探究】 (1)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z -为() A .2+i B .2-i C .5+i D .5-i(2)复数z =12+i(其中i 为虚数单位)的虚部为________.【答案】(1)D(2)-15 考点二 复数的运算【例2】 (1)(·安徽卷)设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i +i·z -=() A .-2 B .-2i C .2 D .2i(2)-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 014=________.【答案】(1)C(2)0规律方法 (1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式.(2)记住以下结论,可提高运算速度:①(1±i)2=±2i ;②1+i1-i =i ;③1-i 1+i=-i ;④a +bi i =b -ai ;⑤i4n =1,i4n +1=i ,i4n +2=-1,i4n +3=-i(n ∈N).【变式探究】 (1)(·天津卷)i 是虚数单位,复数7+i3+4i =()A .1-iB .-1+i C.1725+3125i D .-177+257i(2)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________.【答案】(1)A(2)-1+i 考点三 复数的几何意义【例3】 (1)(·重庆卷)复平面内表示复数i(1-2i)的点位于() A .第一象限 B .第二象限 C .第三象限 D .第四象限 (2)复数z =(2-i )2i (i 为虚数单位),则|z|=() A .25 B.41 C .5 D.5【答案】(1)A(2)C规律方法 要掌握复数的几何意义就要搞清楚复数、复平面内的点以及向量三者之间的一一对应关系,从而准确理解复数的“数”与“形”的特征. 【变式探究】(1)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是()A .AB .BC .CD .D(2)i 为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i ,则z2=________.【答案】(1)B(2)-2+3i 【真题感悟】1.【高考新课标1,文3】已知复数z 满足(1)1z i i -=+,则z =() (A )2i --(B )2i -+(C )2i -(D )2i + 【答案】C2.【高考山东,文2】若复数Z 满足1zi-i =,其中i 为虚数单位,则Z=( ) (A )1i -(B )1i +(C )1i --(D )1i -+ 【答案】A3.【高考湖南,文1】已知2(1)i z-=1i +(i 为虚数单位),则复数z = ( )A 、1i +B 、1i -C 、 1i -+D 、1i -- 【答案】D4.【高考湖北,文1】i 为虚数单位,607i =( ) A .i - B .i C .1-D .1【答案】A .5.【高考广东,文2】已知i 是虚数单位,则复数()21i +=( ) A .2-B .2C .2i -D .2i【答案】D6.【高考福建,文1】若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( )A .3,2-B .3,2C .3,3-D .1,4- 【答案】A7.【高考安徽,文1】设i 是虚数单位,则复数()()112i i -+=( ) (A )3+3i (B )1+3i (3)3+i (D )1+i 【答案】C8.【高考北京,文9】复数()1i i +的实部为. 【答案】1-9.【高考重庆,文11】复数(12i)i 的实部为________. 【答案】210.【高考四川,文11】设i 是虚数单位,则复数1i i-=_________. 【答案】2i11.【高考天津,文9】i 是虚数单位,计算12i2i-+的结果为. 【答案】i12.【高考上海,文3】若复数z 满足i z z +=+13,其中i 是虚数单位,则=z . 【答案】i 2141+(·浙江卷)已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +bi)2=2i”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A(·全国卷)设z =10i 3+i ,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i 【答案】D(·北京卷)复数⎝ ⎛⎭⎪⎫1+i 1-i 2=________.【答案】-1(·福建卷)复数z =(3-2i)i 的共轭复数z 等于( ) A .-2-3i B .-2+3iC .2-3iD .2+3i 【答案】C(·广东卷)已知复数z 满足(3+4i)z =25,则z =( ) A .-3+4i B .-3-4i C .3+4i D .3-4i 【答案】D(·湖北卷)i 为虚数单位,⎝ ⎛⎭⎪⎫1-i 1+i 2=( )A .-1B .1C .-iD .i 【答案】A(·湖南卷)满足z +iz =i(i 为虚数单位)的复数z =( ) A.12+12i B.12-12i C .-12+12i D .-12-12i 【答案】B10.(·江西卷)z -是z 的共轭复数,若z +z -=2,(z -z -)i =2(i 为虚数单位),则z =( ) A .1+i B .-1-i C .-1+i D .1-i 【答案】D11.(·辽宁卷)设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i 【答案】A12.(·新课标全国卷Ⅰ] (1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D13.(·新课标全国卷Ⅱ] 设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i ,则z1z2=( )A .-5B .5C .-4+iD .-4-i 【答案】A14.(·山东卷)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+bi 互为共轭复数,则(a +bi)2=( ) A .5-4i B .5+4i C .3-4i D .3+4i 【答案】D15.(·四川卷)复数2-2i 1+i =________.【答案】-2i16.(·天津卷)i 是虚数单位,复数7+i3+4i=( )A .1-iB .-1+i C.1725+3125i D .-177+257i 【答案】A17.(·新课标全国卷Ⅰ] 若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D.45 【答案】D18.(·安徽卷)设i 是虚数单位,z 是复数z 的共轭复数,若z·zi +2=2z ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i 【答案】A19.(·北京卷)在复平面内,复数(2-i)2对应的点位于( ) A .第一象限B .第二象限 C .第三象限 D .第四象限 【答案】D20.(·福建卷)已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D21.(·广东卷)若复数iz =2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,-4) C .(4,-2) D .(4,2)【答案】C22.(·湖北卷)在复平面内,复数z =2i1+i (i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D23.(·湖南卷)复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 【答案】B24.(·江苏卷)设z =(2-i)2(i 为虚数单位),则复数z 的模为________. 【答案】525.(·江西卷)已知集合M ={1,2,zi},i 为虚数单位,N ={3,4},M∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i 【答案】C26.(·辽宁卷)复数z =1i -1的模为( )A.12B.22 C. 2 D .2 【答案】B27.(·全国卷)(1+3i)3=()A.-8 B.8C.-8i D.8i【答案】A28.(·山东卷)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数z为()A.2+i B.2-i C.5+i D.5-i【答案】D29.(·陕西卷)设z1,z2是复数,则下列命题中的假命题是()A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1·z1=z2·z2D.若|z1|=|z2|,则z21=z22【答案】D30.(·四川卷)如图1-1所示,在复平面内,点A表示复数z,则图1-1中表示z的共轭复数的点是()A.A B.B C.C D.D【答案】B31.(·天津卷)已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,则a+bi=________.【答案】1+2i32.(·新课标全国卷Ⅱ] 设复数z满足(1-i)z=2i,则z=()A.-1+i B.-1-iC.1+i D.1-i【答案】A33.(·浙江卷] 已知i是虚数单位,则(-1+i)(2-i)=()A.-3+i B.-1+3iC.-3+3i D.-1+i【答案】B34.(·重庆卷)已知复数z=5i1+2i(i是虚数单位),则|z|=________.【答案】5【押题专练】1.若复数z满足z(1+i)=2i(i为虚数单位),则|z|=() A.1 B.2 C. 2D.32.已知复数z =-2i ,则1z +1的虚部为() A.25i B.25 C.255iD.255【答案】B3.设z 是复数,则下列命题中的假命题是()A .若z2≥0,则z 是实数B .若z2<0,则z 是虚数C .若z 是虚数,则z2≥0D .若z 是纯虚数,则z2<0【答案】C4.设z =11+i +i ,则|z|=()A.12B.22C.32 D .2【答案】B5.已知a ,b ∈R ,i 是虚数单位.若a +i =2-bi ,则(a +bi)2=() A .3-4i B .3+4i C .4-3i D .4+3i【答案】A6.设复数z =3+i(i 为虚数单位)在复平面中对应点A ,将OA 绕原点O 逆时针旋转90°得到OB ,则点B 在() A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B7.下面是关于复数z =2-1+i 的四个命题:p1:|z|=2; p2:z2=2i ;p3:z 的共轭复数为1+i; p4:z 的虚部为-1. 其中的真命题为() A .p2,p3B .p1,p2C .p2,p4D .p3,p4【答案】C8.设f(n)=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n(n ∈N*),则集合{f(n)}中元素的个数为() A .1B .2C .3D .无数个【答案】C9.复数3+ii2(i 为虚数单位)的实部等于______.【答案】-310.若复数(m2-5m +6)+(m2-3m)i(m 为实数,i 为虚数单位)是纯虚数,则m =________.【答案】211.已知复数z1=-2+i ,z2=a +2i(i 为虚数单位,a ∈R).若z1z2为实数,则a 的值为________.【答案】412.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________.【答案】⎝⎛⎭⎫-∞,2313.已知复数z =i +i2+i3+…+i2 0141+i,则复数z 在复平面内对应的点为________.【答案】(0,1) 14.定义运算|abcd|=ad -bc.若复数x =1-i1+i ,y =|4ixi2x +i|,则y =________.高考模拟复习试卷试题模拟卷【答案】-2高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
2021年山东(新高考)高三数学模拟仿真考试卷(二)(附解析)

3
2
4.【答案】B
【解析】由题意得 y2 3x 3 x2 0 , 0 x 2 , 2
因此 x2 y2 3x 1 x2 1 x 32 9 ,
a sin B b cos( A π ) ,这三个条件中任选一个,补充在下面问题中并作答. 6
问题:△ABC 的内角 A, B, C 的对边分别为 a, b, c ,若 2a b 2c ,______,求 A 和 C .
注:若选择多个条件作答,按第一个解答计分.
18.(12 分)某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每
(1)求证: MN∥平面 FCB ; (2)若直线 AF 与平面 FCB 所成的角为 60°,求平面 MAB 与平面 MAC 所成锐二面角的余弦值.
19.(12 分)如图,在几何体 ABCDEF 中,四边形 ABCD 为等腰梯形,且 AB 2CD 2 , ABC 60 ,四边形 ACFE 为矩形,且 FB 2 ,M,N 分别为 EF , AB 的中点.
1.已知 , N 均为 R 的子集,且 M ðR N ,则 ðR M N ( )
A.
B. M
C. N
D. R
2.若复数 z 满足 2i z
1 2
3 i ,则 z ( 2
)
A. 1 2
B. 1 2
C. 1 i 2
D. 1 i 2
3. △ABC 中,A,B,C 是 △ABC 的内角,则“ A π ”是“ cos A 1 ”的( )
黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草
稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。
高考数学模拟复习试卷试题模拟卷21112

高考模拟复习试卷试题模拟卷【高频考点解读】 1.了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义. 【热点题型】题型一平面向量的有关概念 【例1】给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c. 其中正确命题的序号是()A .②③B .②④C .③④D .②③④【提分秘籍】(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a|的关系:a|a|是与a 同方向的单位向量.【举一反三】 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0 (λ为实数),则λ必为零;④已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为() A .1 B .2 C .3 D .4解析 ①错误.两向量共线要看其方向而不是起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a =0时,不论λ为何值,λa =0.④错误.当λ=μ=0时,λa =μb ,此时,a 与b 可以是任意向量. 答案 C题型二 平面向量的线性运算【例2】 (1)在△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a·b =0,|a|=1,|b|=2,则AD →=() A.13a -13b B.23a -23b C.35a -35b D.45a -45b(2)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.解析 (1)∵a·b =0,∴∠ACB =90°,∴AB =5,CD =255, ∴BD =55,AD =455,∴AD ∶BD =4∶1. ∴AD →=45AB →=45(CB →-CA →)=45a -45b. (2)因为ABCD 为平行四边形, 所以AB →+AD →=AC →=2AO →, 已知AB →+AD →=λAO →,故λ=2.答案 (1)D(2)2 【提分秘籍】(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【举一反三】(1)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=()A .a -12b B.12a -b C .a +12b D.12a +b(2)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则()A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0解析 (1)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a.(2)由题意知:AD →=FE →,BE →=DF →,CF →=ED →,而FE →+ED →+DF →=0,∴AD →+BE →+CF →=0. 答案 (1)D(2)A题型三共线向量定理的应用【例3】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b).求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.【提分秘籍】(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.【举一反三】(1)已知向量i 与j 不共线,且AB →=i +mj ,AD →=ni +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是()A .m +n =1B .m +n =-1C .mn =1D .mn =-1(2)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m 的值为________.解析 (1)由A ,B ,D 共线可设AB →=λAD →,于是有i +mj =λ(ni +j)=λni +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m , 即有mn =1.(2)设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b),PQ →=OQ →-OP →=nb -ma ,PG →=OG →-OP →=⎝⎛⎭⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即nb -ma =λ⎝⎛⎭⎫13-m a +13λb ,从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ得1n +1m =3.答案 (1)C(2)3 【高考风向标】1.【高考安徽,文15】ABC ∆是边长为2的等边三角形,已知向量b a 、满足a AB 2=→,b a AC+=→2,则下列结论中正确的是.(写出所有正确结论得序号)①a 为单位向量;②b 为单位向量;③b a ⊥;④→BC b // ;⑤→⊥+BC b a )4(。
2022年高考数学模拟试卷(含答案)

高考数学模拟试卷一一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)已知集合A={x|﹣2<x<2},集合B为自然数集,则A∩B=.2.(5分)若复数z=a2﹣1+(a+1)i(a∈R)为纯虚数,则a=.3.(5分)在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积之和的,且样本容量为160,则中间一组的频数为.4.(5分)从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.5.(5分)根据如图所示的伪代码,可知输出的结果S为.6.(5分)三棱锥S﹣ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S﹣ABC的表面积是.7.(5分)已知F为双曲线C:2x2﹣my2=4m(m>0)的一个焦点,则点F到C的一条渐近线的距离为.8.(5分)与的大小关系是.(用“>”或“<”连接)9.(5分)为了得到y=cos(﹣)的图象,只需将y=sin的图象向左平移φ(φ>0)个单位,则φ的最小值为.10.(5分)若函数f(x)=,在其定义域上恰有两个零点,则正实数a的值为.11.(5分)已知{a n},{b n}均为等比数列,其前n项和分别为S n,T n,若对任意的n∈N*,总有=,则=.12.(5分)如图,在圆O:x2+y2=4上取一点A(﹣,1),E、F为y轴上的两点,且AE=AF,延长AE,AF分别与圆交于点MN.则直线MN的斜率为.13.(5分)如图,AB=BC=1,∠APB=90°,∠BPC=45°,则•=.14.(5分)已知正实数a、b、c满足+=1,++=1,则实数c的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.15.(14分)已知向量,,.(1)若,求向量、的夹角θ;(2)若,函数的最大值为,求实数λ的值.16.(14分)如图,平面ABC⊥平面DBC,AB=AC,AB⊥AC,DB=DC;DE⊥平面DBC,BC=2DE,(1)求证:DE∥平面ABC;(2)求证:AE⊥平面ABC.17.(14分)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,,.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元.试问当θ为多少时,年总收入最大?18.(16分)如图,在平面直角坐标系xOy中,A、B分别是椭圆:+y2=1的左、右顶点,P(2,t)(t∈R,且t≠0)为直线x=2上一动点,过点P任意引一直线l与椭圆交于C、D,连结PO,直线PO分别和AC、AD连线交于E、F.(1)当直线l恰好经过椭圆右焦点和上顶点时,求t的值;(2)若t=﹣1,记直线AC、AD的斜率分别为k1,k2,求证:+定值;(3)求证:四边形AFBE为平行四边形.19.(16分)已知数列{a n},{b n}满足:对于任意的正整数n,当n≥2时,a n2+b n a n﹣12=2n+1.(1)若b n=(﹣1)n,求的值;(2)若数列{a n}的各项均为正数,且a1=2,b n=﹣1.设S n=,T n=,试比较S n与T n的大小,并说明理由.20.(16分)已知函数f(x)=x2,g(x)=alnx.(1)若曲线y=f(x)﹣g(x)在x=1处的切线的方程为6x﹣2y﹣5=0,求实数a的值;(2)设h(x)=f(x)+g(x),若对任意两个不等的正数x1,x2,都有>2恒成立,求实数a的取值范围;(3)若在[1,e]上存在一点x0,使得f′(x0)+<g(x0)﹣g′(x0)成立,求实数a的取值范围.[选修4-1:几何证明选讲](任选两个)21.(10分)在圆O中,AB,CD是互相平行的两条弦,直线AE与圆O相切于点A,且与CD的延长线交于点E,求证:AD2=AB•ED.[选修4-2:矩阵与变换]22.(10分)在平面直角坐标系xOy中,直线x+y﹣2=0在矩阵A=对应的变换作用下得到的直线仍为x+y﹣2=0,求矩阵A的逆矩阵A﹣1.[选修4-4:坐标系与参数方程选讲]23.已知直线l:(t为参数)经过椭圆C:(φ为参数)的右焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.[选修4-5:不等式选讲]24.已知a,b,c均为正数,且a+2b+3c=9.求证:++≥.解答题25.(10分)如图,在平面直角坐标系xOy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过M的直线与抛物线交于A,B两点.设A(x1,y1)到准线l的距离为d,且d=λp (λ>0).(1)若y1=d=1,求抛物线的标准方程;(2)若+λ=,求证:直线AB的斜率为定值.26.(10分)在自然数列1,2,3,…,n中,任取k个元素位置保持不动,将其余n﹣k个元素变动位置,得到不同的新数列.由此产生的不同新数列的个数记为P n(k).(1)求P3(1)(2)求P4(k);(3)证明kP n(k)=n P n﹣1(k),并求出kP n(k)的值.参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)(2016•南通模拟)已知集合A={x|﹣2<x<2},集合B为自然数集,则A∩B= {0,1} .【考点】交集及其运算.【专题】集合思想;定义法;集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={x|﹣2<x<2},集合B为自然数集,∴A∩B={0,1},故答案为:{0,1}2.(5分)(2016•南通模拟)若复数z=a2﹣1+(a+1)i(a∈R)为纯虚数,则a=1.【考点】复数的基本概念.【专题】计算题.【分析】根据纯虚数的定义,得到实部为0,虚部不为0列出不等式和方程,解不等式组求出a的值.【解答】解:∵复数z=a2﹣1+(a+1)i(a∈R)为纯虚数∴解得∴a=1故答案为:13.(5分)(2016•南通模拟)在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积之和的,且样本容量为160,则中间一组的频数为32.【考点】频率分布直方图.【专题】计算题.【分析】由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.【解答】解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有:,解得:x=0.2,∴中间一组的频数=160×0.2=32.故填:32.4.(5分)(2016•江苏模拟)从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】根据互斥时间的概率公式计算即可.【解答】解:从5个球中任意取两个共有C52=10种,两球颜色相同的有2种,两球颜色不同的概率是1﹣=,故答案为:.5.(5分)(2016•南通模拟)根据如图所示的伪代码,可知输出的结果S为205.【考点】顺序结构.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件i=2n+1,n∈N,i=i+2≥100时,S=2i+3的值【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件i=2n+1,n∈N,i=i+2≥100时,S=2i+3的值,∵i+2=101时,满足条件,∴输出的S值为S=2×101+3=205.故答案为:205.6.(5分)(2016•南通模拟)三棱锥S﹣ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S﹣ABC的表面积是3+.【考点】棱柱、棱锥、棱台的侧面积和表面积.【专题】计算题.【分析】先求面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形的面积,再求正三角形△ABC的面积,求解即可.【解答】解:设侧棱长为a,则a=2,a=,侧面积为3××a2=3,底面积为×22=,表面积为3+.故答案为:3+.7.(5分)(2016•南通模拟)已知F为双曲线C:2x2﹣my2=4m(m>0)的一个焦点,则点F到C的一条渐近线的距离为2.【考点】双曲线的简单性质.【专题】转化思想;定义法;圆锥曲线的定义、性质与方程.【分析】求出双曲线的标准方程,根据焦点在x轴上的双曲线的焦点到渐近线的距离为b 进行求解即可.【解答】解:双曲线的标准方程为﹣=1,双曲线的焦点在x轴,则a2=2m,b2=4,则b=2,设焦点在x轴的双曲线的方程为=1,设焦点F(c,0),双曲线的一条渐近线方程为y=x,即bx﹣ay=0则点F到C的一条渐近线的距离d==2故答案为:28.(5分)(2016•南通模拟)与的大小关系是>.(用“>”或“<”连接)【考点】不等式比较大小.【专题】转化思想;数学模型法;不等式.【分析】由于=>=>,即可得出.【解答】解:∵==>=>,∴>,故答案为:>.9.(5分)(2016•南通模拟)为了得到y=cos(﹣)的图象,只需将y=sin的图象向左平移φ(φ>0)个单位,则φ的最小值为.【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;转化思想;数形结合法;三角函数的图像与性质.【分析】将y=sinx化为y=cos[(x﹣π)],再根据三角函数的图象变换知识确定平移的方向和长度即可.【解答】解:∵y=sin=cos(﹣)=cos[(x﹣π)],∴将y=sin的图象向左平移φ(φ>0)个单位,所得函数图象对于的解析式为:y=cos[(x ﹣π+φ)],又∵y=cos(﹣)=cos[(x﹣)],∴由题意可得:(x﹣π+φ)=(x﹣)+2kπ,k∈Z,解得:φ=4kπ+,k∈Z,∵φ>0∴当k=0时,φ的最小值为.故答案为:.10.(5分)(2016•南通模拟)若函数f(x)=,在其定义域上恰有两个零点,则正实数a的值为.【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】当x≤0时,f(x)=x+2x,单调递增,由f(﹣1)f(0)<0,可得f(x)在(﹣1,0)有且只有一个零点;x>0时,f(x)=ax﹣lnx有且只有一个零点,即有a=有且只有一个实根.令g(x)=,求出导数,求得单调区间,极值,即可得到a的值.【解答】解:当x≤0时,f(x)=x+2x,单调递增,f(﹣1)=﹣1+2﹣1<0,f(0)=1>0,由零点存在定理,可得f(x)在(﹣1,0)有且只有一个零点;则由题意可得x>0时,f(x)=ax﹣lnx有且只有一个零点,即有a=有且只有一个实根.令g(x)=,g′(x)=,当x>e时,g′(x)<0,g(x)递减;当0<x<e时,g′(x)>0,g(x)递增.即有x=e处取得极大值,也为最大值,且为,如图g(x)的图象,当直线y=a(a>0)与g(x)的图象只有一个交点时,则a=.故答案为:.11.(5分)(2015•淮安模拟)已知{a n},{b n}均为等比数列,其前n项和分别为S n,T n,若对任意的n∈N*,总有=,则=9.【考点】数列的求和.【专题】等差数列与等比数列.【分析】设{a n},{b n}的公比分别为q,q′,利用=,求出q=9,q′=3,可得=3,即可求得结论.【解答】解:设{a n},{b n}的公比分别为q,q′,∵=,∴n=1时,a1=b1.n=2时,.n=3时,.∴2q﹣5q′=3,7q′2+7q′﹣q2﹣q+6=0,解得:q=9,q′=3,∴.故答案为:9.12.(5分)(2016•南通模拟)如图,在圆O:x2+y2=4上取一点A(﹣,1),E、F为y 轴上的两点,且AE=AF,延长AE,AF分别与圆交于点MN.则直线MN的斜率为﹣.【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】不适一般性,取特殊点,即可得出结论.【解答】解:由题意,取M(0,2),AM的斜率为,∵AE=AF,∴AN的斜率为﹣,过原点,∴N((,﹣1),∴直线MN的斜率为=﹣.故答案为:﹣.13.(5分)(2016•南通模拟)如图,AB=BC=1,∠APB=90°,∠BPC=45°,则•=﹣.【考点】平面向量数量积的运算.【专题】综合题;转化思想;综合法;平面向量及应用.【分析】取PC中点D,连结BD,设BD=x.利用三角形中位线定理与含有45°角的直角三角形的性质,算出∠BDC=135°,CD=PD=x.在△BCD中利用余弦定理,结合题中数据建立关于x的方程,解出x,从而得出PA,PC.最后利用数量积的公式加以计算,可得则•的值【解答】解:取PC中点D,连结BD.设BD=x,∵BD是△PAC的中位线,∴BD∥PA且BD=PA.∵∠APB=90°,∴△PBD中,∠PBD=∠APB=90°,∵∠BPD=45°,BD=x,∴PD=x,CD=PD=x,△BDC中,∠BDC=∠APC=90°+450°=130°,BC=1,由余弦定理,得BC2=BD2+CD2﹣2BD•CDcos∠BDC=1,即x2+2x2﹣2x•xcos135°=1,解之得x=,即BD=,∴PA=2BD=,PC=2×=,∴•=||•||cosAPC=××(﹣)=﹣,故答案为:﹣14.(5分)(2016•南通模拟)已知正实数a、b、c满足+=1,++=1,则实数c 的取值范围是(1,] .【考点】基本不等式.【专题】不等式的解法及应用.【分析】由于+=1,++=1,可得,化为.由于正实数a、b满足+=1,利用基本不等式的性质可得ab≥4,据此可得c的取值范围.【解答】解:∵++=1,∴,化为.∵正实数a、b满足+=1,∴,化为ab≥4.则c==1+,ab﹣1≥3,则1<c≤.故答案为:(1,].二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.15.(14分)(2011•宝山区二模)已知向量,,.(1)若,求向量、的夹角θ;(2)若,函数的最大值为,求实数λ的值.【考点】数量积表示两个向量的夹角;数量积的坐标表达式;平面向量数量积的运算.【专题】计算题;综合题.【分析】(1)当时,求出向量、,利用数量积的坐标运算求出向量•,从而求出向量、的夹角θ;(2)向量,,代入函数,利用三角函数的诱导公式进行化简,转化为三角函数在定区间上的最值,即可求得结果.【解答】解:(1)当时,,所以,因而;(2),,因为,所以,当λ>0时,,即,当λ<0时,,即,所以.16.(14分)(2016•南通模拟)如图,平面ABC⊥平面DBC,AB=AC,AB⊥AC,DB=DC;DE⊥平面DBC,BC=2DE,(1)求证:DE∥平面ABC;(2)求证:AE⊥平面ABC.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;空间位置关系与距离.【分析】(1)取BC中点F,连结AF,可证AF⊥BC,由平面ABC⊥平面DBC,且交线为BC,可证AF⊥平面DBC,从而AF∥DE,即可证明DE∥平面ABC.(2)连结DF,可证DF⊥平面ABC,AE∥DF,从而有AE⊥平面ABC.【解答】解:(1)取BC中点F,连结AF,因为AB=AC,所以,AF⊥BC,又因为平面ABC⊥平面DBC,且交线为BC,所以,AF⊥平面DBC,因为DE⊥平面DBC,所以,AF∥DE,而AF在平面ABC内,DE在平面ABC外,所以,DE∥平面ABC;(2)连结DF,∵DB=DC,F为BC中点,∴DF⊥BC,∵平面ABC⊥平面DBC,DF⊂平面DBC,可证DF⊥平面ABC,∵AE∥DF,∴AE⊥平面ABC.17.(14分)(2016•南通模拟)现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,,.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元.试问当θ为多少时,年总收入最大?【考点】在实际问题中建立三角函数模型.【专题】导数的综合应用;三角函数的图像与性质.【分析】(1)根据三角形的面积公式即可求区域Ⅱ的总面积;(2)建立三角函数关系式,求函数的导数,利用导数研究函数的最值即可.【解答】解:(1)因为BD=AC,OB=OA,所以OD=OC.因为,DE∥OA,CF∥OB,所以DE⊥OB,CF⊥OA.又因为OE=OF,所以Rt△ODE≌Rt△OCF.所以.…(2分)所以.所以,所以,.…(6分)(2)因为,所以.所以=,…(10分)所以,令y'=0,则.…(12分)当时,y'>0,当时,y'<0.故当时,y有最大值.答:当θ为时,年总收入最大.…(15分)18.(16分)(2016•南通模拟)如图,在平面直角坐标系xOy中,A、B分别是椭圆:+y2=1的左、右顶点,P(2,t)(t∈R,且t≠0)为直线x=2上一动点,过点P任意引一直线l与椭圆交于C、D,连结PO,直线PO分别和AC、AD连线交于E、F.(1)当直线l恰好经过椭圆右焦点和上顶点时,求t的值;(2)若t=﹣1,记直线AC、AD的斜率分别为k1,k2,求证:+定值;(3)求证:四边形AFBE为平行四边形.【考点】直线与圆锥曲线的综合问题.【专题】圆锥曲线中的最值与范围问题.【分析】(1)由题意得l:y=﹣x+1,由此能求出t的值.(2)直线AC:y=k1(x+2),与联立得C:,同理得D:,由此能证明=﹣4(定值).(3)要证四边形AFBE为平行四边形,即只需证E、F的中点即点O.【解答】(1)解:由题意:椭圆:+y2=1上顶点C(0,1),右焦点E(﹣,0),所以l:y=﹣x+1,令x=2,得t=1﹣.…(2分)(2)证明:直线AC:y=k1(x+2),与联立得C:,同理得D:,…(4分)由C,D,P三点共线得:k CP=k DP,得=﹣4(定值).…(8分)(3)证明:要证四边形AFBE为平行四边形,即只需证E、F的中点即点O,设点P(2,t),则OP:y=x,分别与直线AC:y=k1(x+2)与AD:y=k2(x+2)联立得:x E=,x F=,下证:x E+x F=0,即+=0化简得:t(k1+k2)﹣4k1k2=0…(12分)由(2)知C:,D:,由C,D,P三点共线得:k CP=k DP,得t(k1+k2)﹣4k1k2=0,所以四边形AFBE为平行四边形.…(16分)19.(16分)(2016•南通模拟)已知数列{a n},{b n}满足:对于任意的正整数n,当n≥2时,a n2+b n a n﹣12=2n+1.(1)若b n=(﹣1)n,求的值;(2)若数列{a n}的各项均为正数,且a1=2,b n=﹣1.设S n=,T n=,试比较S n与T n的大小,并说明理由.【考点】数列递推式;数列与函数的综合.【专题】综合题;转化思想;综合法;等差数列与等比数列.【分析】(1)根据数列的递推关系时,即可得到a22+a12=5,a42+a32=9,a62+a52=13,…a182+a172=37,累加即可,(2)根据数列的递推关系求出a n=n+1,n∈N,再分别表示出S n与T n,分别计算它们的平方,n=1,2,3,4,5,6,当n≥6时,构造数列c n=,利用换元法和作差法得到数列{c n}为递增数列,问题得以解决.【解答】解:(1)由题意可得a22+a12=5,a42+a32=9,a62+a52=13,…a182+a172=37,将上面的式子相加得到=5+9+13+…+37=189,(2)∵a n2+b n a n﹣12=2n+1,a1=2,b n=﹣1∴a n2﹣a n﹣12=2n+1,n≥2,∴a22﹣a12=5,a32﹣a22=7,a42﹣a32=9,a n2﹣a n﹣12=2n+1,将上面的式子相加得到a n2﹣a12=,∴a n2=(n+1)2,n≥2,∵数列{a n}的各项均为正数,∴a n=n+1,当n=1时,也成立,∴a n=n+1,n∈N*,∴S n==2n﹣1,T n==,下面比较S n与T n的大小,取n=1,2,3,4,5,6,∴S12<T12,S22>T22,S32>T32,S42>T42,S52>T52,S62<T62,当n≥6时,令c n=,则=设2n=t≥64,则(n+2)(2n﹣1)2﹣(2n+1﹣1)2=8(t﹣1)2﹣(2t﹣1)2=4t2﹣12t+7>0∴当n≥6时,数列{c n}为递增数列,∴c n≥c6=>1,∴n≥6时,S n2<T n2,综上所述:当n=2,3,4,5时,S n>T n,当n=1,n≥6时,S n<T n.20.(16分)(2016•南通模拟)已知函数f(x)=x2,g(x)=alnx.(1)若曲线y=f(x)﹣g(x)在x=1处的切线的方程为6x﹣2y﹣5=0,求实数a的值;(2)设h(x)=f(x)+g(x),若对任意两个不等的正数x1,x2,都有>2恒成立,求实数a的取值范围;(3)若在[1,e]上存在一点x0,使得f′(x0)+<g(x0)﹣g′(x0)成立,求实数a的取值范围.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】分类讨论;分析法;导数的综合应用;不等式的解法及应用.【分析】(1)求出函数y的导数,可得切线的斜率,由切线方程可得a的方程,解得a即可;(2)由题意可得即为>0,令m(x)=h(x)﹣2x,可得m(x)在(0,+∞)递增,求出导数,令导数大于等于0,分离参数a,由二次函数的最值,即可得到a的范围;(3)原不等式等价于x0+<alnx0﹣,整理得x0﹣alnx0+<0,设m(x)=x﹣alnx+,求得它的导数m'(x),然后分a≤0、0<a≤e﹣1和a>e﹣1三种情况加以讨论,分别解关于a的不等式得到a的取值,最后综上所述可得实数a的取值范围是(﹣∞,﹣2)∪(,+∞).【解答】解:(1)y=f(x)﹣g(x)=x2﹣alnx的导数为x﹣,曲线y=f(x)﹣g(x)在x=1处的切线斜率为k=1﹣a,由切线的方程为6x﹣2y﹣5=0,可得1﹣a=3,解得a=﹣2;(2)h(x)=f(x)+g(x)=x2+alnx,对任意两个不等的正数x1,x2,都有>2恒成立,即为>0,令m(x)=h(x)﹣2x,可得m(x)在(0,+∞)递增,由m′(x)=h′(x)﹣2=x+﹣2≥0恒成立,可得a≥x(2﹣x)的最大值,由x(2﹣x)=﹣(x﹣1)2+1可得最大值1,则a≥1,即a的取值范围是[1,+∞);(3)不等式f′(x0)+<g(x0)﹣g′(x0)等价于x0+<alnx0﹣,整理得x0﹣alnx0+<0,设m(x)=x﹣alnx+,则由题意可知只需在[1,e]上存在一点x0,使得m(x0)<0.对m(x)求导数,得m′(x)=1﹣﹣==,因为x>0,所以x+1>0,令x﹣1﹣a=0,得x=1+a.①若1+a≤1,即a≤0时,令m(1)=2+a<0,解得a<﹣2.②若1<1+a≤e,即0<a≤e﹣1时,m(x)在1+a处取得最小值,令m(1+a)=1+a﹣aln(1+a)+1<0,即1+a+1<aln(1+a),可得<ln(a+1)考察式子<lnt,因为1<t≤e,可得左端大于1,而右端小于1,所以不等式不能成立③当1+a>e,即a>e﹣1时,m(x)在[1,e]上单调递减,只需m(e)<0,得a>,又因为e﹣1﹣=<0,则a>.综上所述,实数a的取值范围是(﹣∞,﹣2)∪(,+∞).[选修4-1:几何证明选讲](任选两个)21.(10分)(2016•南通模拟)在圆O中,AB,CD是互相平行的两条弦,直线AE与圆O 相切于点A,且与CD的延长线交于点E,求证:AD2=AB•ED.【考点】与圆有关的比例线段.【专题】选作题;推理和证明.【分析】连接BD,证明△EAD∽△DBA.即可证明AD2=AB•ED.【解答】证明:连接BD,因为直线AE与圆O相切,所以∠EAD=∠ABD.…(4分)又因为AB∥CD,所以∠BAD=∠ADE,所以△EAD∽△DBA.…(8分)从而=,所以AD2=AB•ED.…(10分)[选修4-2:矩阵与变换]22.(10分)(2016•南通模拟)在平面直角坐标系xOy中,直线x+y﹣2=0在矩阵A=对应的变换作用下得到的直线仍为x+y﹣2=0,求矩阵A的逆矩阵A﹣1.【考点】逆变换与逆矩阵.【专题】计算题;转化思想;综合法;矩阵和变换.【分析】在直线x+y﹣2=0上取两点M(2,0),M(0,2).在矩阵M,N对应的变换作用下分别对应于点M′,N′.推导出M′、N′的坐标,由题意,M′、N′在直线x+y﹣2=0上,列出方程组求出A=,由此能求出矩阵A的逆矩阵A﹣1.【解答】解:在直线x+y﹣2=0上取两点M(2,0),M(0,2).M,N在矩阵M,N对应的变换作用下分别对应于点M′,N′.∵=,∴M′的坐标为(2,2b);=,∴N′的坐标为(2a,4).由题意,M′、N′在直线x+y﹣2=0上,∴.解得a=﹣1,b=0.∴A=,∵→→.∴A﹣1=.[选修4-4:坐标系与参数方程选讲]23.(2015•淮安模拟)已知直线l:(t为参数)经过椭圆C:(φ为参数)的右焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.【考点】参数方程化成普通方程.【专题】选作题;坐标系和参数方程.【分析】(Ⅰ)椭圆的参数方程化为普通方程,可得F的坐标,直线l经过点(m,0),可求m的值;(Ⅱ)将直线l的参数方程代入椭圆C的普通方程,利用参数的几何意义,即可求|FA|•|FB|的最大值与最小值.【解答】解:(Ⅰ)椭圆的参数方程化为普通方程,得,∴a=5,b=3,c=4,则点F的坐标为(4,0).∵直线l经过点(m,0),∴m=4.…(4分)(Ⅱ)将直线l的参数方程代入椭圆C的普通方程,并整理得:(9cos2α+25sin2α)t2+72tcosα﹣81=0.设点A,B在直线参数方程中对应的参数分别为t1,t2,则|FA|•|FB|=|t1t2|=.…(8分)当sinα=0时,|FA|•|FB|取最大值9;当sinα=±1时,|FA|•|FB|取最小值.…(10分)[选修4-5:不等式选讲]24.(2016•南通模拟)已知a,b,c均为正数,且a+2b+3c=9.求证:++≥.【考点】不等式的证明.【专题】转化思想;综合法;不等式的解法及应用.【分析】由a,b,c均为正数,运用柯西不等式可得(a+2b+3c)(++)≥(++)2,化简整理,结合条件即可得证.【解答】证明:由a,b,c均为正数,运用柯西不等式可得:(a+2b+3c)(++)≥(++)2=(++)2=1,由a+2b+3c=9,可得++≥,当且仅当a=3b=9c,即a=,b=,c=时,等号成立.解答题25.(10分)(2016•南京三模)如图,在平面直角坐标系xOy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过M的直线与抛物线交于A,B两点.设A(x1,y1)到准线l 的距离为d,且d=λp(λ>0).(1)若y1=d=1,求抛物线的标准方程;(2)若+λ=,求证:直线AB的斜率为定值.【考点】抛物线的简单性质.【专题】函数思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)由题意可知x1=1﹣,A点坐标为(1﹣,1),将A点坐标代入抛物线方程求得p的值,写出抛物线的标准方程;(2)直线AB过M(﹣,0),设直线AB的方程为y=k(x+),代入抛物线方程y2=2px,消去y,整理得,解出x1、x2,将d=x1+,代入d=λp,得,+λ=,可知,,将x1、x2代入,即可解得,可证直线AB的斜率为定值.【解答】解:(1)由条件知,x1=1﹣,则A点坐标为(1﹣,1),代入抛物线方程得p=1,∴抛物线方程为y2=2x,(2)证明:设B(x2,y2),直线AB的方程为y=k(x+),将直线AB的方程代入y2=2px,消去y得:,解得:x1=,x2=.∵d=λp,∴,+λ=,,∴p=x2﹣x1=,∴,∴直线AB的斜率为定值.26.(10分)(2015•淮安模拟)在自然数列1,2,3,…,n中,任取k个元素位置保持不动,将其余n﹣k个元素变动位置,得到不同的新数列.由此产生的不同新数列的个数记为P n(k).(1)求P3(1)(2)求P4(k);(3)证明kP n(k)=n P n﹣1(k),并求出kP n(k)的值.【考点】数列的求和.【专题】等差数列与等比数列.【分析】(1)数列1,2,3中保持其中1个元素位置不动的排列只有1,3,2或3,2,1或2,1,3,即可得出;(2)类比(1)即可得出;(3):把数列1,2,…,n中任取其中k个元素位置不动,则有种;其余n﹣k个元素重新排列,并且使其余n﹣k个元素都要改变位置,则,可得,利用,即可得出.【解答】(1)解:∵数列1,2,3中保持其中1个元素位置不动的排列只有1,3,2或3,2,1或2,1,3,∴P3(1)=3;(2)解:=;(3)证明:把数列1,2,…,n中任取其中k个元素位置不动,则有种;其余n﹣k个元素重新排列,并且使其余n﹣k个元素都要改变位置,则有,故,又∵,∴.令,则a n=na n﹣1,且a1=1.于是a2a3a4…a n﹣1a n=2a1×3a2×4a3×…×na n﹣1,左右同除以a2a3a4…a n﹣1,得a n=2×3×4×…×n=n!∴.高考数学模拟试卷二第Ⅰ卷(必做题,共160分)??一、填空题:本大题共14小题,每小题5分,共70分 . 1. 已知{}2A x x =<,{}1B x x => ,则A B = ▲ .2. 已知复数z 满足(1i)2i z -=+,则复数z 的实部为 ▲ . 3. 函数5()log (9)f x x =+ 的单调增区间是 ▲ .4. 将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是 ▲ .5. 执行如图所示的伪代码,若输出的y 的值为13,则输入的x 的值是 ▲ .6. 一种水稻品种连续5年的平均单位面积产量(单位:t/hm2)分别为:9.4,9.7,9.8,10.3,10.8,则这组样本数据的方差为 ▲ .7. 已知函数()sin()(030)f x x ωϕωϕ=+<<<<π,.若4x π=-为函数()f x 的一个零点,3x π=为函数()f x 图象的一条对称轴,则ω的值为 ▲ . 8. 已知1==a b ,且()()22+⋅-=-a b a b ,则a 与b 的夹角为 ▲ .9. 已知() 0 αβ∈π,,,且()1tan 2αβ-=,1tan 5β=-,则tan α的值为 ▲ .10.已知关于x 的一元二次不等式2 >0ax bx c ++的解集为()1 5-,,其中a b c ,,为常数.则不等式2 0cx bx a ++≤的解集为 ▲ .11.已知正数x ,y 满足121x y +=,则22log log x y +的最小值为 ▲ .12.在平面直角坐标系xOy 中,已知圆C :22280x y x ++-=,直线l :(1) ()y k x k =-∈R 过定点A ,且交圆C 于点B ,D ,过点A 作BC 的平行线交CD 于点E ,则三角形AEC 的周长为 ▲ . 13.设集合{}*2n A x x n ==∈N ,,集合{}*n B x x b n ==∈N , 满足A B =∅,且*A B =N .若对任意的*n ∈N ,1n n b b +<,则2017b 为 ▲ .14.定义:{}max a b ,表示a ,b 中的较大者.设函数{}()max 11f x x x =-+,,2()g x x k =+,若函数()()y f x g x =-恰有4个零点,则实数k 的取值范围是 ▲ .(第5题)(第17题)二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知cos cos 02C C +=.(1)求C 的值.(2)若c =1,三角形ABC ,求a ,b 的值.16.(本小题满分14分)如图,在多面体ABC —DEF 中,若AB//DE ,BC//EF . (1)求证:平面ABC//平面DEF ;(2)已知CAB ∠是二面角C-AD-E 的平面角. 求证:平面ABC ⊥平面DABE . 17.(本小题满分14分)如图,长方形ABCD 表示一张6⨯12(单位:分米)的工艺木板,其四周有边框(图中阴影部分),中间为薄板.木板上一瑕疵(记为点P )到外边框AB ,AD 的距离分别为1分米,2分米. 现欲经过点P 锯掉一块三角形废料MAN ,其中M N ,分别在AB ,AD 上.设AM ,AN 的 长分别为m 分米,n 分米.(1)为使剩下木板MBCDN 的面积最大,试确 定m ,n 的值;(2)求剩下木板MBCDN 的外边框长度(MB , BC CD DN ,,的长度之和)的最大值.18.(本小题满分16分)AFED CB(第16题)如图,在平面直角坐标系xOy 中,设椭圆C :2221x y a +=(a >1).(1)若椭圆C 的焦距为2,求a 的值;(2)求直线1y kx =+被椭圆C 截得的线段长(用a ,k 表示);(3)若以A (0,1)为圆心的圆与椭圆C 总有4个公共点,求椭圆C 的离心率e 的 取值范围. 19.(本小题满分16分)已知函数32()2()f x x ax bx c a b c =+++∈R ,,. (1)若函数()f x 为奇函数,且图象过点(12)-,,求()f x 的解析式; (2)若1x =和2x =是函数()f x 的两个极值点. ①求a ,b 的值;②求函数()f x 在区间[03],上的零点个数.20.(本小题满分16分)设等差数列{}n a 与等比数列{}n b 共有m *( )m ∈N 个对应项相等. (1)若110a b =>,11110a b =>,试比较66a b ,的大小; (2)若34n a n =-,()12n nb -=--,求m 的值.(3)若等比数列{}n b 的公比0q >,且1q ≠,求证:3m ≠.【参考结论】若R 上可导函数()f x 满足()()f a f b =(a b <),则()a b ξ∃∈,,()0f ξ'=.(第18题)(第21-A 题)第II 卷(附加题,共40分)21.【选做题】本题包括A, B,C,D 四小题,每小题10分,请选定其中两小题,并在相应的答题区域内作答.A ,(选修4-1;几何证明选讲) 如图,四边形ABCD 是圆的内接四边形,BC BD =,BA 的延长线交CD 的延长线于点E .求证:AE 是四边形ABCDB .(选修4-2:矩阵与变换) 已知矩阵1002⎡⎤=⎢⎥⎣⎦A ,11201⎡⎤⎢⎥=⎢⎥⎣⎦B ,求矩阵AB 的逆矩阵.C .(选修4-4:坐标系与参数方程)在极坐标系中,求圆24sin 50ρρθ--=截直线π()3θρ=∈R所得线段长.D.(选修4-5:不等式选讲)求证:5. 【选做题】第22题、23题,每题10分,共计20分.22.在平面直角坐标系xOy 中,设点2(2)A a a ,,2(2)B b b ,,(12)C ,均在抛物线 22(0)y px p =>上,且90BCA ∠=︒. (1)求p 的值; (2)试用a 表示b ;(3)求直线5x =与直线AB 交点的纵坐标.23. (1)2n n +(2n n ∈*N ≥,)个不同数随机排成如下的一个三角形:k M ()1 k n k ∈*N ≤≤,是从上往下数第k 行中的最大数,n p 为12n M M M <<⋅⋅⋅<的概率. (1)求2p 的值;* * * * * * ……………………* * … * *(2)猜想n p 的表达式,并证明.参考答案一、填空题 1.()12,.A B =()12,.2.12. (2)(1)2i 13.1i (1)(1)2i i i z i i ++++===--+,则复数z 的实部为 12.3.(-9,+∞).函数5()log (9)f x x =+的单调增区间(-9,+∞).4. 536.点数之和是6包括(15)(24)(33)(42)(15),,,,,,,,,共5种情况,则所 求概率是536.5. 8.若613x =,则1326x =>,不符;若513x +=,则82x =>.6. 0. 244.这组数据的平均数为10,方差为222221(109.4)(109.7)(109.8)(1010.3)(1010.8)0.245⎡⎤-+-+-+-+-=⎣⎦. 7. 76.函数()f x 的周期4(3T π=⨯)43π7π+=,又Τω2π=,所以ω的值为76. 8. π.依题意,2220+⋅-=a a b b ,又1==a b ,故1⋅=a b ,则a 与b 的夹角为π.9. 113.()()()()11tan tan 25tan tan 111tan tan 125αββααββαββ--+=-+===⎡⎤⎣⎦---⨯-113. 10. 115⎡⎤-⎢⎥⎣⎦,.因为不等式2 >0ax bx c ++的解集为()1 5-,,所以(1)(5)>0a x x +-,且0a <,即245>0ax ax a --,则45b a c a =-=-,,则2 0cx bx a ++≤即为254 0ax ax a --+≤,从而254 1 0x x +-≤,故解集为115⎡⎤-⎢⎥⎣⎦,. 11.3.由121x y +=得,02y x y =>-,则()222222222log log log log log 22y y x y xy y y -++===--()224log 24log 832y y ⎡⎤=-++=⎢⎥-⎣⎦≥.12. 5.易得圆C :22(1)9x y -+=,定点A (10)-,,EA ED =,则3EC EA EC ED +=+=,从而三角形AEC 的周长为5.13. 2027.易得数列{}n b :1,3,5,6,7,9,10,11,12,13,14,15,17,…,则1137++++…12121k k k ++-=--,当10k =,12120372017k k +--=>,2037201720-=,从而第2017项为1121202027--=. 14.()()5114-∞-,,.{}()max 11f x x x =-+, 2()()g x x k k =+∈R 恰有4个零点,当54k =时,()f x 与()g x 相切.如图,()514,,.二、解答题15. (1)因为cos cos 02C C +=,所以22cos cos 1022C C +-=, 解得cos 12C =-或1cos 22C =, 又0C π<< ,故22C π0<<, 从而23C π=,即23C π=. (2)由余弦定理2222cos c a b ab C =+-得,221a b ab ++=, ①由三角形ABC 的面积1sin 2ab C =得, 13ab =, ② 由①②得,a b =. 16. (1)因为AB//DE ,又AB ⊄平面DEF ,DE ⊂平面DEF ,所以AB//平面DEF , 同理BC//平面DEF , 又因为ABBC C =,OAB BC ⊂,平面ABC ,所以平面ABC//平面DEF. (2)因为CAB ∠是二面角C-AD-E 的平面角,所以CA AD BA AD ⊥⊥,, 又因为CA AB A =, AB ,CA ⊂平面ABC ,所以DA ⊥平面ABC ,又DA ⊂平面DABE ,所以平面ABC ⊥平面DABE. 17. (1)过点P 分别作AB ,AD 的垂线,垂足分别为E ,F , 则△PNF 与△MPE 相似,从而PF NFEM PE =,所以2121n m -=-, 即211m n +=. 欲使剩下木板的面积最大,即要锯掉的三角形废料MAN 的面积 12S mn=最小.由211m n =+≥得,8mn ≥ (当且仅当21m n =,即4m =,2n =时, “=”成立),此时min 4S =(平方分米). (2)欲使剩下木板的外边框长度最大,即要m n +最小.由(1)知,()()212333n m m n m n m n m n +=++=++=≥,(当且仅当2n mm n =即2m =,1n =时,“=”成立),答:此时剩下木板的外边框长度的最大值为33-分米. 18. (1)由椭圆C :2221x y a +=(a >1)知,焦距为2=,解得a =因为a >1,所以a .(第17题)。
高中高考数学模拟考试卷二模试卷课标 试题

2021年普通高中高考数学模拟考试卷(二模试卷)本套试卷分第一局部〔选择题〕和第二局部〔非选择题〕两局部.第一局部1至2页,第二局部3至4页,满分是150分,考试时间是是120分钟.第一局部〔选择题,一共50分〕参考公式: 假如事件A 、B 互斥,那么球的外表积公式 ()()()P A B P A P B +=+,24πS R =假如事件A 、B 互相HY ,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅,一、选择题:本大题一一共10小题,每一小题5分,一共50分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.{}R x x y y x A ∈==,|),(2,{}R x x y y x B ∈==,|),(,那么B A 的元素个数为2.=-++-→)1211(lim 21x x xA .21- B .2-C .1-D .不存在3.设复数:2121),(2,1z z R b bi z i z 若∈+=+=为实数,那么b =A .2B.1C.-1D.-24.在平面直角坐标系中,函数)0,(31≠∈=-x R x x y 的图象A .关于x 轴对称B .关于原点轴对称C .关于y 轴对称D .关于直线x y =轴对称△ABC 中,D 分BC 21||=DC BD ,那么=AD A .AC AB 2+ B .AC AB +2 C .AC AB 3132+ D .AC AB 3231+ 6.设三棱锥的3个侧面两两互相垂直,且侧棱长均为32,那么其外接球的外表积为A.π48B. π36C. π32D.π127.集合A {}{}R B ∈>=≤≤>=θθθθπθθθθ,tan sin |,20,cos sin |,那么B A 为区间 A .),2(ππB. )43,4(ππ C. )6,0(πD.)45,43(ππ 8.设a,b,c 表示三条直线,βα,表示两个平面,以下命题中不正确的选项是A . ⎭⎬⎫⊥βαα//a β⊥⇒a B.c b a c b a ⊥⇒⎪⎭⎪⎬⎫⊂⊥内的射影在是ββb C. ααα////c c b c b ⇒⎪⎭⎪⎬⎫⊄⊂ D. αα⊥⇒⎭⎬⎫⊥b a b a //9. 设),(00y x P 是双曲线12222=+by a x 上任一点,过P 作双曲线两条渐近线的平行线分别交另一条渐近线于Q 、R ,O 为坐标原点,那么平行四边形OQPR 的面积为 A .b B. ab 2 C.ab 2110.定义在R 上的函数)(x f ,满足),)(()()(R y x y f x f y x f ∈+=+,且2)1(=f ,那么在下面四个式子 ①)1()1(2)1(nf f f +++ ②⎥⎦⎤⎢⎣⎡+2)1(n n f ③)1(+n n ④)1()1(f n n +中与)()2()1(n f f f ++相等的是A .①③ B. ①② C. ①②③④ D.①②③第二局部〔非选择题,一共100分〕二、填空题:本大题一一共4小题,每一小题5分,一共20分,把答案填在答题卷相应题目上.b x y +=31和3-=bx y 互为反函数,那么a = ,=b . 12.一盒子中有散落的围棋棋子10粒,其中7粒黑子,3粒白子,从中任意取出2粒,假设ξ表示获得白子的个数,那么E ξ等于 .13.n x x x )1(-的展开式中第5项为含有x1的项,那么展开式中倒数第二项的系数是 .⎪⎩⎪⎨⎧≥-≤≤≤≤12020y x y x 下, 22(1)(1)Z x y =-+-的取值范围是________ . 三、解答题:本大题一一共6小题,一共80分.解容许写出文字说明、证明过程或者演算步骤.15.〔此题满分是12分〕函数a x x x f ++=23cos 23sin3)(恒过点)1,3(π-. 〔1〕求a 的值;〔2〕求函数)(x f y =的最小正周期及单调递减区间.16.〔此题满分是13分〕我某校要进展一次月考,一般考生必须考5 门学科,其中语、数、英、综合这四科是必考科目,另外一门在物理、化学、政治、历史、生物、地理、英语Ⅱ中选择.为节时间是,决定每天上午考两门,下午考一门学科,三天半考完.〔1〕假设语、数、英、综合四门学科安排在上午第一场考试,那么“考试日程安排表〞有多少种不同的安排方法;〔2〕假如各科考试顺序不受限制,求数学、化学在同一天考的概率是多少?17.〔此题满分是13分〕一个计算装置有一个数据入口A 和一输出运算结果的出口B ,将自然数列{}n )1(≥n 中的各数依次输入A 口,从B 口得到输出的数列{}n a ,结果说明:①从 A 口输入1=n 时,从B 口得311=a ;②当2≥n 时,从A 口输入n ,从B 口得的结果n a 是将前一结果1-n a 先乘以自然数列{}n 中的第1-n 个奇数,再除以自然数列{}n 中的第1+n 个奇数.试问:⑴从 A 口输入2和3时,从B 口分别得到什么数? ⑵从 A 口输入100时,从B 口得到什么数?说明理由.18、〔此题满分是14分〕在棱长为2的正方体ABCD —1111D C B A 中E 、F 分别是棱AB 、BC 上的动点,且AE=BF . 〔1〕求证:E C F A 11⊥;〔2〕当AE 为何值时,三棱锥BEF B 1-的体积最大,求此时二面角1B —EF —B 的大小〔结果用反三角函数表示〕.A 1A B CDD 1C 1B 1F E19、〔此题满分是14分〕如图,E 、F 为平面上的两个定点6||=EF ,10||=FG ,且EG EH =2,HP ·0=GE ,〔G 为动点,P 是HP 和GF 的交点〕〔1〕建立适当的平面直角坐标系求出点P 的轨迹方程;〔2〕假设点P 的轨迹上存在两个不同的点A 、B ,且线段AB 的中垂线与EF 〔或者EF 的延长线〕相交于一点C ,那么||OC <59〔O 为EF 的中点〕.20、〔本小题满分是14分〕设函数m n x m x x x f y )()(()(--==、∈n R 〕.〔1〕假设0,≠≠mn n m ,过两点〔0,0〕、〔m ,0〕的中点作与x 轴垂直的直线,与函数)(x f y = 的图象交于点))(,(00x f x P ,求证:函数)(x f y =在点P 处的切线过点〔n ,0〕;〔2〕假设0(≠=m n m 〕,且当]1||,0[+∈m x 时22)(m x f <恒成立,务实数m 的取值范围.GFPHE参考答案一、选择题:本大题一一共10小题,每一小题5分,一共50分.二、填空题:本大题一一共4小题,每一小题5分,一共20分. 11.1,3 12.5313.6- 14.1[,2]2三、解答题:15、〔此题满分是12分〕 解〔1〕依题意得1)]3(23cos[)]3(23sin[3=+-⨯+-⨯a ππ-------------------2分解得31+=a---------------------------4分〔2〕由a x x x f ++=23cos 23sin3)(31)623sin(2+++=πx ----6分 ∴函数)(x f y =的最小正周期34232ππ==T -------8分 由23262322πππππ+≤+≤+k x k ,得 98349234ππππ+≤≤+k x k )(Z k ∈---------10分 ∴函数)(x f y =的单调递减区间为)](9834,9234[Z k k k ∈++ππππ----12分16、解:〔1〕语、数、英、综合四门学科安排在上午第一场考试一共有:44A 种排法, -------------1分其它七科一共有77A 种排法, -------------2分由44A ⨯77A =120960,得 -------------3分“考试日程安排表〞有120960种不同的安排方法.-------------4分〔2〕数学、化学安排第四天上午考一共有:9922A A ⨯ 种方法,---------6分安排前三天同一天考一共有:992313A A C ⨯⨯种方法 ---------8分∴所求的概率1121011233211119923139922=⨯⨯⨯+=⨯⨯+⨯=A A A C A A P -----12分 17、〔此题满分是13分〕 解:〔1〕由题意知 311311⨯==a 5311515112⨯==÷⨯=a a -----------2分7517323⨯=÷⨯=a a -------------3分 所以从 A 口输入2和3时,从B 口分别得到151和351-------4分〔2〕猜测)()12)(12(1*N m m m a m∈+-=---------------6分下面用数学归纳法证明ⅰ〕当1=m 时,猜测显然成立. ---------------7分ⅱ〕假设k m =时,猜测成立, 即)12)(12(1+-=k k a k,那么1+=km 时,=+1k a k a k k 3212+-=)12)(12(13212+-⋅+-k k k k =)32)(12(1++k k ---------------10分猜测成立,因此对一切正整数m ,猜测也成立 当100=m 时,即在从 A 口输入2021时,从B 口得到399991)11002)(11002(1100=+⨯-⨯=a ---------------13分18、〔此题满分是14分〕〔1〕证明:如图,以D 为原点建立空间直角坐标系.-------1分设 AE=BF=x ,那么)2,0,2(1A 、)0,2,2(x F -、)2,2,0(1C 、)0,,2(x E , ------------------3分 {}2,2,1--=x F A ,{}2,2,21--=x E C∵F A 1·E C 104)2(22=+-+-=x x ,-----5分 ∴F A 1⊥EC 1----------------6分〔2〕解:记x BF =,y BE =,那么2=+y x ,-----8分三棱锥BEF B -1的体积31)2(3131221312=+≤=⨯⨯=y x xy xy V当且仅当1==y x时,等号成立故当AE=1时,三棱锥BEF B -1的体积获得最大值-----10分此时,1==BF BE ,过B 作EF BG ⊥交EF 于G ,连G B 1,可知EFG B ⊥1,∴GB B 1∠是二面角B EF B --1的平面角,------12分在直角三角形BEF 中,直角边1==BF BE ,BG 是斜边上的高,∴22=BG ,22tan 11==∠BGBB GB B , 故二面角B EF B --1的大小为22arctan 。
2021-2022年高考数学模拟试题(一)理(含解析)

2021-2022年高考数学模拟试题(一)理(含解析)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={x 丨≥0,x∈R},N={y 丨y=3x ²+1,x∈R},则M∩N 为( ) A {x 丨x >1} B {x 丨x≥1} C {x 丨x >1或x≤0} D {x 丨0≤x≤1}2. 已知是实数,是虚数单位,若是纯实数,则=( )A. B. C. D.3. 已知命题p :存在0≤x≤π,cos2x+cosx-m=0为真命题,则实数m 的取值范围是( ) A[-,-1] B[-,2] C[-1,2] D[-,+∞]4.如图,若输入n 的值为4,则输出A 的值为A.3B.-2 C- D开始输出输入A 1,3i A ==1AA A A+=-1i i =+结束是否n?i n <5.函数f (x )=x 丨x+a 丨+b 是奇函数的充要条件为( ) A ab=0 B a+b=0 C a²+b²=0 D a=b6.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三点,动点P 满足=+λ(),λ∈(0,+),则动点P 的轨迹一定经过△ABC 的( )A 重心B 垂心C 外心D 内心7.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为的菱形,则该棱柱的体积等于( )A B C D8.已知函数f (x )=在点(1,2)处的切线与f (x )的切线的图像有三个公共点,则a 的范围( )A[-8,-4+2) B (-4-2,-4+2) C (-4+2,8] D (-4-2,-8]9.等差数列{a }的前n 项和为S ,公差为d ,已知(a+1)³+xx(a+1)=1, (a+1)³+xx(a+1)=-1,则下列结论正确的是( )A d <0,S=xxB d >0,S=2013C d <0,S=-xxD d >0,S=-xx10. 某校在高二年级开设选修课其中数学选修课开了三个班.选课结束后,有四名选修英语的同学要求改修数学,但数学选修每班至多可再接收两名同学,那么安排好这四名同学的方案有( ) A 72种 B 54种 C 36种 D18种11.如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作,则、两点间的球面距离为( )αCAODBPA 、B 、C 、D 、12.F 是双曲线C :(a >0,b >0)的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于B ,若2=,则C 的离心率为( )A B 2 C D第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分。
2021年新高考数学模拟试卷全国卷(附参考答案和详解)

绝密★启用前2021年普通高等学校招生模拟考试(3)数学(适用新高考地区)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 是虚数单位,复数3i1i+=-( )A.12i +B.24i +C.12i --D.2i -2.设常数a ∈R ,集合{|(1)()0}A x x x a =--≥,{|1}B x x a =≥-,若A B =R ,则a 的取值范围为( )A.(,2)-∞B.(,2]-∞C.(2,)+∞D.[2,)+∞3.已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=( )A.2B.1C.0D.2-4.设向量=a (1,cos )θ与b (1,2cos )θ=-垂直,则cos2θ等于( )A.2 B.12C.0D.1-5.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则“1k =”是“OAB 的面积为12”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件6.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.2πa B.27π3a C.211π3a D.25πa7.已知命题122121:,,(()())()0p x x f x f x x x ∀∈--≥R ,则p ⌝是( ) A.122121,,(()())()0x x f x f x x x ∃∈--≤R B.122121,,(()())()0x x f x f x x x ∀∈--≤R C.122121,,(()())()0x x f x f x x x ∃∈--<RD.122121,,(()())()0x x f x f x x x ∀∈--<R8.函数()2ln f x x =的图像与函数2()45g x x x =-+的图像的交点个数为( ) A.3B.2C.1D.0二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图.根据这两幅图中的信息,下列统计结论中正确的有( )A.样本中的女生数量等于男生数量B.样本中有理科意愿的学生数量多于有文科意愿的学生数量C.样本中的男生偏爱理科D.样本中的女生偏爱文科10.已知两定点(1,0)A -,(1,0)B ,若直线l 上存在点M ,使得||||3MA MB +=,则称直线l 为“M 型直线”.则下列给出的直线中,是“M 型直线”的有( )A.2x =B.3y x =+C.21y x =--D.23y x =+11.如图,在正方体1111-ABCD A B C D 中,M ,N 分别是1BC ,1CD 的中点,则下列判断正确的为( )A.MN 与1CC 垂直B.MN 与AC 垂直C.MN 与BD 平行D.MN 与11A B 平行12.下列结论中正确的有( ) A.命题:”(0,2)x ∀∈,33x x >“的否定是“(0,2)x ∃∈,33x x ≤” B.若直线l 上有无数个点不在平面α内,则l αC.若随机变量ξ服从正态分布2(1,)N σ,且(2)0.8P ξ<=,则(01)0.2P ξ<<=D.等差数列{}n a 的前n 项和为n S ,若43a =,则721S =第Ⅱ卷本卷包括填空题和解答题两部分,共90分. 三、填空题:本题共4小题,每小题5分。
高考数学模拟试卷复习试题高三模拟卷理科数学2

高考数学模拟试卷复习试题高三模拟卷理科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求。
1.已知集合A={(x,y)|x,y为实数,且x2+y2=4},集合B={(x,y)|x,y为实数,且y=x-2},则A∩B的元素个数为()A.0B.1C.2D.32.已知i是虚数单位,m和n都是实数,且有=1+ni,则复数m+ni的倒数是()A.+B.C.+D.3. 在空间中,下列命题正确的是 ( ).A.若两直线a,b与直线l所成的角相等,那么a∥bB.空间不同的三点A、B、C确定一个平面C.如果直线l//平面且l//平面,那么//D.若直线a与平面M没有公共点,则直线a//平面M4. 已知随机变量X服从正态分布N(1,σ2),若P(X≤2)=0.72,则P(X≤0)=()A. 0.22B. 0.28C. 0.36D. 0.645. (改编)秦九韶是我国南宋时期的数学家,普州(现安岳县)人,,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求多项式的一个实例.若输人n,x的值分别为4,2 ,则输出0的值为( )A.12B.13C.25D.516.已知实数x,y满足 ,则的最大值为()D.6A.5B. C.7.将多项式a6x6+a5x5+…+a1x+a0分解因式得(x﹣2)(x+2)5,则a5=()A.8B.10C.12D.18.曲线y=2xlnx在x=e处的切线与坐标轴围成的三角形的面积为()C.e2D.2e2A.B.9.某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是()A. 80+8B. 80+4C. 808D. 80410.四色猜想是世界三大数学猜想之一,1976年被美国数学家阿佩尔与哈肯证明,称为四色定理其内容是:“任意一张平面地图只用四种颜色就能使具有共同边界的国家涂上不同的颜色”用数学语言表示为“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4四个数字之一标记,而不会使相邻的两个区域得到相同的数字”如图,网格纸上小正方形的边长为1,粗实线围成的各区域上分别标有数字1,2,3,4的四色地图符合四色定理,区域A和区域B标记的数字丢失若在该四色地图上随机取一点,则恰好取在标记为1的区域的概率所有可能值中,最大的是()A.B.C.D.11.设双曲线C:=l(a>0,b>0)的右焦点为F,O为坐标原点,若双曲线及其渐近线上各存在一点使得四边形OPFQ为矩形,则其离心率为()A.B.2C.D.12.已知M={α|f(α)=0},N={β|g(β)=0},若存在α∈M,β∈N,使得|α﹣β|<n,则称函数f(x)与g(x)互为“n度零点函数“,若f(x)=32﹣x﹣1与g(x)=x2﹣aex 互为“1度零点函数“,则实数a的取值范围为()A.(,]B.(,]C.[,)D.[,)二、填空题:本大题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.【热点题型】题型一 由数列的前几项求数列的通项例1、写出下面各数列的一个通项公式:(1)3,5,7,9,…; (2)12,34,78,1516,3132,…;(3)-1,32,-13,34,-15,36,…;(4)3,33,333,3333,….【提分秘籍】根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征,应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【举一反三】(1)数列-1,7,-13,19,…的一个通项公式是an =________.(2)数列{an}的前4项是32,1,710,917,则这个数列的一个通项公式是an =________.题型二由数列的前n 项和Sn 求数列的通项例2 已知下面数列{an}的前n 项和Sn ,求{an}的通项公式:(1)Sn =2n2-3n ;(2)Sn =3n +b.【提分秘籍】数列的通项an 与前n 项和Sn 的关系是an =⎩⎪⎨⎪⎧S1,n =1,Sn -Sn -1,n≥2.当n =1时,a1若适合Sn -Sn -1,则n =1的情况可并入n≥2时的通项an ;当n =1时,a1若不适合Sn -Sn -1,则用分段函数的形式表示.【举一反三】已知数列{an}的前n 项和Sn =3n2-2n +1,则其通项公式为________________.题型三 由数列的递推关系求数列的通项公式例3 (1)设数列{an}中,a1=2,an +1=an +n +1,则通项an =________.(2)数列{an}中,a1=1,an +1=3an +2,则它的一个通项公式为an =________.(3)在数列{an}中,a1=1,前n 项和Sn =n +23an ,则{an}的通项公式为________.【提分秘籍】已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现an =an -1+m 时,构造等差数列;当出现an =xan -1+y 时,构造等比数列;当出现an =an-1+f(n)时,用累加法求解;当出现an an -1=f(n)时,用累乘法求解. 【举一反三】(1)已知数列{an}满足a1=1,an =n -1n ·an -1(n ≥2),则an =________.(2)已知数列{an}的前n 项和为Sn ,且Sn =2an -1(n ∈N*),则a5等于( ) A .-16B .16C .31D .32【高考风向标】【高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于.1.(·江西卷)已知首项都是1的两个数列{an},{bn}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =an bn ,求数列{cn}的通项公式;(2)若bn =3n -1,求数列{an}的前n 项和Sn.2.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.3.(·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式; (2)证明1a1+1a2+…+1an <32.4.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*).(1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论.5.(·安徽卷)如图1-3所示,互不相同的点A1,A2,…,An ,…和B1,B2,…,Bn ,…分别在角O 的两条边上,所有AnBn 相互平行,且所有梯形AnBnBn +1An +1的面积均相等,设OAn =an ,若a1=1,a2=2,则数列{an}的通项公式是________.图1-36.(·辽宁卷)下面是关于公差d>0的等差数列{}an 的四个命题:p1:数列{}an 是递增数列;p2:数列{}nan 是递增数列;p3:数列⎩⎨⎧⎭⎬⎫an n 是递增数列; p4:数列{}an +3nd 是递增数列.其中的真命题为( )A .p1,p2B .p3,p4C .p2,p3D .p1,p47.(·全国卷)等差数列{an}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.【高考押题】1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是an 等于( )A.-1n +12B .cos nπ2C .cos n +12πD .cos n +22π2.已知数列{an}中,a1=1,若an =2an -1+1(n≥2),则a5的值是( )A .7B .5C .30D .313.若数列{an}的通项公式是an =(-1)n(3n -2),则a1+a2+…+a10等于( )A .15B .12C .-12D .-154.若Sn 为数列{an}的前n 项和,且Sn =n n +1,则1a5等于( ) A.56B.65C.130D .305.已知数列{an}满足a1=1,an +1an =2n(n ∈N*),则a10等于( )A .64B .32C .16D .86.若数列{an}满足关系:an +1=1+1an ,a8=3421,则a5=________.7.数列{an}中,a1=1,对于所有的n≥2,n ∈N*,都有a1·a2·a3·…·an =n2,则a3+a5=________.8.已知{an}是递增数列,且对于任意的n ∈N*,an =n2+λn 恒成立,则实数λ的取值范围是________.9.已知数列{an}的前n 项和Sn =2n +1-2.(1)求数列{an}的通项公式;(2)设bn =an +an +1,求数列{bn}的通项公式.10.数列{an}的通项公式是an =n2-7n +6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
若过点11,2P ⎛⎫ ⎪⎝⎭的直线l 与此圆交于,A B 两点,圆心为C ,则当ACB ∠最小时,直线l 的方程为。
3.(武汉市部分学校 新高三调研、文、15)圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 与点P 重合)沿圆周逆时针滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为_________.三.拔高题组1.(东北师大附中、吉林市第一中学校等高三五校联考、文、7)过点),(a a A 可作圆0322222=-++-+a a ax y x 的两条切线,则实数a 的取值范围为( )A .3-<a 或1>aB .23<aC .13<<-a 或23>a D .3-<a 或231<<a 2.(大庆铁人中学高三第一阶段考试、文、7)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为( )A .53-或35-B .32-或23-C .54-或45-D .43-或34- 3.(齐齐哈尔市实验中学高三期末考试、文、9)若),(y x P 是直线)0(04>=++k y kx 上一动点,PB PA ,是圆02:22=-+y y x C 的两条切线,B A ,是切点,若四边形PACB 面积的最小值是2,则=k ( )A. 3B. 221 C. 22 D. 2 4.(云南师范大学附属中学月考、文、12)设直线l 与抛物线x2=4y 相交于A, B 两点,与圆C :222(5)x y r +-= (r>0)相切于点M,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B. (1,4)C. (2, 3)D. (2, 4)5.(玉溪市第一中学高三月考、文、16)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是高考模拟复习试卷试题模拟卷【高频考点解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系.【热点题型】题型一 等差数列基本量的运算例1、(1)在数列{an}中,若a1=-2,且对任意的n ∈N*有2an +1=1+2an ,则数列{an}前10项的和为( )A .2B .10C.52D.54(2)(·课标全国Ⅰ)设等差数列{an}的前n 项和为Sn ,Sm -1=-2,Sm =0,Sm +1=3,则m 等于( )A .3B .4C .5D .6答案 (1)C (2)C【提分秘籍】(1)等差数列的通项公式及前n 项和公式,共涉及五个量a1,an ,d ,n ,Sn ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【举一反三】(1)若等差数列{an}的前5项和S5=25,且a2=3,则a7等于( )A .12B .13C .14D .15(2)记等差数列{an}的前n 项和为Sn ,若a1=12,S4=20,则S6等于( )A .16B .24C .36D .48(3)已知等差数列{an}的前n 项和为Sn ,且满足S33-S22=1,则数列{an}的公差是( )A.12B .1C .2D .3答案 (1)B (2)D (3)C解析 (1)由题意得S5=5a1+a52=5a3=25,故a3=5,公差d =a3-a2=2,a7=a2+5d =3+5×2=13.(2)∵S4=2+6d =20,∴d =3,故S6=3+15d =48.(3)∵Sn =n a1+an 2,∴Sn n =a1+an 2,又S33-S22=1,得a1+a32-a1+a22=1,即a3-a2=2, ∴数列{an}的公差为2.题型二 等差数列的性质及应用例2、(1)设等差数列{an}的前n 项和为Sn ,若S3=9,S6=36,则a7+a8+a9等于( )A .63B .45C .36D .27(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10(3)已知Sn 是等差数列{an}的前n 项和,若a1=-,S -S =6,则S =________.答案 (1)B (2)A (3)解析 (1)由{an}是等差数列,得S3,S6-S3,S9-S6为等差数列.即2(S6-S3)=S3+(S9-S6),得到S9-S6=2S6-3S3=45,故选B.【提分秘籍】在等差数列{an}中,数列Sm,S2m-Sm,S3m-S2m也成等差数列;{Snn}也是等差数列.等差数列的性质是解题的重要工具.【举一反三】(1)设数列{an}是等差数列,若a3+a4+a5=12,则a1+a2+…+a7等于()A.14B.21C.28D.35(2)已知等差数列{an}的前n项和为Sn,且S10=10,S20=30,则S30=________.答案(1)C(2)60解析(1)∵a3+a4+a5=3a4=12,∴a4=4,∴a1+a2+…+a7=7a4=28.(2)∵S10,S20-S10,S30-S20成等差数列,∴2(S20-S10)=S10+S30-S20,∴40=10+S30-30,∴S30=60.题型三等差数列的判定与证明例3、已知数列{an}中,a1=35,an=2-1an-1(n≥2,n∈N*),数列{bn}满足bn=1an-1(n∈N*).(1)求证:数列{bn}是等差数列;(2)求数列{an}中的最大项和最小项,并说明理由.(1)证明 因为an =2-1an -1(n≥2,n ∈N*), bn =1an -1(n ∈N*), 所以bn +1-bn =1an +1-1-1an -1=12-1an -1-1an -1=an an -1-1an -1=1. 又b1=1a1-1=-52. 所以数列{bn}是以-52为首项,1为公差的等差数列.(2)解 由(1)知bn =n -72, 则an =1+1bn =1+22n -7. 设f(x)=1+22x -7, 则f(x)在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,an 取得最小值-1,当n =4时,an 取得最大值3.【提分秘籍】等差数列的四个判定方法:(1)定义法:证明对任意正整数n 都有an +1-an 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2an +1=an +an +2后,可递推得出an +2-an +1=an +1-an =an -an -1=an -1-an -2=…=a2-a1,根据定义得出数列{an}为等差数列.(3)通项公式法:得出an =pn +q 后,得an +1-an =p 对任意正整数n 恒成立,根据定义判定数列{an}为等差数列.(4)前n 项和公式法:得出Sn =An2+Bn 后,根据Sn ,an 的关系,得出an ,再使用定义法证明数列{an}为等差数列.【举一反三】(1)若{an}是公差为1的等差数列,则{a2n -1+2a2n}是( )A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)在数列{an}中,若a1=1,a2=12,2an +1=1an +1an +2(n ∈N*),则该数列的通项为( )A .an =1nB .an =2n +1C .an =2n +2D .an =3n答案 (1)C (2)A【高考风向标】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【答案】B【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【答案】5【解析】若这组数有21n +个,则11010n a +=,212015n a +=,又12112n n a a a +++=,所以15a =; 若这组数有2n 个,则1101022020n n a a ++=⨯=,22015n a =,又121n n n a a a a ++=+,所以15a =; 故答案为5【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【答案】9【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.【答案】2,13- 【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.【答案】1【解析】因为数列{an}是等差数列,所以a1+1,a3+3,a5+5也成等差数列.又 a1+1,a3+3,a5+5构为公比为q 的等比数列,所以a1+1,a3+3,a5+5为常数列,故q =1.2.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.【答案】8【解析】∵a7+a8+a9=3a8>0,a7+a10=a8+a9<0,∴a8>0,a9<0,∴n =8时,数列{an}的前n 项和最大.3.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .14 【答案】C【解析】设等差数列{an}的公差为d ,由等差数列的前n 项和公式,得S3=3×2+3×22d =12,解得d =2,则a6=a1+(6-1)d =2+5×2=12.4.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.【解析】(1)设数列{an}的公差为d , 依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d)2=2(2+4d),化简得d2-4d =0,解得d =0或d =4. 当d =0时,an =2;当d =4时,an =2+(n -1)·4=4n -2.从而得数列{an}的通项公式为an =2或an =4n -2.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 【解析】(1)因为{an}是递增数列,所以an +1-an =|an +1-an|=pn.而a1=1,因此a2=p +1,a3=p2+p +1.又a1,2a2,3a3成等差数列,所以4a2=a1+3a3,因而3p2-p =0,解得p =13或p =0.当p =0时,an +1=an ,这与{an}是递增数列矛盾,故p =13.(2)由于{a2n -1}是递增数列,因而a2n +1-a2n -1>0,于是(a2n +1-a2n)+(a2n -a2n -1)>0.① 因为122n <122n -1,所以|a2n +1-a2n|<|a2n -a2n -1|.②由①②知,a2n -a2n -1>0,因此a2n -a2n -1=⎝⎛⎭⎫122n -1=(-1)2n22n -1.③因为{a2n}是递减数列,同理可得,a2n +1-a2n<0,故a2n +1-a2n =-⎝⎛⎭⎫122n=(-1)2n +122n .④ 由③④可知,an +1-an =(-1)n +12n. 于是an =a1+(a2-a1)+(a3-a2)+…+(an -an -1)=1+12-122+…+(-1)n 2n -1=1+12·1-⎝⎛⎭⎫-12n -11+12=43+13·(-1)n 2n -1.故数列{an}的通项公式为an =43+13·(-1)n2n -1.6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则( ) A .d<0 B .d>0 C .a1d<0 D .a1d>0 【答案】C【解析】令bn =2a1an ,因为数列{2a1an}为递减数列,所以bn +1bn =2a1an +12a1an =2a1(an +1-an)=2a1d<1,所得a1d<0.7.(·全国卷)等差数列{an}的前n 项和为Sn.已知a1=10,a2为整数,且Sn≤S4. (1)求{an}的通项公式;(2)设bn =1anan +1,求数列{bn}的前n 项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n 项和为Sn ,a1=1,an≠0,anan +1=λSn -1,其中λ为常数.(1)证明:an +2-an =λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n 项和为Sn ,且S1,S2,S4成等比数列. (1)求数列{an}的通项公式;(2)令bn =(-1)n -14n anan +1,求数列{bn}的前n 项和Tn.【解析】 (1)因为S1=a1,S2=2a1+2×12×2=2a1+2, S4=4a1+4×32×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1, 所以an =2n -1. (2)由题意可知, bn =(-1)n -14nanan +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,Tn =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+⎭⎫12n -1-⎝⎛⎭⎫12n -1+12n +1=1-12n +1=2n2n +1. 当n 为奇数时,Tn =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以Tn =⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或Tn =2n +1+(-1)n -12n +1 10.(·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.【答案】-12【解析】∵S2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,S1,S2,S4成等比数列, ∴(2a1-1)2=a1(4a1-6),解得a1=-12.12.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论. 【解析】(1)方法一:a2=2,a3=2+1. 再由题设条件知(an +1-1)2=(an -1)2+1.从而{(an -1)2}是首项为0,公差为1的等差数列, 故(an -1)2=n -1,即an =n -1+1(n ∈N*). 方法二:a2=2,a3=2+1.可写为a1=1-1+1,a2=2-1+1,a3=3-1+1.因此猜想an =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即ak =k -1+1,则ak +1=(ak -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以an =n -1+1(n ∈N*).(2)方法一:设f(x)=(x -1)2+1-1,则an +1=f(an). 令c =f(c),即c =(c -1)2+1-1,解得c =14. 下面用数学归纳法证明命题 a2n<c<a2n +1<1.当n =1时,a2=f(1)=0,a3=f(0)=2-1,所以a2<14<a3<1,结论成立. 假设n =k 时结论成立,即a2k<c<a2k +1<1. 易知f(x)在(-∞,1]上为减函数,从而 c =f(c)>f(a2k +1)>f(1)=a2,即 1>c>a2k +2>a2.再由f(x)在(-∞,1]上为减函数,得c =f(c)<f(a2k +2)<f(a2)=a3<1,故c<a2k +3<1,因此a2(k +1)<c<a2(k +1)+1<1,这就是说,当n =k +1时结论成立. 综上,存在 c =14使a2n<C<a2a +1对所有n ∈N*成立. 方法二:设f(x)=(x -1)2+1-1,则an +1=f(an). 先证:0≤an≤1(n ∈N*). ① 当n =1时,结论明显成立. 假设n =k 时结论成立,即0≤ak≤1. 易知f(x)在(-∞,1]上为减函数,从而 0=f(1)≤f(ak)≤f(0)=2-1<1.即0≤ak +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a2n<a2n +1(n ∈N*). ②当n =1时,a2=f(1)=0,a3=f(a2)=f(0)=2-1,所以a2<a3,即n =1时②成立. 假设n =k 时,结论成立,即a2k<a2k +1. 由①及f(x)在(-∞,1]上为减函数,得 a2k +1=f(a2k)>f(a2k +1)=a2k +2, a2(k +1)=f(a2k +1)<f(a2k +2)=a2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N*成立. 由②得a2n<a22n -2a2n +2-1, 即(a2n +1)2<a22n -2a2n +2, 因此a2n<14.③又由①②及f(x)在(-∞,1]上为减函数,得f(a2n)>f(a2n +1),即a2n +1>a2n +2. 所以a2n +1>a22n +1-2a2n +1+2-1,解得a2n +1>14.④ 综上,由②③④知存在c =14使a2n<c<a2n +1对一切n ∈N*成立.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为( )图1-3A .16+8πB .8+8πC .16+16πD .8+16π 【答案】A【解析】由三视图可知该组合体下半部分是一个半圆柱,上半部分是一个长方体,故体积为V =2×2×4+12×π×22×4=16+8π.14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n 项和为Sn ,若Sm -1=-2,Sm =0,Sm +1=3,则m =( )A .3B .4C .5D .6 【答案】C15.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________. 【答案】20【解析】方法一:a3+a8=2a1+9d =10,而3a5+a7=3(a1+4d)+a1+6d =2(2a1+9d)=20. 方法二:3a5+a7=2a5+(a5+a7)=2a5+2a6=2(a5+a6)=2(a3+a8)=20.16.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n 项的最大值记为An ,第n 项之后各项an +1,an +2,…的最小值记为Bn ,dn =An -Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n ∈N*,an +4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.【解析】(1)d1=d2=1,d3=d4=3.(2)(充分性)因为{an}是公差为d的等差数列,且d≥0,所以a1≤a2≤…≤an≤….因此An=an,Bn=an+1,dn=an-an+1=-d(n=1,2,3,…).(必要性)因为dn=-d≤0(n=1,2,3,…).所以An=Bn+dn≤Bn.又因为an≤An,an+1≥Bn,所以an≤an+1.于是,An=an,Bn=an+1.因此an+1-an=Bn-An=-dn=d,即{an}是公差为d的等差数列.17.(·全国卷)等差数列{an}前n项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.【解析】设{an}的公差为d.由S3=a22,得3a2=a22,故a2=0或a2=3.由S1,S2,S4成等比数列得S22=S1S4.又S1=a2-d ,S2=2a2-d ,S4=4a2+2d ,故(2a2-d)2=(a2-d)(4a2+2d).若a2=0,则d2=-2d2,所以d =0,此时Sn =0,不合题意;若a2=3,则(6-d)2=(3-d)(12+2d),解得d =0或d =2.因此{an}的通项公式为an =3或an =2n -1.18.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1.(1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.【解析】(1)设等差数列{an}的首项为a1,公差为d.由S4=4S2,a2n =2an +1得⎩⎪⎨⎪⎧4a1+6d =8a1+4d ,a1+(2n -1)d =2a1+2(n -1)d +1, 解得a1=1,d =2,因此an =2n -1,n ∈N*.(2)由题意知Tn =λ-n 2n -1,所以n≥2时,bn =Tn -Tn -1=-n 2n -1+n -12n -2=n -22n -1. 故cn =b2n =2n -222n -1=(n -1)⎝⎛⎭⎫14n -1,n ∈N*. 所以Rn =0×⎝⎛⎭⎫140+1×⎝⎛⎭⎫141+2×⎝⎛⎭⎫142+3×⎝⎛⎭⎫143+…+(n -1)×⎝⎛⎭⎫14n -1,则14Rn =0×⎝⎛⎭⎫141+1×⎝⎛⎭⎫142+2×⎝⎛⎭⎫143+…+(n -2)×⎝⎛⎭⎫14n -1+(n -1)×⎝⎛⎭⎫14n , 两式相减得34Rn =⎝⎛⎭⎫141+⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -1-(n -1)×⎝⎛⎭⎫14n =14-⎝⎛⎭⎫14n1-14-(n -1)×⎝⎛⎭⎫14n=13-1+3n 3⎝⎛⎭⎫14n,整理得Rn =194-3n +14n -1. 所以数列{cn}的前n 项和Rn =194-3n +14n -1. 19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.【解析】设该数列公差为d ,前n 项和为Sn ,由已知可得2a1+2d =8,(a1+3d)2=(a1+d)(a1+8d), 所以a1+d =4,d(d -3a1)=0.解得a1=4,d =0或a1=1,d =3.即数列{an}的首项为4,公差为0,或首项为1,公差为3.所以,数列的前n 项和Sn =4n 或Sn =3n2-n 2.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.【答案】-49【解析】由已知,a1+a10=0,a1+a15=103d =23,a1=-3,∴nSn =n3-10n23,易得n =6或n =7时,nSn 出现最小值.当n =6时,nSn =-48;n =7时,nSn =-49.故nSn 的最小值为-49.21.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【答案】64【解析】设数列{an}的公差为d ,由a1,a2,a5成等比数列,得(1+d)2=1·(1+4d),解得d =2或d =0(舍去),所以S8=8×1+8(8-1)2×2=64. 【高考押题】1.已知数列{an}是等差数列,a1+a7=-8,a2=2,则数列{an}的公差d 等于( )A .-1B .-2C .-3D .-4答案 C解析 方法一 由题意可得⎩⎪⎨⎪⎧ a1+a1+6d =-8,a1+d =2,解得a1=5,d =-3.方法二 a1+a7=2a4=-8,∴a4=-4,∴a4-a2=-4-2=2d ,∴d =-3.2.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )A .a1+a101>0B .a2+a100<0C .a3+a99=0D .a51=51答案 C解析 由题意,得a1+a2+a3+…+a101 =a1+a1012×101=0. 所以a1+a101=a2+a100=a3+a99=0.3.设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于( )A .0B .37C .100D .-37答案 C4.等差数列{an}中,已知a5>0,a4+a7<0,则{an}的前n 项和Sn 的最大值为( )A .S4B .S5C .S6D .S7答案 B解析 ∵⎩⎪⎨⎪⎧ a4+a7=a5+a6<0,a5>0,∴⎩⎪⎨⎪⎧a5>0,a6<0, ∴Sn 的最大值为S5.5.在等差数列{an}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|an|}的前18项和T18的值是( )A .24B .48C .60D .84答案 C解析 由a1>0,a10·a11<0可知d<0,a10>0,a11<0,∴T18=a1+…+a10-a11-…-a18=S10-(S18-S10)=60.6.已知递增的等差数列{an}满足a1=1,a3=a22-4,则an=________.答案2n-1解析设等差数列的公差为d,∵a3=a22-4,∴1+2d=(1+d)2-4,解得d2=4,即d=±2.由于该数列为递增数列,故d=2.∴an=1+(n-1)×2=2n-1.7.等差数列{an}的前n项和为Sn,已知a5+a7=4,a6+a8=-2,则当Sn取最大值时,n的值是________.答案6解析依题意得2a6=4,2a7=-2,a6=2>0,a7=-1<0;又数列{an}是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当Sn取最大值时,n=6.8.已知数列{an}中,a1=1且1an+1=1an+13(n∈N*),则a10=________.答案1 4解析由已知1a10=1a1+(10-1)×13=1+3=4,∴a10=14.9.在等差数列{an}中,a1=1,a3=-3.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=-35,求k的值.10.设等差数列{an}的前n 项和为Sn ,若a1<0,S =0.(1)求Sn 的最小值及此时n 的值;(2)求n 的取值集合,使其满足an≥Sn.解 (1)设公差为d ,则由S =0⇒a1+×2d =0⇒a1+1007d =0,d =-11007a1,a1+an =-n 1007a1,∴Sn =n 2(a1+an)=n 2·-n 1007a1=a1(n -n2).∵a1<0,n ∈N*,∴当n =1 007或1 008时,Sn 取最小值504a1.(2)an =1 008-n 1 007a1,Sn≤an ⇔a12 014(2 015n -n2)≤1 008-n 1 007a1.∵a1<0,∴n2-2 017n +2 016≤0,即(n -1)(n -2 016)≤0,解得1≤n≤.故所求n 的取值集合为{n|1≤n≤,n ∈N*}.高考模拟复习试卷试题模拟卷。