抛物线顶点坐标的求法(公式法)

合集下载

抛物线的基本几何特征

抛物线的基本几何特征
x >0 时,y随着x的增大而减小。
数学实验室
• 一般的,抛物线 y ax2的几何特征:
当a 0时,抛物线的开口向上 当a 0时,抛物线的开口向下
顶点(0,0),对称轴 x=0 若a>0,当x<0时,函数y随x的增大而减小,
当x >0时,函数y随x的增大而增大; 若a< 0,当x<0时,函数y随x的增大而增大,
抛物线的基本几何特征
1.已知抛物线 y 2x2,它的开口 向上,顶点 (0,,0)
对称轴 x=0,当x <0 时,y随着x的增大而减小, 当x >时0,y随着x的增大而增大; 当x =0 时,函数y有最小 值,最小值为 0 ,而
抛物线 y 2x2 它的开口向下 ,顶点(0,0),
对称轴x=0 , 当=x0 时,函数y有最大 值,最大 值为0 ,当<x 0 时,y随着x的增大而增大,当
• 抛物线 y ax2 c的几何特征:
• 抛物线的开口方向 当a 0时,抛物线的开口向上
当a 0时,抛物线的开口向下
• 抛物线的顶点(0,c),对称轴 x=0 • 若a>0,当x<0时,函数y随x的增大而减小,
当x >0时,函数y随x的增大而增大; • 若a < 0,当x<0时,函数y随x的增大而增大,
6.已知抛物线 y ax2 bx c (a≠0)是由
抛物线 y 2(x 3)2 平移得到,而一元二
次 方程 ax2 bx c 0(a≠0)的两个根
分别为 -1,3 ,求抛物 线的解析式(小综合)
二次函数的解析式
求二次函数解析式的常用方法 ቤተ መጻሕፍቲ ባይዱ1)定义法 (2)列方程法 (3)几何特征法 (4)待定系数法 (5)综合应用法
当x >m时,函数y随x的增大而增大;

顶点坐标求法教案

顶点坐标求法教案
教学重点
顶点坐标的求法
教学难点
1、配方中二次项系数的处理2、求顶点坐标的公式的推导
教学环节
教学内容
师生活动
设计意图
一、旧知检测
写出下列抛物线的开口方向、顶点坐标、对称轴、最值
1、y=5x22、y= -3x2-5 3、y= - (x+2)2
4、y=2(x-1)2+2 5、y= (x+3)2-3
学生在学案上笔答,教师巡视了解学生的掌握情况
(1)在转化的过程中,哪个地方是你不知道如何处理的?
(2)你觉得在转化的过程中,哪个地方是易错的?
(3)你在转化的过程中,你认为最关键的是哪一步?完成这一步的前提条件是什么?
学生谈想法、
学生在学案上解答,教师巡视,引导
渗透转化的数学思想
突破难点
四、巩固训练
请求出以下二次函数的顶点坐标
1、y=2x2-4x+6 2、y= - x2-2x+2 3、y= x2+2x
检测学生的知识掌握的情况,获得反馈信息
二、创设情境引入新课
1、结合图像挖掘隐含条件
2、二次函数y=ax2+4x+a的最大值是3,则a=_______
3、课堂测试调查的问题解决
学生探究、口答
对学生进行解题方法的指导
三、问题探究
1、做课堂测试问题中对的同学的想法
2、将引例中的二次函数化成y=a(x-h)2+k的形式
练习巩固公式的同时,教给学生检查的方法,培养检查意识。
七、拓展探究,解决引例
1、二次函数y=ax2+4x+a的最大值是3,则a=_______
2、(09年北京)将x2-2x-3化成(x-m)2+k形式,则m+k=?

抛物线顶点坐标的求法

抛物线顶点坐标的求法

抛物线顶点坐标的求法抛物线是一种常见的曲线形状,由二次方程表示。

它具有独特的顶点,可以通过公式法求出。

在本文中,我们将详细介绍如何使用公式法来找到抛物线的顶点坐标。

抛物线的一般方程形式为:y = ax^2 + bx + c,其中a,b,c是常数。

要找到抛物线的顶点坐标,我们需要使用公式:x=-b/2a来计算x坐标值,然后将x值带入方程得到y值。

以下是具体的求解步骤:步骤1:将抛物线的方程写成一般的二次方程形式:y = ax^2 + bx+ c。

步骤2:通过观察方程,我们可以看出a的值决定了抛物线的开口方向。

如果a大于0,则抛物线开口向上,如果a小于0,则抛物线开口向下。

确保a的值不为0,否则方程将不再是二次方程。

步骤3:计算b/2a的值,这将是顶点的x坐标。

x=-b/2a是由方程的一阶导数为零推导出的。

一阶导数为0时,曲线的斜率为零,这意味着曲线在顶点处水平。

步骤4:将x值代入方程,计算出对应的y值。

这将是顶点的y坐标。

步骤5:找到的x和y坐标值就是抛物线的顶点坐标。

以下是一个示例,帮助我们更好地理解如何使用公式法求解抛物线顶点坐标:假设我们有一个抛物线方程为y=2x^2-4x+3步骤1:将方程写成一般的二次方程形式;y=2x^2-4x+3步骤2:观察方程,发现a的值为2,因此抛物线开口向上。

步骤3:计算x=-b/2a=-(-4)/(2*2)=1、所以顶点的x坐标为1步骤4:将x=1代入方程计算y的值;y=2(1)^2-4(1)+3=1、所以顶点的y坐标为1步骤5:找到的顶点坐标为(1,1)。

通过这个示例,我们可以看到使用公式法能够简单而快速地找到抛物线的顶点坐标。

需要注意的是,如果抛物线的方程与一般形式不同,需要做一些适应性调整。

但是,这个方法适用于大多数常见的抛物线方程。

总结:通过公式法,我们可以轻松地找到抛物线的顶点坐标。

我们只需要将抛物线方程写成一般的二次方程形式,然后计算顶点的x和y坐标。

人教版九年级数学《用公式法求抛物线的顶点坐标和对称轴》课前预习任务单和课堂小练习及答案

人教版九年级数学《用公式法求抛物线的顶点坐标和对称轴》课前预习任务单和课堂小练习及答案

九年级数学课前预习任务单和课堂小练习及答案二次函数的图象和性质(6)——用公式法求抛物线y=ax2+bx+c(a≠0)的顶点坐标和对称轴课前预习任务单课 堂 小 练限时 10分钟 总分 100分 得分非线性循环练1. (10分)下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2中,一元二次方程有( A )A . 1个B . 2个C . 3个D . 4个2. (10分)如图X 22-19-1,抛物线的顶点P 的坐标是(1,-3),则此抛物线对应的二次函数有( B )图X22-19-1A . 最大值1B . 最小值-3C . 最大值-3D . 最小值13. (10分)已知关于x 的方程 x 2+3x +2=0的一个根是m ,那么3m 2+9m = -6 .4. (10分)抛物线y =x 2-2x +2的对称轴是 直线x =1 .5. (10分)解方程:(2x -1)2-9=0.解: x 1=-1,x 2=2.当堂高效测1. (10分)抛物线y =x 2-4x +9的对称轴为直线 x =2 .2. (10分)抛物线y =-2x 2-4x +8的开口 向下 ,顶点坐标是 (-1,10) .3. (10分)抛物线y =2x 2+bx +c 的顶点坐标是(-1,4),则b = 4 ,c = 6 .4. (20分)利用公式法求下列二次函数的对称轴、顶点坐标和最值.(1)y =x 2-2x -3;解:y =x 2-2x -3=(x -1)2-4,∴抛物线的对称轴是直线x =1,顶点坐标是(1,-4),当x =1时,函数y 有最小值-4.(2)y =-x 2-2x +1.解:y =-x 2-2x +1=-(x +1)2+2, ∴抛物线的对称轴是直线x =-1,顶点坐标是(-1,2),当x =-1时,函数y 有最大值2.。

一元二次方程的解法及判别

一元二次方程的解法及判别

一元二次方程的解法及判别一、一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为2的方程。

一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,且a ≠ 0。

二、一元二次方程的解法1.因式分解法:将一元二次方程进行因式分解,使其变为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。

2.公式法:利用一元二次方程的求根公式(也称二次公式)求解。

求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)。

三、一元二次方程的判别式判别式是用来判断一元二次方程的根的情况的数值。

判别式的公式为:Δ = b^2 - 4ac。

四、判别式的性质与解的情况1.当Δ > 0时,方程有两个不相等的实数根。

2.当Δ = 0时,方程有两个相等的实数根,也称为重根。

3.当Δ < 0时,方程没有实数根,而是有两个共轭的复数根。

五、一元二次方程的解法比较1.因式分解法适用于方程的系数较小,且容易分解的情况。

2.公式法适用于任何形式的一元二次方程,无论系数的大小和是否容易分解。

六、一元二次方程的应用一元二次方程在实际生活中有广泛的应用,如物体的运动轨迹、投资收益、面积计算等方面。

总结:一元二次方程的解法及判别是中学数学中的重要知识点,掌握因式分解法和公式法求解一元二次方程,以及理解判别式的性质和解的情况,对于解决实际问题具有重要意义。

习题及方法:已知一元二次方程x^2 - 5x + 6 = 0,求解该方程。

这是一个一元二次方程,我们可以尝试使用因式分解法来解它。

首先,我们需要找到两个数,它们的乘积等于常数项6,而它们的和等于一次项的系数(-5)。

这两个数是-2和-3。

因此,我们可以将方程重写为:(x - 2)(x - 3) = 0。

根据零因子定律,我们得到x - 2 = 0或x - 3 = 0。

解得x1 = 2,x2 = 3。

给定一元二次方程2x^2 + 5x - 3 = 0,求解该方程。

二次函数的顶点求法

二次函数的顶点求法
解:△=,得c=9。
2、顶点在y轴上的条件为b=0。
例:顶点在y轴上,求m。
解:由题意易得m-1=0,则m=1。
3、顶点在原点的条件为b=c=0。
4、顶点在各象限内的条件为△≠0,b≠0。
3、代入法:先求出的值,再代入y=中,求出y,得顶点坐标为(x,y)。
例:求抛物线的顶点p坐标
解法1,配方法:,则p(2,1);
解法2,公式法: ==2, ==1,则p(2,1);
解法3,代入法: ==2,y= =1,则p(2,1)。
二、顶点的位置
1、顶点在x 轴上的条件为
例:的顶点
对于很多同学而言,刚学二次函数时都觉得有点吃力,特别是求二次函数的顶点坐标以及顶点位置的判断存在一定的困难。为此,本人进行了以下的小结,希望对同学们有所帮助。
一、顶点坐标的求法
1、配方法:即将化成形式,得到顶点坐标为(h,k)。
2、公式法:将a、b、c的值代入中,得顶点坐标为。

《公式法求顶点坐标》学生用

《公式法求顶点坐标》学生用
当 x 2时, y最大值=0
( 4)
1 2 y x 4x 3 2
4 0.5 3 (4) y小 5 4 0.5
2
解: a = 0.5 > 0抛物线开口向上
4 x对 4 2 0 .5
顶点坐标:(4 , - 5)
对称轴: x 对 4
当 x 4时, y最小值= -5
4 3 0 2 1 y小 43 3
《公式法求顶点坐标》步骤:
1、从二次函数一般式中找出a b c的值; 2、把a b c的值代入顶点坐标公式;
1 1 顶点坐标为 , 3 3
1 1 当x 时,y最小值=3 3
1 对称轴x 3
x对
b 2a
对称轴x 1
当x 1时,y最大值= 1
( 3)
y 2 x 8x 8
2
2
解: a = -2 < 0抛物线开口向下
4 ( 2) ( 8) 8 8 x对 2 y大 0 2 (2) 4 ( 2)
顶点坐标为 2, 0
对称轴x 2
4ac b y大(小) 4a
2
3、按题的要求写出结果。 注意:a>0有小值;a<0有大值。
( 2)
y x 2x
2
解: a = -1 < 0抛物线开口向下
2 x对 1 2 (1)
4 ( 1 ) 0 ( 2) y大 1 4 ( 1 )
2
顶点坐标为 1,1
注意:一般式化成顶点式的步骤。 二次函数的一般式:y=ax2 +bx+c化成顶点式:y=a(x-h)2 +k
三、用配方法:求二次函数y=-2x2-4x+1 的对称轴、顶点坐标、大(小)值.

2022中考数学真题分类汇编二次函数(填空题)解析

2022中考数学真题分类汇编二次函数(填空题)解析

2022中考数学真题分类汇编二次函数(填空题)解析一.填空题(共21小题)21.(2022常州)二次函数y=﹣某+2某﹣3图象的顶点坐标是.2.(2022漳州)已知二次函数y=(某﹣2)2+3,当某时,y随某的增大而减小.3.(2022杭州)函数y=某2+2某+1,当y=0时,某=;当1<某<2时,y随某的增大而(填写“增大”或“减小”).21教育网4.(2022天水)下列函数(其中n为常数,且n>1)①y=(某>0);②y=(n﹣1)某;③y=2(某>0);④y=(1﹣n)某+1;⑤y=﹣某+2n某(某<0)中,y的值随某的值增大而增大的函数有个.5.(2022淄博)对于两个二次函数y1,y2,满足y1+y2=2某2+2某+8.当某=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式(要求:写出的解析式的对称轴不能相同).6.(2022十堰)抛物线y=a某2+b某+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当某<﹣1时,y随着某的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)7.(2022乌鲁木齐)如图,抛物线y=a某+b某+c的对称轴是某=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)2第7题第8题第13题8.(2022长春)如图,在平面直角坐标系中,点A在抛物线y=某2﹣2某+2上运动.过点A作AC⊥某轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.9.(2022河南)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(某﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.10.(2022乐山)在直角坐标系某Oy中,对于点P(某,y)和Q (某,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=某+3图象上点M的“可控变点”,则点M的坐标为.(2)若点P在函数y=﹣某2+16(﹣5≤某≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的取值范围是.11.(2022宿迁)当某=m或某=n(m≠n)时,代数式某2﹣2某+3的值相等,则某=m+n时,代数式某2﹣2某+3的值为.12.(2022龙岩)抛物线y=2某2﹣4某+3绕坐标原点旋转180°所得的抛物线的解析式是.13.(2022湖州)如图,已知抛物线C1:y=a1某2+b1某+c1和C2:y=a2某2+b2某+c2都经过原点,顶点分别为A,B,与某轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.14.(2022绥化)把二次函数y=2某2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.15.(2022岳阳)如图,已知抛物线y=a某2+b某+c与某轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1某2+b1某+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.第15题第19题16.(2022莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是2cm.2-1-c-n-j-y17.(2022资阳)已知抛物线p:y=a某2+b某+c的顶点为C,与某轴相交于A、B两点(点A在点B左侧),点C关于某轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=某2+2某+1和y=2某+2,则这条抛物线的解析式为.18.(2022营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.19.(2022温州)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.20.(2022湖州)已知在平面直角坐标系某Oy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和某轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=a某2+b某+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=a某2+b某+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.21.(2022衢州)如图,已知直线y=﹣某+3分别交某轴、y轴于点A、B,P是抛物线y=﹣某+2某+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣某+3于点Q,则当PQ=BQ时,a的值是.22022中考数学真题分类汇编:二次函数(填空题)参考答案与试题解析一.填空题(共21小题)21.(2022常州)二次函数y=﹣某+2某﹣3图象的顶点坐标是(1,﹣2).考点:二次函数的性质.分析:此题既可以利用y=a某2+b某+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.21·世纪某教育网解答:解:∵y=﹣某2+2某﹣32=﹣(某﹣2某+1)﹣2=﹣(某﹣1)2﹣2,故顶点的坐标是(1,﹣2).故答案为(1,﹣2).点评:本题考查了二次函数的性质,求抛物线的顶点坐标有两种方法①公式法,②配方法.2.(2022漳州)已知二次函数y=(某﹣2)2+3,当某<2时,y随某的增大而减小.考点:二次函数的性质.分析:根据二次函数的性质,找到解析式中的a为1和对称轴;由a 的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.21教育名师原创作品解答:解:在y=(某﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为某=2,当某<2时,y的值随着某的值增大而减小;当某>2时,y的值随着某的值增大而增大.故答案为:<2.点评:本题考查了二次函数的性质,找到的a的值和对称轴,对称轴方程是解题的关键.23.(2022杭州)函数y=某+2某+1,当y=0时,某=﹣1;当1<某<2时,y随某的增大而增大(填写“增大”或“减小”).考点:二次函数的性质.2分析:将y=0代入y=某+2某+1,求得某的值即可,根据函数开口向上,当某>﹣1时,y随某的增大而增大.2解答:解:把y=0代入y=某+2某+1,得某2+2某+1=0,解得某=﹣1,当某>﹣1时,y随某的增大而增大,∴当1<某<2时,y随某的增大而增大;故答案为﹣1,增大.点评:本题考查了二次函数的性质,重点掌握对称轴两侧的增减性问题,解此题的关键是利用数形结合的思想.4.(2022天水)下列函数(其中n为常数,且n>1)①y=(某>0);②y=(n﹣1)某;③y=(某>0);④y=(1﹣n)某+1;⑤y=﹣某2+2n某(某<0)中,y的值随某的值增大而增大的函数有3个.考点:二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.分析:分别根据正比例函数、一次函数、反比例函数和二次函数的性质进行分析即可.解答:解:①y=(某>0),n>1,y的值随某的值增大而减小;②y=(n﹣1)某,n>1,y的值随某的值增大而增大;③y=(某>0)n>1,y的值随某的值增大而增大;④y=(1﹣n)某+1,n>1,y的值随某的值增大而减小;⑤y=﹣某2+2n某(某<0)中,n>1,y的值随某的值增大而增大;y的值随某的值增大而增大的函数有3个,故答案为:3.点评:此题主要考查了正比例函数、一次函数、反比例函数和二次函数的性质,关键是掌握正比例函数y=k某(k≠0),k>0时,y的值随某的值增大而增大;一次函数的性质:k>0,y随某的增大而增大,函数从左到右上升;k<0,y随某的增大而减小,函数从左到右下降;二次函数y=a某2+b某+c(a≠0)当a<0时,抛物线y=a某2+b某+c(a≠0)的开口向下,某<﹣时,y随某的增大而增大;反比例函数的性质,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随某的增大而增大.5.(2022淄博)对于两个二次函数y1,y2,满足y1+y2=2某2+2某+8.当某=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式y2=某2+3,y2=(某+)2+3(要求:写出的解析式的对称轴不能相同).考点:二次函数的性质.专题:开放型.分析:已知当某=m时,二次函数y1的函数值为5,且二次函数y2有最小值3,故抛物线的顶点坐标为(m,3),设出顶点式求解即可.解答:解:答案不唯一,例如:y2=某2+3,2y2=(某+)+3.故答案为:y2=某2+3,y2=(某+)2+3.点评:考查了二次函数的性质,二次函数y=a某+b某+c(a≠0)的顶点坐标是(﹣).6.(2022十堰)抛物线y=a某2+b某+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当某<﹣1时,y随着某的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是③⑤.(只填写序号)考点:二次函数图象与系数的关系.专题:数形结合.分析:根据题意画出抛物线的大致图象,利用函数图象,由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,于是可对①进行判断;由于抛物线过点(﹣1,0)和(m,0),且1<m<2,根据抛物线的对称性和对称轴方程得到0<﹣<,变形可得a+b>0,则可对②进行判断;利用点A(﹣3,2,y1)和点B(3,y2)到对称轴的距离的大小可对③进行判断;根据抛物线上点的坐标特征得a﹣b+c=0,am2+bm+c=0,两式相减得am2﹣a+bm+b=0,然后把等式左边分解后即可得到a(m﹣1)+b=0,则可对④进行判断;根据顶点的纵坐标公式和抛物线对称轴的位置得到<c≤﹣1,变形得到b2﹣4ac>4a,则可对⑤进行判断.点评:此题考查了二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,关键是根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数、一次项系数、常数项之间的关系.2·1·c·n·j·y2分析:直接根据“上加下减,左加右减”的原则进行解答.解答:解:由“左加右减”的原则可知,将二次函数y=2某2的图象向左平移1个单位长22度所得抛物线的解析式为:y=2(某+1),即y=2(某+1);由“上加下减”的原则可知,将抛物线y=2(某+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(某+1)2﹣2,即y=2(某+1)2﹣2.2故答案为:y=2(某+1)﹣2.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.15.(2022岳阳)如图,已知抛物线y=a某2+b某+c与某轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1某2+b1某+c1,则下列结论正确的是③④.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.考点:二次函数图象与几何变换;二次函数图象与系数的关系.分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴为某=﹣>0,可得b<0,据此判断即可.②根据抛物线y=a某2+b某+c的图象,可得某=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底某高,求出阴影部分的面积是多少即可.④根据函数的最小值是解答:解:∵抛物线开口向上,∴a>0,又∵对称轴为某=﹣>0,,判断出c=﹣1时,a、b的关系即可.∴b<0,∴结论①不正确;∵某=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=a某2+b某+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2某2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故答案为:③④.点评:(1)此题主要考查了二次函数的图象与几何变换,要熟练掌握,解答此类问题的关键是要明确:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.考点:二次函数的最值.解答:解:设矩形的一边长是某cm,则邻边的长是(16﹣某)cm.则矩形的面积S=某(16﹣某),即S=﹣某2+16某,当某=﹣=﹣=8时,S有最大值是:64.故答案是:64.点评:本题考查了二次函数的性质,求最值得问题常用的思路是转化为函数问题,利用函数的性质求解.2分析:先求出y=某2+2某+1和y=2某+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=某2+2某+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于某轴对称得到C(1,2﹣4),则可设顶点式y=a(某﹣1)﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.解答:解:∵y=某2+2某+1=(某+1)2,∴A点坐标为(﹣1,0),解方程组得或,∴点C′的坐标为(1,4),∵点C和点C′关于某轴对称,∴C(1,﹣4),2设原抛物线解析式为y=a(某﹣1)﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原抛物线解析式为y=(某﹣1)2﹣4=某2﹣2某﹣3.故答案为y=某2﹣2某﹣3.18.(2022营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.考点:二次函数的应用.分析:根据“利润=(售价﹣成本)某销售量”列出每天的销售利润y(元)与销售单价某(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.解答:解:设定价为某元,根据题意得:y=(某﹣15)[8+2(25﹣某)]=﹣2某2+88某﹣870∴y=﹣2某2+88某﹣870,2=﹣2(某﹣22)+98∵a=﹣2<0,∴抛物线开口向下,∴当某=22时,y最大值=98.故答案为:22.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线顶点坐标的求法(公式法)
1、二次函数表达式的“一般形式”为 ; 李丹与王涓(2019届bobo )
2、二次函数表达式的“配方形式”为 ;
一、怎样由“公式法”来求抛物线的顶点坐标
1、先把“一般形式”的二次函数
c
bx ax y 2++=(
0a ≠)转化成“配方形式”
为 ,再依据由“配方式”看顶点坐标的方法,可知其顶点坐标
为 ,我们把这个“坐标结论”称为二次函数的“顶点坐标公式”; ①、求二次函数35x 2x y
2+=-的顶点坐标以及最值
解:由顶点坐标公式得:==2a
b
x -
顶横
; ==4a
b 4a
c y 2-顶纵

∴ 顶点坐标为 ;
又∵ 抛物线开口向 ,有最 点,∴ y 有最 值; 即:当=x 时, = ;
②、求二次函数3112x 2x y
2--+=的顶点坐标,并对函数的增减性作出描述
解:由顶点坐标公式得:==2a
b
x -
顶横 ; 把=顶横
x 代入函数表达式得:=顶纵y
= ; ∴ 顶点坐标为 ;
又∵ 抛物线开口向 ,所以,
在对称轴的左侧,即当自变量x 时,y 的值随x 的增大而 ; 在对称轴的右侧,即当自变量x 时,y 的值随x 的增大而 ;
③、求二次函数3112x 2x y
2--+=的顶点坐标、并在当4<5x ≤时,求函数y 的最值
解:由顶点坐标公式得:==2a
b
x -
顶横 ; ∴ 可设抛物线的表达式为:(
)()k x
y
2+=,易求=k ;
∴ 原表达式化为配方式为 ,则顶点坐标为 ; 又=顶横
x ,不在“4<5x ≤”的范围内,∴ 函数y 的最值“不在”顶点处取,
由图形可知,当=x 时,=min y ;
变式:如果把“4<5x
≤”改为“5x 4≤≤”
,问y 有最大值吗答: ; 点评:第①题是严格运用“顶点坐标”公式,分别求顶横x 和顶纵y (不妨命名为:全求分别法); 第②题是先求顶横x ,然后代入函数表达式,再求出顶纵y (不妨命名为:半求代入法); 第③题是先求顶横x ,然后“拼凑”出配方式,再求出k y =顶纵
(不妨命名为:半求拼凑法);
以上“三种”方法,请根据实际情况灵活选择,以便于计算作为“选择依据”!!!
二、怎样由“交点式”来求抛物线的顶点坐标
1、基本事实依据:什么叫抛物线的对称轴
答:第一种说法,经过抛物线的顶点,且垂直于 轴的直线,叫做抛物线的对称轴; 第二种说法,抛物线上任意一对“对称点”连线的 线,叫做抛物线的对称轴; 2、二次函数的表达式的“交点形式”为()()21x x x x a y --=(0a ≠).
其中,“a 值”与“一般形式”c bx ax y 2++=(0a ≠)中“a 值”的相等,而“1x 、2x ”
分别代表抛物线c bx ax y 2++=(0a ≠)与x 轴的交点横坐标,即是说“1x 、2x ”是一元二次方
程0c bx ax
2
=++(0a ≠)的二根,所以抛物线的“交点形式”,也可称“二根形式”。

3、重要思路⇒:如果抛物线c bx ax y
2++=(0a ≠)与x 轴有两个交点,分别为A (1x ,0)、
B (2x ,0),那么线段AB 的“垂直平分线”必为抛物线的 ,这条对称轴的表达式为:
直线顶横也x 2
x x x 2
1=+=
(关于这一结论,可以通过举例,来加以理解!)。

知道了顶横x ,就可以根据表达式()()21x x x x a y
--=,利用“半求代入法”,求出“顶纵y ”,
岂不快哉!如此一来,也能“又快、有准”地写出“配方形式”()k h x a y
2
++=,岂不美哉!
①、求二次函数()()6x 1x 3y +=-的顶点坐标以及最值,并把解析式化为配方式.
解: 联立 得:()()06x 1x 3
=+-,解得:=1x ,=2x ;
∴ 抛物线的对称轴为:直线=x = ;
把=顶横
x 代入()()6x 1x 3y +=-,得=顶纵y = ;
()()⎩⎨
⎧=+=0
y x 6x 1x 3y 轴:-
抛物线:
∴ 顶点坐标为 ,∴当=x 时, = ;
则抛物线的配方形式为 ; ②、求抛物线16x 9x y 2--+=的顶点坐标,并在x 1≤-<4的范围内,求函数y 的最值
③、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:2x 140m -=,
(1)、写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;
(2)、如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适最大销售利润为多少
4、提出问题⇒:如果抛物线c bx ax y 2++=(0a ≠)与
x 轴“没有交点”,那么怎样由“交
点式”来求抛物线的顶点坐标呢
思路:假设抛物线与平行于x 轴的“某条直线”: 如m y =有两个交点, 则联立 得:m c bx ax
2
=++,即:0m c bx ax 2=++-,设此方程的二根为1x 、2x ,
由韦达定理可知:a
b
a b x x 21
-原始原始-
==+,
⎩⎨
⎧=++=m
y x c
bx ax y 2轴:抛物线:
而点A (1x ,m )、点B (2x ,m )必然是抛物线上的一对“对称点”,
∴ 对称轴为:直线顶横也-x 2a
b
2x x x 21==+=
然后把2a
b
x -
顶横
=代入抛物线表达式c bx ax y
2
++=可得:4a
b 4a
c y 2-顶纵
=
∴ 抛物线的顶点坐标为 ;
启示:无论抛物线与x 轴是否有公共点,其顶点横标,即对称轴直线“永远”为:2a
b
x -
顶横=,
再借“三法之一”就可求出顶点的纵坐标!!!
三、应用练习
1、函数7x 3x y 2+=--化为配方式为 ,可知顶点坐标为 ,
当=x
时,y 有最 值为 ;
2、抛物线()()5x 3x y
+=--先向右平移3个单位,再向下平移2个单位后,所得新抛物线的表
达式为 ,新抛物线的顶点坐标为 ;
3、已知点A (6-,1y )、B (5-,2y )、C (1-,3y )在抛物线()k ++=2
4x a y
上,且直
线ax y =经过第二、四象限,试比较1y 、2y 、3y 的大小关系 (用“<”来连接);
4、抛物线()()3x 6x 3y --=的顶点坐标为 ,当自变量x 的取值范围满
足:x 2≤
<5时,函数y 的取值范围满足: ;
5、已知抛物线c bx ax y
2++=的对称轴是直线2x -=,函数y 的取值范围是9y -≥,则抛
物线的开口向 ,若抛物线与y 轴的交点坐标是(
0,3)
,则抛物线的表达式为 ,它与x 轴的两个交点的坐标为 ;
6、已知抛物线c bx ax y 2++=与x x 2y 2+=的开口方向相反,开口大小程度一样,且它与直
线
3y =的两个交点的横坐标分别为15和--,则抛物线的表达式
为 ,它与x 轴的两个交点的距离为 ;
7、如图,△ABC 中,∠B=90°,AB=6cm ,BC=12cm ,点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动,点Q 从点B 开始,沿着BC 边向点C 以每秒2cm 的速度移动,如果P 、Q 同时出发,问经过几秒钟△PBQ 的面积最大最大面积是多少
B
Q C
A。

相关文档
最新文档