vasp在计算磁性的实例
vasp在计算磁性的实例和讨论

vasp在计算磁性的实例和讨论兄弟,问3个问题1,vasp在计算磁性的时候,oszicar中得到的磁矩和outcar中得到各原子磁矩之和不一致,在投稿的是否曾碰到有审稿人质疑,对于这个不一致你们一般是怎么解释的了?2,另外,磁性计算应该比较负责。
你应该还使用别的程序计算过磁性,与vasp结果比较是否一致,对磁性计算采用的程序有什么推荐。
ps:由于曾使用vasp和dmol算过非周期体系磁性,结构对磁性影响非常大,因此使用这两个程序计算的磁性要一致很麻烦。
还不敢确定到底是哪个程序可能不可靠。
3,如果采用vasp计算磁性,对采用的方法和设置有什么推荐。
1,OSZICAR中得到的磁矩是OUTCAR中最后一步得到的总磁矩是相等的。
总磁矩和各原子的磁矩(RMT球内的磁矩)之和之差就是间隙区的磁矩。
因为有间隙区存在,不一致是正常的。
2,如果算磁性,全电子的结果更精确,我的一些计算结果显示磁性原子对在最近邻的位置时,PAW与FPLAW给出的能量差不一致,在长程时符合的很好。
虽然并没有改变定性结论。
感觉PAW似乎不能很好地描述较强耦合。
我试图在找出原因,主要使用exciting和vasp 做比较。
计算磁性推荐使用FP-LAPW, FP-LMTO, FPLO很吸引人(不过是商业的),后者是O(N)算法。
3,使用vasp计算磁性,注意不同的初始磁矩是否收敛为同一个磁矩。
倒没有特别要注意的地方,个人认为。
归根结底,需要一个优秀的交换关联形式出现VASP计算是否也是像计算DOS和能带一样要进行三步(结构优化,静态自洽计算,非自洽计算),然后看最后一步的出的磁矩呢?一直想计算固体中某个原子的磁矩,根据OUTCAR的结果似乎不能分析,因为它里面总磁矩跟OSZICAR的值有一定的差别,据说是OUTCAR中只考虑WS半径内磁矩造成的。
最近看到一个帖子说是可以用bader电荷分析方法分析原子磁矩。
如法炮制之后发现给出的总磁矩与OSZICAR的结果符合的甚好,可是觉得没有根据,有谁知道这样做的依据吗,欢迎讨论!设置ISPIN=2计算得到的态密度成为自旋态密度。
VASP第一性原理计算与案例详解

VASP第⼀性原理计算与案例详解V ASP第⼀性原理计算与案例详解⽬录第⼀章 LINUX命令 (3)1.1 常⽤命令 (3)1.1.1 浏览⽬录 (3)1.1.2 浏览⽂件 (3)1.1.3 ⽬录操作 (3)1.1.4 ⽂件操作 (3)1.1.5 系统信息 (3)第⼆章 SSH软件使⽤ (4)2.1 软件界⾯ (4)2.2 SSH transfer的应⽤ (5)2.2.1 ⽂件传输 (5)2.2.2 简单应⽤ (5)第三章 VASP的四个输⼊⽂件 (5)3.1 INCAR (5)3.2 KPOINTS (6)3.3 POSCAR (6)3.4 POTCAR (7)第四章实例 (8)4.1 模型的构建 (8)4.2 VASP计算 (11)4.2.1 参数测试(VASP)参数设置 (11)4.2.2 晶胞优化(Cu) (18)4.2.3 Cu(100)表⾯的能量 (20)4.2.4 吸附分⼦CO、H、CHO的结构优化 (22)4.2.5 CO吸附于Cu100表⾯H位 (24)4.2.6 H吸附于Cu100表⾯H位 (25)4.2.7 CHO吸附于Cu100表⾯B位 (26)4.2.8 CO和H共吸附于Cu100表⾯ (28)4.2.9 过渡态计算 (29)第⼀章 Linux命令1.1 常⽤命令1.1.1 浏览⽬录cd: 进⼊某个⽬录。
如:cd /home/songluzhi/vasp/CH4cd .. 上⼀层⽬录;cd / 根⽬录;ls: 显⽰⽬录下的⽂件。
注:输⼊⽬录名时,可只输⼊前3个字母,按Tab键补全。
1.1.2 浏览⽂件cat:显⽰⽂件内容。
如:cat INCAR如果⽂件较⼤,可⽤:cat INCAR | more (可以按上下键查看) 合并⽂件:cat A B > C (A和B的内容合并,A在前,B在后) 1.1.3⽬录操作mkdir:建⽴⽬录;rmdir:删除⽬录。
如:mkdir T-CH3-Rh1111.1.4 ⽂件操作rm:删除⽂件;vi:编辑⽂件;cp:拷贝⽂件mv:移动⽂件;pwd:显⽰当前路径。
vasp计算

vasp计算3, Xming用gnuplot是gnu文件里面要加pause -14,INCAR 字符太长,vasp_lib里面要改drdatab.F文件,255改大,重新编译5 声子谱:phononp –d –dim=”3 3 1”6 vasp编译gama版本的:在第二个CPP加上-DwNGZhalf就行。
7 ISMEAR=-5,电荷密度和DOS之类的电子结构和总能准,但是算力不准,所以对于算声子谱,最好不用-5。
对于金属,声子谱一般用DFPT会更准。
对于半导体和绝缘体,不能用ISEMAR>0的,只能是-5或者0.对于金属,ISMEAR=1,sigma=0.28 DFPT不能用NPAR phonopy -d --dim="2 2 2" -c POSCAR-unitcellmv SPOSCAR POSCAR静态计算:IBRION=8,IALGO=38对于金属ISMEAR=1,sigma=0.2phonopy --fc vasprun.xmlband.conf里面要添加:FORCE_CONSTANTS = READphonopy -p -c POSCAR-unitcell band.conf一般来说,对于金属,或者窄能隙半导体,如果用位移法,则需要很大的胞才能算准,但是用DFPT则可以小包算准。
对于金属,PBE 可能更好点。
9, 如果体系较大,EDIFF达到停止计算,很可能是K点取太多,内存不够。
10, bandplot --gnuplot band.yaml >> phon.dat,用origin做声子谱11,画CBM和VBM的partial charge,读入静态的WA VECAR,进行处理,此时要设置INCAR,LPARD = .TRUE. 开关IBAND = 480 481 VBM CBMNBMOD = 1 默认KPUSE = 1 第几个K点LSEPB = .TRUE. vasp查LSEPK = .TRUE.12,算极化:铁电相和顺电相都要算,每一个相算三次。
2-VASP计算教程第二课-氧原子能量及磁性的计算

V ASP计算教程第二课氧原子能量及磁性的计算课程目标:正确计算孤立氧原子的能量与磁性。
课程正文:一、磁性对孤立氧原子能量计算的影响氧的原子序号为8,电子排布为[He]2s22p4。
如下图所示,其内层有两个电子,外层有六个电子,原子轨道可表示为:可见其2p轨道有两个未配对电子,因此氧原子具有磁性,磁矩为2μB。
拓展阅读:物质的磁性1、孤立原子的磁性原子的磁矩主要来源于电子的轨道磁矩和自旋磁矩。
原子中电子的自旋方式分为上下两种(如上图氧原子轨道表示方法所示,上下箭头表示电子的自旋上下),在大多数物质中,自旋向上的电子和自旋向下的电子数目相等,产生的磁矩会相互抵消,因此整个体系对外不显示磁性。
而在一些物质内部,自旋向上和自旋向下的电子数目不相等,部分电子的自旋磁矩不能被抵消,体系便会显示磁性。
多电子原子所处的电子状态(电子的数量以及排布情况)决定了原子的磁性。
原子中内部的满壳层角动量和磁矩均为零,对磁性并不产生贡献,因此电子状态主要取决于靠外的不满壳层。
上图所示的氧原子包含8个电子,K壳层的1s轨道有两个电子(自旋方向一上一下),L壳层有六个电子,其中2s轨道有两个电子(自旋方向一上一下),2p轨道有四个电子(自旋方向三上一下)。
可以看出,内壳层(K)的电子自旋磁矩相互抵消,对原子磁性不产生贡献,而外壳层(L)经过抵消将会剩余两个自旋向上的电子,因此氧原子对外显示2μB的磁矩。
如上所述,绝大部分原子体系的较外壳层并未填满电子,因此在使用V ASP计算孤立原子时需要考虑磁性。
2、固体的磁性固体材料按照磁性一般可以分为两类:包含顺磁离子的固体和不包含顺磁离子的固体。
顺磁离子是指d轨道未填满的过渡元素或f轨道未填满的稀土元素。
不含顺磁离子的固体包括金属、半导体、离子晶体,这些固体一般会呈现微弱的顺磁性或抗磁性。
包含顺磁离子的固体大都是磁性材料,顺磁离子结合成固体时存在不满壳层,因此会保持固有的磁矩,表现出较强磁性,如铁,钴,镍等。
VASP磁性计算总结篇

在线说明书整理出来的非线性磁矩和自旋轨道耦以下是从VASP合的计算说明。
非线性磁矩计算:和CHGCAR文件。
1)计算非磁性基态产生WAVECAR)然后INCAR中加上2ISPIN=2文件和CHGCAR11 !读取WAVECAR ICHARG=1 或LNONCOLLINEAR=.TRUE. MAGMOM=注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁矩,如MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y方向有磁矩②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。
磁各向异性能(自旋轨道耦合)计算:注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。
.自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。
如下:LSORBIT = .TRUE.SAXIS = s_x s_y s_z (quantisation axis for spin)默认值: SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。
要使初始的磁矩方向平行于选定方向,有以下两种方法:MAGMOM = x y z ! local magnetic moment in x,y,zSAXIS = 0 0 1 ! quantisation axis parallel to zorMAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定)SAXIS = x y z ! quantisation axis parallel to vector (x,y,z),如 0 0 1两种方法原则上应该是等价的,但是实际上第二种方法更精确。
Vasp入门+实例

(1). 生成4个输入文件: POSCAR POTCAR INCAR KPOINTS
Hcp-Mg 3.208 0.5 -0.866 0 0.5 0.866 0 0.0 0.0 1.6 2 Direct 0.0 0.0 0.0 0.66667 0.33333 0.5
VASP提供 各种POTCAR
K-Points 0 Monkhorst Pack 21 21 21 000
c/a
� 1� 3 � a1 � a( i � j)
22 � 1� 3 � a2 � a( i � j)
22 �� a3 � ck
System =hcp Mg ISTART = 0 ENCUT = 150.0 NELM= 200 EDIFF = 1E-04 EDIFFG = -0.02
NPAR=4 NSW=1 IBRION = 2 ISIF=2 ISYM = 1
TITEL = US Si LULTRA = T use ultrasoft PP ? IUNSCR = 1 unscreen: 0-lin 1-nonlin 2-no RPACOR = 1.580 partial core radius POMASS = 28.085; ZVAL = 4.000 mass and valenz RCORE = 2.480 outmost cutoff radius RWIGS = 2.480; RWIGS = 1.312 wigner-seitz radius (au A) ENMAX = 150.544; ENMIN = 112.908 eV EAUG = 241.945 …………
(1). 生成4个输入文件: POSCAR POTCAR INCAR KPOINTS (2). 优化晶格参数,求出能量最低所对应的晶格参数 (3). 固定晶格参数, 求出能态密度(DOSCAR), 确定费米能量 (4). 修改KPOINTS和INCAR输入文件,固定电荷密度,做非自洽
vasp在计算磁性的实例和讨论

兄弟,问3个问题1,vasp在计算磁性的时候,oszicar中得到的磁矩和outcar中得到各原子磁矩之和不一致,在投稿的是否曾碰到有审稿人质疑,对于这个不一致你们一般是怎么解释的了?2,另外,磁性计算应该比较负责。
你应该还使用别的程序计算过磁性,与vasp结果比较是否一致,对磁性计算采用的程序有什么推荐。
ps:由于曾使用vasp和dmol算过非周期体系磁性,结构对磁性影响非常大,因此使用这两个程序计算的磁性要一致很麻烦。
还不敢确定到底是哪个程序可能不可靠。
3,如果采用vasp计算磁性,对采用的方法和设置有什么推荐。
1,OSZICAR中得到的磁矩是OUTCAR中最后一步得到的总磁矩是相等的。
总磁矩和各原子的磁矩(RMT球内的磁矩)之和之差就是间隙区的磁矩。
因为有间隙区存在,不一致是正常的。
2,如果算磁性,全电子的结果更精确,我的一些计算结果显示磁性原子对在最近邻的位置时,PAW与FPLAW给出的能量差不一致,在长程时符合的很好。
虽然并没有改变定性结论。
感觉PAW似乎不能很好地描述较强耦合。
我试图在找出原因,主要使用exciting和vasp做比较。
计算磁性推荐使用FP-LAPW, FP-LMTO, FPLO很吸引人(不过是商业的),后者是O(N)算法。
3,使用vasp计算磁性,注意不同的初始磁矩是否收敛为同一个磁矩。
倒没有特别要注意的地方,个人认为。
归根结底,需要一个优秀的交换关联形式出现VASP计算是否也是像计算DOS和能带一样要进行三步(结构优化,静态自洽计算,非自洽计算),然后看最后一步的出的磁矩呢?一直想计算固体中某个原子的磁矩,根据OUTCAR的结果似乎不能分析,因为它里面总磁矩跟OSZICAR的值有一定的差别,据说是OUTCAR中只考虑WS半径内磁矩造成的。
最近看到一个帖子说是可以用bader电荷分析方法分析原子磁矩。
如法炮制之后发现给出的总磁矩与OSZICAR的结果符合的甚好,可是觉得没有根据,有谁知道这样做的依据吗,欢迎讨论!设置ISPIN=2计算得到的态密度成为自旋态密度。
Vasp入门+实例

0.6 0.5
DOS
0.4 0.3 0.2 0.1 -6 -4 -2 0 2 4 6 8 10
Energy
(4). 做非自洽计算, 求电子结构
• 修改INCAR文件: 将参数ICHARG设为 11 • 修改KPOINTS输入文件
• 运行VASP程序,从输出文件EIGENVAL中提出电子结构
� 1� a1 � a ( i � 2 � 1� a2 � a ( i � 2 � � a3 � ck
第一原理电子结构计算程序:VASP
• 程序原理
• 输入文件
• 输出文件 • 应用
输入文件
POTCAR KPOINTS POSCAR INCAR
Choosing POTCAR file LDA GGA PAW_LDA PAW_GGA PAW_PBE(VASP4.5)
pseudopotentail file Brillouin zone sampling structural data steering parameters
POSCAR输入文件: 原胞中的原子位置
Diamond Si 3.9 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 1 Direct 0.0 0.0 0.0
基矢的公因子
基矢a1 基矢a2
基矢a3 原胞中的原子个数 坐标系选为基矢构成的坐标系
基矢坐标系下原子的位置
� 1 � � a1 � a( j � k ) 2 � 1 � � a2 � a(i � k ) 2 � 1 � � a3 � a(i � j ) 2
1
0
-1
0 0.07 0.14 0.21 0.28 0.34 0.41 0.48 0.55
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兄弟,问3个问题1,vasp在计算磁性的时候,oszicar中得到的磁矩和outcar中得到各原子磁矩之和不一致,在投稿的是否曾碰到有审稿人质疑,对于这个不一致你们一般是怎么解释的了?2,另外,磁性计算应该比较负责。
你应该还使用别的程序计算过磁性,与vasp结果比较是否一致,对磁性计算采用的程序有什么推荐。
ps:由于曾使用vasp和dmol算过非周期体系磁性,结构对磁性影响非常大,因此使用这两个程序计算的磁性要一致很麻烦。
还不敢确定到底是哪个程序可能不可靠。
3,如果采用vasp计算磁性,对采用的方法和设置有什么推荐。
1,OSZICAR中得到的磁矩是OUTCAR中最后一步得到的总磁矩是相等的。
总磁矩和各原子的磁矩(RMT球内的磁矩)之和之差就是间隙区的磁矩。
因为有间隙区存在,不一致是正常的。
2,如果算磁性,全电子的结果更精确,我的一些计算结果显示磁性原子对在最近邻的位置时,PAW与FPLAW给出的能量差不一致,在长程时符合的很好。
虽然并没有改变定性结论。
感觉PAW似乎不能很好地描述较强耦合。
我试图在找出原因,主要使用exciting和vasp做比较。
计算磁性推荐使用FP-LAPW, FP-LMTO, FPLO很吸引人(不过是商业的),后者是O(N)算法。
3,使用vasp计算磁性,注意不同的初始磁矩是否收敛为同一个磁矩。
倒没有特别要注意的地方,个人认为。
归根结底,需要一个优秀的交换关联形式出现VASP计算是否也是像计算DOS和能带一样要进行三步(结构优化,静态自洽计算,非自洽计算),然后看最后一步的出的磁矩呢?一直想计算固体中某个原子的磁矩,根据OUTCAR的结果似乎不能分析,因为它里面总磁矩跟OSZICAR的值有一定的差别,据说是OUTCAR中只考虑WS半径内磁矩造成的。
最近看到一个帖子说是可以用bader电荷分析方法分析原子磁矩。
如法炮制之后发现给出的总磁矩与OSZICAR的结果符合的甚好,可是觉得没有根据,有谁知道这样做的依据吗,欢迎讨论!设置ISPIN=2计算得到的态密度成为自旋态密度。
设置ISPIN=2就可以计算磁性,铁磁和反铁磁在MAG里设置。
最后得到的DOS是分up和down的。
磁性计算(2006-12-03 21:02)标签: - 分类:Vasp·磁性计算顺磁,意味进行non-spin polarized的计算,也就是ISPIN=1。
铁磁,意味进行spin-polarized的计算,ISPIN=2,而且每个磁性原子的初始磁矩设置为一样的值,也就是磁性原子的MAGMOM设置为一样的值。
对非磁性原子也可以设置成一样的非零值(与磁性原子的一样)或零,最后收敛的结果,非磁性原子的local磁矩很小,快接近0,很小的情况,很可能意味着真的是非磁性原子也会被极化而出现很小的local磁矩。
反铁磁,也意味着要进行spin-polarized的计算,ISPIN=2,这是需采用反铁磁的磁胞来进行计算,意味着此时计算所采用的晶胞不再是铁磁计算时的最小原胞。
比如对铁晶体的铁磁状态,你可以采用bcc的原胞来计算,但是在进行反铁磁的Fe计算,这是你需要采用sc的结构来计算,计算的晶胞中包括两个原子,你要设置一个原子的MAGMOM为正的,另一个原子的MAGMOM设置为负,但是它们的绝对值一样。
因此在进行反铁磁的计算时,应该确定好反铁磁的磁胞,以及磁序,要判断哪种磁序和磁胞是最可能的反铁磁状态,那只能是先做好各种可能的排列组合,然后分别计算这些可能组合的情况,最后比较它们的总能,总能最低的就是可能的磁序。
同样也可以与它们同铁磁或顺磁的进行比较。
了解到该材料究竟是铁磁的、还是顺磁或反铁磁的。
亚铁磁,也意味要进行spin-polarized的计算,ISPIN=2,与反铁磁的计算类似,不同的是原子正负磁矩的绝对值不是样大。
非共线的磁性,那需采用专门的non-collinear的来进行计算,除了要设置ISPIN,MAGMOM的设置还需要指定每个原子在x,y,z方向上的大小。
这种情况会复杂一些。
参杂Co原子的CdS稀磁半导体的态密度计算1. 2. 31. 结构优化System = CdSENCUT =500;ISTART= 0;ICHARG= 2;GGA = 91;ISPIN=2VOSKOWN=1ISMEAR = -5;SIGMA = 0.1;NSW=165IBRION = 2;ISIF = 3;POTIM = 0.2;EDIFF = 1E-4;EDIFFG = -1E-2;LREAL = AutoPREC = Accurate2.静态自洽计算得到体系的总磁矩(OZICAR最后一行MAG=)System = CdS-CoENCUT =500;ISTART= 0;ICHARG= 2;GGA = 91;ISMEAR = -5;SIGMA = 0.1;ISPIN= 2VOSKOWN= 1#NSW=165#IBRION = 1;#ISIF = 3;#POTIM = 0.2;EDIFF = 1E-5;EDIFFG = -1E-3;LREAL=AutoPREC = Accurate3.静态非自洽计算得到自旋态密度以及体系的总磁矩(OZICAR最后一行MAG=)磁矩与2中的相同System = CdS-CoENCUT =500;ISTART= 0;ICHARG= 11;GGA = 91;ISMEAR = -5;SIGMA = 0.1;ISPIN= 2VOSKOWN= 1LORBIT= 10#NSW=165#IBRION = 2;#ISIF = 3;#POTIM = 0.2;EDIFF = 1E-5;EDIFFG = -1E-3;LREAL=AutoPREC = AccurateNPAR= 1做铁磁计算或者反铁磁计算需加MAGMOM参数晶胞中只有一种原子时:MAGMOM= 2m*3 铁磁计算(2m是总的原子数,3是每个原子初始磁矩的大小)MAGMOM=m*-3 m*3反铁磁计算Types of spin ordering in perovskite oxides铁磁FM 反铁磁AFMA-type:The intra-plane coupling is ferromagnetic while inter-plane coupling is antiferromagnetic.C-type:The intra-plane coupling is antiferromagnetic while inter-plane coupling is ferromagnetic.G-type:Both intra-plane and inter-plane coupling are antiferromagnetic.磁结构的计算标题:[转载]如何用VASP计算铁磁、反铁磁和顺磁浏览:95 评论:0顺磁,意味进行non-spin polarized的计算,也就是ISPIN=1。
铁磁,意味进行spin-polarized的计算,ISPIN=2,而且每个磁性原子的初始磁矩设置为一样的值,也就是磁性原子的MAGMOM设置为一样的值。
对非磁性原子也可以设置成一样的非零值(与磁性原子的一样)或零,最后收敛的结果,非磁性原子的local磁矩很小,快接近0,很小的情况,很可能意味着真的是非磁性原子也会被极化而出现很小的local磁矩。
反铁磁,也意味着要进行spin-polarized的计算,ISPIN=2,这是需采用反铁磁的磁胞来进行计算,意味着此时计算所采用的晶胞不再是铁磁计算时的最小原胞。
比如对铁晶体的铁磁状态,你可以采用bcc的原胞来计算,但是在进行反铁磁的Fe计算,这是你需要采用sc的结构来计算,计算的晶胞中包括两个原子,你要设置一个原子的MAGMOM为正的,另一个原子的MAGMOM设置为负,但是它们的绝对值一样。
因此在进行反铁磁的计算时,应该确定好反铁磁的磁胞,以及磁序,要判断哪种磁序和磁胞是最可能的反铁磁状态,那只能是先做好各种可能的排列组合,然后分别计算这些可能组合的情况,最后比较它们的总能,总能最低的就是可能的磁序。
同样也可以与它们同铁磁或顺磁的进行比较。
了解到该材料究竟是铁磁的、还是顺磁或反铁磁的。
NUPDOWN设置为一个为非0而且非-1的数,就是相当是将在自洽迭代循环的计算过程加了一个限制,即限制自旋向上和自旋向下的电子数之差为一个固定的值,对应的就是给体系设置一个固定的总磁矩。
具体在程序里面实现起来,量子化学的程序(比如Gaussian)和广泛用于固体物理的第一原理程序(比如WIEN2K)略有不同。
亚铁, 结构, 原子, 磁矩,磁结构,亚铁磁结构。
ISPIN=2,MAGMOM=......,这样来说,计算铁磁结构只需要把各个原子的磁矩方向设为一致,如,都为正值就可以了;计算反铁磁结构只需要把不同子子晶格的原子磁矩方向设为相反,如,一正一负就可以了;计算亚铁磁结构或许还要用到NUPDOWN。
但是有个问题,我做了一个亚铁磁结构的计算,初始MAGMOM设置了有正有负的原子磁矩,没有设置NUPDOWN值,而优化出来的结果里各个原子的磁矩却是按同一方向排列的!也就是说没有得到我想要的亚铁磁结构。
如果要设置NUPDOWN进行强制总磁矩的话,又不知道这个值该设成多大?非常希望各位多给意见,只要是有相关内容的回帖都送金币。
收藏分享评分回复引用TOP定义: 自旋多重度(spin multiplicity)=2S+1, S=n*1/2,n为单电子数。
所以,关键是单电子的数目是多少。
当有偶数个电子时,例如O2,共有16个电子,那么单电子数目可能是0,即8个alpha和8个beta电子配对,对应单重态,但是也可能是有9个α电子和7个β电子,那么能成对的是7对,还剩2个α没有配对,于是n=2,对应的是多重度3。
同理还可以有多重度5,7,9,...一般而言,是多重度低的能量低,最稳定,所以,一般来说,偶数电子的体系多重度就是1。
但是也有例外,如果O2就是一个大家都知道的例子,它的基态是三重态,其单重态反而是激发态。
所以,总结一下,就是电子数目是偶数,未成对电子数目n=0,2,4,6,...自旋多重度是1,3,5,7,...电子数目是奇数,未成对电子数目n=1,3,5,7,...自旋多重度是2,4,6,8,...多数情况是多重度低的能量低,有时(特别是有“磁”性的时候,例如顺磁的O2,以及Fe啊什么的),可能会高多重度的能量低。