电磁场与电磁波答案
《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波第二版课后答案 (2)

电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
电磁场与电磁波 答案

23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。
电磁场与电磁波试题及答案

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D BH J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay
−
3az
)
;②
A−B =
53 ;③ A • B = −11;
④
θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2
。
1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;
电磁场与电磁波(第四版)课后答案_谢处方_第二章习题 2

2.10 一个半圆环上均匀分布线电荷 ,求垂直于圆 平面的轴线z=a处的电场强度,设半圆环的半径也为a。
解:
dq ldl ', dl ' a d ',
dE
R eza era a(ez ex cos ' ey sin '),
E r
l 4 0
c
R R3
dl
'
a
l
40
(ez ex cos ' ey sin ')a2 d '
的磁感应强度,并证明空腔内的磁场是均匀的。
解:将题中问题看做两个对称电流的叠加:
一个是密度为 J 均匀分布在半径为 b
的圆柱内,另一个是密度为 J 均匀
b
分布在半径为 a 的圆柱内。 a
由安培环路定律在 b 和 a 中分布的
d
磁场分别为
0 2
J
b
b b
Bb
0b2 J b 2 b2
b b
0
q(ex x ey y (x a)2
ez z exa)
y2
z2
3/ 2
2q(ex x ey y ez z exa)
(x
a)2
y2
z2
3/ 2
0
由此可得个分量为零的方程组:
q(x
a)
(x
a)2
y2
z2
3/ 2
2q(x
a)
(x
a)2
y2
z2
3/ 2
0
qy
(
x
2
a)2
y2
z2
3/ 2
2qy
解:(1)
d
q (r ) d 0 (r ) s dx
电磁场与电磁波 课后答案(冯恩信 著)

第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
电磁场和电磁波练习(有答案)

电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑥从点C沿等反射系数圆旋转180度到CC点,即为输入导纳点,查得 ,则 。
⑹①驻波比 ;
②波腹点阻抗为 ,位于圆图右实轴上A点,对应的向负载(逆时针)电刻度值为0.25;如题6-14(6)图所示;
⑴当负载阻抗 ,欲使线上驻波比最小,则线的特性阻抗应为多少?
⑵求出该最小的驻波比及相应的电压反射系数;
⑶确定距负载最近的电压最小点位置。
解:⑴ ,
驻波比S要小,就要求反射系数 小,需求其极值。
令 ,求
即
故
⑵将 代入反射系数公式,得
最小驻波比为
⑶终端反射系数
当 时,电压最小即 ,第一个电压波节点(取 )
⑵ 如果宽边尺寸增加一倍,上述参量如何变化?
⑶ 如果窄边尺寸增加一倍,上述参量如何变化?
⑷ 波导尺寸固定不变,频率变为15GHz,上述各参量如何变化?
解:⑴当f=10GHz时
, =2a=4.572cm,
此时波导中只能传输 波。所以,
⑵当 时,
,
故可传输 与 两种波型。对 波:
对 波,所求各量同⑴。
(3)当 时,
8、无耗线的特性阻抗为 ,第一个电流驻波最大点距负载15cm,VSWR为5, 工作波长为80cm, 求负载阻抗。
解: , ,
9、求图题7-9各电路 处的输入阻抗、反射系数模及线B的电压驻波比。
图题7-9
解:(a) , ,
(b) , ,
(c) , ,
或
说明 处匹配,故 ,
(d) ,
10、考虑一根无损耗线:
解:设 =0为负载端。
振幅 随d的变化如图题7-6所示。
图题7-6
7、无耗双导线的特性阻抗为500Ω,端接一未知负载 ,当负载端短路时在线上测得一短路参考点位置 ,当端接 时测得VSWR为2.4,电压驻波最小点位于 电源端0.208λ处,试求该未知负载阻抗 。
解:因为接 时, , ,因 处为等效负载点,故 。
则:波导的单模工作频率范围为: (或 ),即:
21、已知横截面为 的矩形波导内的纵向场分量为
式中, 为常量, , , 。
⑴试求波导内场的其它分量及传输模式。
⑵试说明为什么波导内部不可能存在TEM波。
解:⑴由横向场分量的表达式可得
其传输模式为 波。
⑵空心波导内不能存在TEM波。这是因为,如果内部存在TEM波,则要求磁场应该完全在波导的横截面内,而且是闭合回路。由麦克斯韦方程可知,回线上磁场的环路积分应等于与回路交链的轴向电流。此处是空心波导,不存在轴向的传导电流,故必要求有轴向的位移电流。由位移电流的定义式 可知,这时必有轴向变化的电场存在。这与TEM波电场,磁场仅存在于垂直于传播方向的横截面内的命题是完全矛盾的,所以波导内不能存在TEM波。
③ 满足 才能传输
17、何谓工作波长,截止波长和波导波长?它们有何区别和联系?
解:工作波长就是TEM波的相波长。它由频率和光速所确定,即
式中, 称为自由空间的工作波长,且 。
截止波长是由截止频率所确定的波长,
只有 的波才能在波导中传输
波导波长是理想导波系统中的相波长,即导波系统内电磁波的相位改变 所经过的距离。波导波长与 , 的关系为
解:输入阻抗:
5、在特性阻抗为 的无耗双导线上 , 测得负载处为电压驻波最小点, 为 8V, 距负载 处为电压驻波最大点 , 为 10V, 试求负载阻抗 及负载吸收的功率 。
解:传输线上任一点的输入阻抗和反射系数的关系为
在电压最小点处 ,将其代入上式可得
再由驻波比表达式
所以
由题中给出的条件可得
则
6、长度为3λ/4,特性阻抗为600Ω的双导线,端接负载阻抗300Ω;其输入端电压为600V。试画出沿线电压、电流和阻抗的振幅分布图,并求其最大值和最小值。
18、一矩形波导内充空气,横截面尺寸为: ,试问:当工作波长各为 时,波导内可能传输哪些模式?
解:由 得,
由波导传输条件 可知,当 时,波导中不能传输任何模式;当 时,能传TE10模式;当 时,能传TE10、TE20、TE01模式。
19、用BJ-100( )矩形波导以主模传输 的微波信号,试求:
⑴ 波导的截止波长 ,波导波长 ,相移常数 和波阻抗。
⑵ 对于75Ω的同轴线,若内导体的半径为0.6mm,外导体的内半径应选取为多少?
解:⑴ 双线传输线,令d为导线半径,D为线间距,则
⑵ 同轴线,令a为内导体半径,b为外导体内半径,则
3、设无耗线的特性阻抗为 , 负载阻抗为 , 试求:终端反射系数 驻波比 及距负载 处的输入阻抗 。
解:
4、一特性阻抗为50Ω、长2m的无耗线工作于频率200MHz,终端阻抗为 ,求其输入阻抗 。
③以O为中心,以OA为半径作等反射系数圆;
④从点A沿等反射系数圆逆时针旋转0.032,到逆时针电刻度值为0.032+0.25=0.282的B点,B点即为负载点,查得顺时针电刻度值为0.218, ,则 ;
⑤从点B沿等反射系数圆顺时针旋转0.32(1.82=3*0.5+0.32)到顺时针电刻度值为0.0328(0.32+0.218=0.538=0.5+0.0328)的C点,C点即为输入点,查得 ,则 。
⑶横电磁波(TEM)或准TEM波,电场和磁场都没有传播方向的分量,即
②相速度等于群速度且等于无耗媒介中平面波的速度,并且与频率无关
③无色散现象
⑷混合波,即 , ,且
其特点为:① 场被束缚在导行系统表面附近(表面波)
② 相速度 ,为慢波
②在导纳圆图上找到开路点AA,查得向信号源电刻度值为0,从点AA沿单位元向信号源方向旋转0.11到电刻度值为0.11的点BB,查得 。如图题7-14(3)所示。
⑷①在圆图上找到与 对应的点A,查得向信号源电刻度值为0.113;如图题7-14(4)所示。
②以O为中心,以OA为半径作等反射系数圆,等反射系数圆与圆图左实轴相交于B点,向信号源电刻度值为0.5,右实轴相交于C点,向信号源电刻度值为0.25;
③则
⑵ 将阻抗圆图当成导纳圆图使用,在导纳圆图上找到开路点A和 点B,查得向信号源电刻度值分别为0、0.344,则 ,如图题7-14(2)所示。
题7-14(3)题7-14(4)
⑶将阻抗圆图作为导纳圆图使用。
①在导纳圆图上找到短路点A,查得向信号源电刻度值为0.25,从点A沿单位圆(即等反射系数圆)向信号源方向旋转0.11到电刻度值为0.36( )的点B,查得 。
③从点A沿等反射系数圆向信号源方向(顺时针)旋转到点B,旋转的距离即为
;
④从点A沿等反射系数圆向信号源方向(顺时针)旋转到点C点,旋转的距离即为
;
⑤读得C点阻抗值即为驻波系数 ;
⑥读得B点阻抗值即为行波系数 ;
⑸①在圆图上找到与 对应的点B:波谷点阻抗为 ,位于左实轴上A点,对应的向负载(逆时针)电刻度值为0;如图题6-14(5)所示。
。如图题7-15所示。
⑵ , 与正实轴的夹角 即为反射系数的相角,故负载处反射系数
⑶从点A沿等反射系数圆顺时针(即朝向信号源方向)转动 ,与 的圆相交于点C(电刻度值为0.149),读得 ,故输入阻抗为
⑷延长 ,得点 的对称点 ,在此读得 ,则输入导纳为
⑸据传输线上合成波的电压方程知 时线上出现电压最小点,得
⑴①归一化负载阻抗
在圆图上找到与 对应的点A;以O为中心,以OA为半径作等反射系数圆,从点A开始沿等反射系数圆顺时针旋转 ,转到点B(相应的导纳点),读得向信号源电刻度值为0.20,如图题7-14(1)所示。
图题7-14(1)图题7-14(2)
②此时将阻抗圆图当成导纳圆图使用,找到等 圆与 的等电导圆的交点C,读得向信号源电刻度值为0.313。
⑸ 已知 , 为1.5, , ,求 和 。
⑹ 已知 , , , ,求 。
解:导纳是阻抗的倒数,故归一化导纳为
由此可见, 与 的关系和 与 的关系相同,所以,如果以单位圆圆心为轴心,将复平面上的阻抗圆图旋转 ,即可得到导纳圆图;或者将阻抗圆图上的阻抗点沿等 圆旋转 ,即可得到相应的导纳点;导纳点也可以是阻抗点关于圆图原点的对称点。由此可知可以把阻抗圆图当成导纳圆图使用,即等电阻圆看成等电导圆,等电抗圆看成等电纳圆,所有的标度值看成导纳。
解:平行双线传输线的特性阻抗为
而四分之一波阻抗变换器的特性阻抗应满足
故得
得构成 阻抗变换器的双导线的线径 为
导线的长度为
14、完成下列圆图基本练习:
⑴ 已知 为 ,要求 为 ,求 ;
⑵ 一开路支节 , 要求 为 ,求 ;
⑶ 一短路支节 , 已知 为 ,求 ;若为开路支节 , 求 ;
⑷ 已知 ,求 ;
其特点为:① 磁场完全分布在与波导传播方向垂直的横截面内,电场有传播方向分量
②相速度 ,为快波
③具有色散现象,且须满足 才能传输
⑵横电波(TE)或磁波(H),其电场没有传播方向的分量,即 ,
其特点为:① 电场完全分布在与导波传播方向垂直的横截面内,磁场则有传播方向
分量
②相速度 ,为快波
③具有色散现象,且须满足 才能传输
第一个波腹点
故
12、已知特性阻抗为300 的无损耗传输线上驻波比等于2.0,距负载最近的电压最小点离终端为 ,试求:
⑴负载端的电压反射系数 ;
⑵未知的负载阻抗 。
解:⑴
第一个电压最小点位置
即
故
⑵
13、一个 的源通过一根 的双线传输线对输入阻抗为73 的偶极子天线馈电。设计一根四分之一波长的双线传输线(线周围为空气,间距为 ),以使天线与 的传输线匹配。
②以O为中心,以OA为半径作等反射系数圆;