多边形面积(三)组合图形面积求解
【同步备课】第八单元 第3课时 图形与几何-多边形的面积(课件)五年级数学上册人教版

4. 一个直角三角形的三条边长分别是3cm、4cm、5cm。 以这三条边分别为边长画三个正方形,这三个正方形的
面积各是多少? S = a2 S 红 = 32 = 9(cm2) S 绿 = 42 = 16(cm2) S 黄 = 52 = 25(cm2)
你能发现这三个正方形的 面积之间有什么关系吗?
9+16 = 25,两个小正方形的面积的和等于大正 方形的面积。
32m
茄子:15×32÷2=240(m2) 黄瓜:25×32=800(m2)
子瓜 红 柿
西红柿:(15+23)×32÷2=608(m2) 23m 23m
总面积:240+800+608=1648(m2)
多边形面积计算公式应用
3.一块街头广告牌的形状是平行四边形,底是12.5 m, 高6.4 m。如果要油饰这块广告牌,每平方米用油漆0.6 kg,共需要多少千克油漆?
多边形面积计算公式应用
4.王村有一个占地面积是3384m²的鱼塘(如下图)。村长 告诉小林,鱼塘两条平行的边分别是84 m和60 m。小林 用这学期的数学知识算出了这两条边的距离。上底和下底
?
解:设这两条边的距离是x m。 (60+84)×x÷2 = 3384
144x÷2 = 3384
72x = 3384 两就在公条是遇 式边梯到 列的形已方的距知程高离面解。积决, 比求 较底 简可 公或 便根式高 。据求之梯出类形这逆的条向面高思积。维的答问7:2题x这÷时两7,x2条利== 边43用73的8面4距÷积离72
大平行四边形的底为3+5, 大平行四边形的面积减
所以可以求出其面积。
去10,即为梯形的面积。
2. 下图的平行四边形中,紫色部分的面积是10cm²。蓝
人教版五年级上册《多边形的面积》要点知识及易错点解析

人教版五年级上册《多边形的面积》要点知识及易错点解析《多边形的面积》要点知识一、公式:多边形面积公式面积公式的变式说明正方形正方形的面积=边长X边长S正=aXa=a2已知:正方形的面积,求边长长方形长方形的面积=长X宽S长=aXb已知:长方形的面积和长,求宽平行四边形平行四边形的面积=底X高S平=aXh已知:平行四边形的面积和底,求高h=S平÷a三角形三角形的面积=底X宽高÷2S三=aXh÷2已知:三角形的面积和底,求高H=S三X2÷a梯形梯形形的面积=(上底+下底)X高÷2S梯=(a+b)X2已知:梯形的面积与上下底之和,求高高=面积×2÷(上底+下底)上底=面积×2÷高-下底组合图形当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。
当组合图形是凹陷的,用一种最大的简单图形面积减较小的简单图形面积进行计算。
二、平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
三、三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2四、梯形面积公式推导:旋转两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2五、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
2021完整版《组合图形面积》多边形的面积PPT课件

(2)如果没平方米稻田产水稻1.2千克,那么这 块稻田共产水稻多少千克?
冀教版小学数学五年级
组合图形面积
教学目标
1.经历尝试计算组合图形面积、交流不同计算 方法的过程。 2.能运用学过的面积公式计算组合图形面积, 体验算法的多样化。 3.能够探索出计算组合图形面积的有效方法, 并试图寻找其它方法,获得运用数学知识解决 问题的成功体验。
探究新知
临街处要建一座拐角楼房(地基如图),求 地基的面积。(单位:m)
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
18
可以把地基分 成两个长方形。 40
18
60
18×40=720(平方米) 18×(60-18)=756(平方米) 720+756=1476(平方米) 答:地基的面积是1476平方米。
探究新知
临街处要建一座拐角楼房(地基如图),求 地基的面积。(单位:m)
18
还可以把地基 分成两个梯形。 40
18
60
(40-18+40)×18÷2=558(平方米) (60-18+16)×18÷2=918(平方米) 558+918=1476(平方米) 答:地基的面积是1476平方米。
小学五年级上册数学《多边形的面积》知识点及练习题

【导语】当物体占据的空间是⼆维空间时,所占空间的⼤⼩叫做该物体的⾯积,⾯积可以是平⾯的也可以是曲⾯的。
平⽅⽶,平⽅分⽶,平⽅厘⽶,是公认的⾯积单位,以下是⽆忧考为⼤家精⼼整理的内容,欢迎⼤家阅读。
【篇⼀】⼩学五年级上册数学《多边形的⾯积》知识点 1、公式 长⽅形:周长=(长+宽)×2;字母公式:C=(a+b)×2 ⾯积=长×宽;字母公式:S=ab 正⽅形:周长=边长×4;字母公式:C=4a ⾯积=边长×边长;字母公式:S=a 平⾏四边形:⾯积=底×⾼;字母公式:S=ah 三⾓形:⾯积=底×⾼÷2;字母公式:S=ah÷2 底=⾯积×2÷⾼;⾼=⾯积×2÷底 梯形:⾯积=(上底+下底)×⾼÷2;字母公式:S=(a+b)h÷2 上底=⾯积×2÷⾼-下底;下底=⾯积×2÷⾼-上底;⾼=⾯积×2÷(上底+下底) 2、单位换算的⽅法 ⼤化⼩,乘进率;⼩化⼤,除以进率。
3、常⽤单位间的进率 1千⽶=1000⽶1⽶=10分⽶ 1分⽶=10厘⽶1厘⽶=10毫⽶ 1平⽅千⽶=100公顷1公顷=10000平⽅⽶ 1平⽅⽶=100平⽅分⽶1平⽅分⽶=100平⽅厘⽶ 4、图形之间的关系 (1)、平⾏四边形可以转化成⼀个长⽅形;两个完全相同的三⾓形可以拼成⼀个平⾏四边形。
两个完全相同的梯形可以拼成⼀个平⾏四边形。
(2)、等底等⾼的平⾏四边形⾯积相等;等底等⾼的三⾓形⾯积相等。
(3)、等底等⾼的平⾏四边形⾯积是三⾓形⾯积的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等底,则三⾓形的⾼是平⾏四边形的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等⾼,则三⾓形的底是平⾏四边形的2倍。
(4)、把长⽅形框架拉成平⾏四边形,周长不变,⾯积变⼩了。
多边形面积的知识点

多边形面积的知识点1、长方形的面积=长×宽字母公式:s=ab长方形的长=面积÷宽长方形的宽=面积÷长长方形的周长=(长+宽)×2字母公式:c=2(a+b)长方形的长=周长÷2-宽长方形的宽=周长÷2-长2、正方形的面积=边长×边长字母公式:s= a2正方形的周长=边长×4字母公式:c=4a正方形的边长=周长÷43、平行四边形的面积=底×高字母公式:s=ah平行四边形的底=面积÷高平行四边形的高=面积÷底4、三角形的面积=底×高÷2字母公式:s=ah÷2三角形的底=面积×2÷高;三角形的高=面积×2÷底5、梯形的面积=(上底+下底)×高÷2字母公式:s=(a+b)h÷2梯形的面积=上、下底的和×高÷2梯形的下底=面积×2÷高-上底;梯形的上底=面积×2÷高-下底梯形的高=面积×2÷(上底+下底)6、计算摆成梯形的圆木或钢管等的总根数:总根数=(顶层根数+底层根数)×层数÷2(层数=底层根数-顶层根数+1)7、求组合图形的面积:(1)把它分割成已学的简单图形,通过把各个面积相加进行计算。
(2)把它填补成已学的简单图形,通过填补后得到的面积减去填补的面积进行计算。
(3)把它割补成已学的简单图形,计算割补后得到的简单图形的面积。
8、平行四边形面积公式推导:平行四边形通过(割补)可以转化成一个长方形;这个长方形的长相当于平行四边形的(底);长方形的宽相当于平行四边形的(高);长方形的面积等于平行四边形的面积。
因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
9、三角形面积公式推导:两个(完全一样)的三角形通过(旋转、平移)可以拼成一个平行四边形,这个平行四边形的底相当于三角形的(底);平行四边形的高相当于三角形的(高);平行四边形的面积等于(三角形面积的2倍),因为平行四边形面积=底×高,所以,三角形的面积=底×高÷210、梯形面积公式推导:两个完全一样的梯形通过(旋转、平移)可以拼成一个平行四边形,这个平行四边形的底相当于梯形的(上下底之和);这个平行四边形的高相当于梯形的(高);这个平行四边形面积等于梯形面积的(2倍),因为平行四边形的面积=底×高。
人教版五年级数学上册第六单元多边形的面积第4课时组合图形的面积

第二步 新知引入
认识组合图形。
由几个简单的图形组合而成的图形叫组合图形。
阅读课本99页内容。
我们把这样的图形叫做组合图形。
少先队队旗可以看成是由哪些图 形组合而成的?
由两个完全一样 的梯形组合成的。
由一个长方形和 两个完全一样的 三角形组合成的。
一个长方形去 掉一个三角形 而得到的图形。
RJ 5年级上册
教材习题
1.新丰小学有一块菜地,形状如右图。这块菜地的面积是多 少平方米?(选题源于教材P101第1题)
50×33+35×12÷2=1860(m2) 答:这块菜地的面积是1860m2。
2.一面中国少年先锋队中队旗的面积是多少?
80×(30+30)-(30+30)×20÷2 =4200(cm2) 答:一面中国少年先锋队中队 旗的面积是4200cm2。 其他算法略。 (选题源于教材P101第2题)
= 4×2÷2
= 4(cm2)
4 + 4 = 8(cm2)
8cm
方法三:拼的方法
4cm
B
(8÷2)×(4÷2)
A
= 4×2
= 8(cm2 )
2.在一块梯形的地中间有一个长方形的游泳池,其 余的地方是草地。+40)×30÷2-30×15 = 110×30÷2-450 = 3300÷2-450 = 1650-450 = 1200(m2)
长方形面积 =(5+2)×5 = 7×5 = 35(m2)
两个三角形面积 = 5×2÷2 = 5(m2) 房子侧面面积 = 35-5 = 30(m2)
小结
方法一
方法二
方法三
方法四
解决组合图形的面积可以采取三种方法,就是 分、拼、挖。
专题05:多边形的面积-2023-2024学年五年级数学期末核心考点集训(人教版)

4 组合图形的面积(阴影部分面积)
【例8】求下列图形的面积。
【分析】正方形面积=边长×边长 梯形的面积=(上底+下底)×高÷2 阴影部分面积=正方形面积+梯形面积
9×9=81(平方厘米) (5+9)×(21-9)÷2 =14×12÷2 =84(平方厘米) 81+84=165(平方厘米)
1、求平面的组合图形面积时可以合理地进行割或补,使组合图形的面积转化成 我们学过的基础图形的面积进行求解。 2、求组合图形的方法: (1)分割法: 把一个组合图形分割成几个基础图形(平行四边形、正方形、长方形、三角形 和梯形、圆等),分别求出面积,再进行求和。 (2)添补法: 把一个组合图形补成一个基础图形,再从这个基础图形的面积减去几个基础图 形的面积,从而求出它们的面积差。
【分析】平行四边形的底=平行四边形的面积÷高
30.15÷4.5=6.7(厘米)
2、观察下图,图中长方形和平行四边形的面积相比,( C )。 A、长方形的面积大 B、平行四边形的面积大 C、面积一样大
3、一个边长为12厘米的正方形,和一个底为18厘米的平行四边形的 面积相等,那么这个平行四边形的高是多少厘米? 【分析】正方形的面积=边长×边长 平行四边形的高=平行四边形的面积÷底 12×12=144(平方厘米) 144÷18=8(厘米) 答:这个平行四边形的高是8厘米。
【例3】有一块平行四边形的空地,要在空地中间留出一条小路请 你求出空地的实际面积是多少平方米?
【分析】空地的实际面积=大平行四边形面积-小平行四边形面积 平行四边形面积=底×高 9×4-9×1.5 =9×(4-1.5) =9×2.5 =22.5(平方米) 答:空地的实际面积是22.5平方米。
1、一个平行四边形的面积是30.15平方厘米,高是4.5厘米,则底是 ( 6.7 )厘米。
组合图形的面积公式

组合图形的面积公式许多天文学家和数学家经常发现,天文和数学形状的总体面积可以通过不同的图形组合而成。
经常的形状可以是三角形、正方形、圆形、多边形和椭圆形等。
为了计算组合图形的总体面积,我们需要知道每个组件面积的公式,以及它们如何组合在一起。
下面,我将介绍组合图形的常用面积公式。
1、三角形面积公式三角形的面积可以通过三角形的底边长与其高的乘积来确定。
如果三角形的底边长是a,其高为h,则可以通过以下公式确定三角形的面积:S = 1/2 a h2、正方形面积公式正方形的面积可以通过其边长乘积来确定。
如果正方形的边长是a,则可以通过以下公式确定正方形的面积:S = a a3、圆形面积公式圆形的面积可以通过圆形的半径乘以π来确定。
如果圆形的半径是r,则可以通过以下公式确定圆形的面积:S = r r4、多边形面积公式多边形的面积可以通过多边形的顶点与其中心的距离乘积来确定。
如果多边形的顶点是A,它的中心距离为d,则可以通过以下公式确定多边形的面积:S=1/2 A d5、椭圆形面积公式椭圆形的面积可以通过椭圆形的长轴与短轴的乘积来确定。
如果椭圆形的长轴是a,它的短轴是b,则可以通过以下公式确定椭圆形的面积:S = a b以上就是组合图形的常用面积公式。
当在计算更复杂的组合形状时,可以使用多边形分解法来计算总面积。
这种方法可以将复杂的多边形分解为若干较小的多边形,然后在每个小多边形上应用前面提到的面积公式,最后将每个小多边形的面积相加,从而获得总面积。
总之,组合图形的面积计算可以通过不同图形的面积公式进行计算,也可以通过多边形分解方法来计算总面积。
不同结构的图形可以有不同的面积计算方法,但基本思路都是将复杂的形状分成若干个简单的形状,以最简单的形状的面积公式为基础,求出复杂形状的面积值。
通过学习和研究以上计算面积的方法,可以帮助我们更好地解决天文学和数学中的组合图形的面积计算问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白色的长方形的面积: (10+5)×10=150(cm2)
黄色三角形面积: 10×10÷2=50(cm2) 绿色三角形面积: 5×5÷2=12.5(cm2) 红色三角形面积: (10+5)×5÷2=37.5(cm2)
蓝色三角形面积=白色的长方形的面积-三个直角三角形的面积 150-50-12.5-37.5=50(cm2)
一块梯形布料(如下图),如果在这块布料中 减下一个最大的三角形,那么剩余布料的面积 是多少?
要想在这个梯形中剪去一个最大的三角形,必须把梯形的下底 作为三角形的底,把梯形的高作为三角形的高,则剩下的图形 的面积就是以梯形的上底为底,梯形的高为高的三角形的面积, 据此利用三角形的面积公式计算即可解。
剩余布料就是蓝色三角形的。 5.5×8÷2=22(m2) 剩余的布料是22m2。
长方形的面积是am2,在长方形内画一个最大 的三角形,这个三角形是多少m2?
在一个长方形内画一个最大的三角形,如果三角 形面积最大,那么它的底和高都要取最大,则最 大的三角形的底=长方形的长,最大的三角形的高 =长方形的宽。
大长方形的面积: (10+8)×10=180(cm2)
黄色三角形的面积: 10×10÷2=50(cm2)
蓝色阴影部分的面积: 180-50-72-16=42(cm2) 阴影部分的面积42cm2
红色三角形的面积: (10+8)×8÷2=72(cm2)
黄色小长方形的面积: 8×(10-8)=16(cm2)
正方形ABCD的边长是10厘米, 正方形BEFG的边长是6厘米。
梯形CDFE的上底EF:6厘米 下底CD:10厘米 高EC:10-6=4(厘米)
梯形CDFE的面积:(6+10)×4÷2=32(平方厘米)
正方形CHIJ的边长不知道,设正方形CHIJ的 边长为x。
梯形CDIH的上底IH:x厘米 下底CD:10厘米 高CH:x厘米
50cm2
50cm2
50cm2 5有4个
下图是两个相同的直角三角形叠在一起,求蓝 色阴影部分的面积(单位:厘米)?
蓝色阴影部分面积=梯形ABCD面积
上图是两个相同的直角三角形叠在一起而形成的。
通过分析图可知: 蓝色阴影部分面积+▲BCE面积=一个直角三角形面积 梯形ABCD面积+▲BCE面积=一个直角三角形面积
组合图形的周长是56cm。 BC+AB+AD+DG+GF+FE+EC=56cm
图形由两个正方形组合而成。
AB=BC=AD GF=FE=EC AB+BC+AD+DG+GF+FE+EC
=3×AB+DG+3×FE =56cm
3×AB+DG+3×FE=56cm 线段DG的长为2cm
3×AB+2+3×FE=56cm 3×AB+3×FE=54cm 3×(AB+FE)=54cm AB+FE=54÷3=18cm
使用等级变形法
梯形ABCD面积=(上底+下底)×高÷2 上底:8-3=5厘米 下底:8厘米 高:5厘米 梯形ABCD面积=(8+5)×5÷2=32.5(平方厘米)
蓝色阴影部分面积是32.5平方厘米
手工课上小萍剪出了两个如下图所示的正方形 并把它们组合到了一起,组合图形的周长是 56cm,线段DG的长为2cm。小萍在图中涂了 这样一块阴影,阴影部分的面积是多少?
两个正方形的边长 和为18cm。
线段DG的长为2cm
大正方形的边长比小正方形边长长2cm。 AB+FE=18cm
大正方形边长10cm, 小正方形边长8cm。
AB+FE=18cm AB+FE+2=(18+2)cm AB+AB=20cm AB=10cm
FE=8cm
将这个图形填补成一个大长方形,然后减去底和高明确的三角形、 长和宽明确的长方形面积就是蓝色三角形的面积。
下图中,有三个正方形ABCD,BEFG和CHIJ, 其中正方形ABCD的边长是10厘米,正方形 BEFG的边长是6厘米,那么三角形DFI的面积是 多少?
本题是一道关于组合图形面积计算的题目,解 答本题的关键是表示出阴影部分的面积。
三角形DFI的面积 =梯形CDFE的面积+梯形CDIH的面积-梯形IFEH的面积
阴影部分为平行四边形, 底是5cm,高是10cm。 面积:10×5=50(cm2)
阴影部分为三角形, 底是10cm,高是10cm。 面积:10×10÷2=50(cm2)
阴影部分为梯形, 上底是10cm,下底是5cm,高是5cm。 面积:(10+5)×5÷2=37.5(cm2)
阴影部分为三角形,但无法确定底和高的长度,考虑用和差 法求解面积。先填补成一个大长方形,然后减去底和高明确 的3个彩色三角形的面积就是蓝色阴影三角形的面积。
梯形CDFE的面积:(x+10)×x÷2 平方厘米
梯形IFEH的上底IH:x厘米 下底EF:6厘米 高EH:x+4厘米
长方形的长是10cm,宽是6cm,求阴影部分的 面积?
阴影部分是不规则的四边形,无法求解面积。 考虑将阴影部分分解成两个三角形。
长方形的长是 10cm,宽是 6cm。
阴影部分的面积的面积: 21+9=30(cm2)
橙色三角形的面积: 6×7÷2=21(cm2) 绿色三角形的面积: 6×3÷2=9(cm2)
多边形面积(三)
组合图形面积求解
小学五年级数学
图形面积的求解,如果知道明确的底和高,可以使用面积公式 求解;如果不知道图形的底和高,可以采用求组合图形面积的 方法。
求组合图形的面积,常常需要利用和差法与等积变形法。 等积变形法指的是相等面积的的图形变换。等积变形法的关键 是弄清楚,哪两个图形的面积相等,可以等量替换。 和差法就是把所求图形的面积转化为干个图形面积的和或差来 计算。和差法解题的关键是弄清楚阴影部分的面积可以由哪些 图形的面积差或和求得。
长方形的面积=长×宽 最大的三角形的面积=底×高÷2=长×宽÷2
=长方形面积÷2 最大的三角形的面积是长方形面积的一半
长方形的面积是am2。
最大的三角形的面积是a÷2(m2)。
大正方形的边长是10cm,小正方形的边长是5cm, 下面的图形中阴影部分面积相等的有几个?
阴影部分为平行四边形, 底是5cm,高是10cm。 面积:10×5=50(cm2)