物理吸附化学吸附

合集下载

吸附技术知识点总结

吸附技术知识点总结

吸附技术知识点总结一、概述吸附技术是一种物理或化学过程,通过在固体表面或孔隙中吸附气体、液体或溶质来分离或提纯物质的方法。

吸附技术具有高效、节能、环保、易操作、低成本等优点,在化工、环保、能源、医药等领域得到了广泛应用。

吸附技术可分为气体吸附和液体吸附两种类型,其中气体吸附主要用于气体分离和净化,液体吸附主要用于溶剂回收和废水处理。

二、吸附过程的基本原理吸附过程是指物质在固体表面或孔隙中附着的过程,其基本原理可归结为几种主要机制:1. 物理吸附:也称范德华吸附,是指气体或液体分子在固体表面附着的一种物理现象。

其特点是吸附力弱,吸附物质易脱附。

物理吸附是一种可逆过程,通常在低温和高真空条件下发生。

2. 化学吸附:指气体或液体分子在固体表面形成化学键而附着的过程。

其特点是吸附力强,吸附物质难脱附。

化学吸附是一种不可逆过程,通常发生在较高温度和压力条件下。

3. 吸附热力学:吸附过程的热力学基础是吉布斯自由能的变化,吸附热力学理论可用于描述物质在固体表面或孔隙中的吸附行为,包括吸附等温线、吸附等压线等。

4. 吸附动力学:吸附过程的动力学基础是质量传递、传质速率、平衡时间等,用于描述物质在固体表面或孔隙中的吸附速率和平衡时间等动态过程。

三、气体吸附技术气体吸附技术是指利用固体吸附剂吸附气体分子的方法,常用于气体分离和净化领域。

1. 吸附剂的选择:气体吸附剂通常为多孔性固体,如活性炭、分子筛、铝土矿、氧化铝、硅胶等。

根据吸附剂的孔径、比表面积、孔隙分布等特性选择适合的吸附剂。

2. 吸附分离:气体吸附分离常用于分离气体混合物,如氧气/氮气、二氧化碳/甲烷等。

通常利用吸附剂在一定温度、压力下对气体混合物进行吸附分离,根据各气体在吸附剂上的吸附力差异实现气体分离。

3. 吸附净化:气体吸附净化常用于去除气体中的有害成分,如有机物、硫化物、氮氧化物等。

通常利用吸附剂对气体中的有害成分进行吸附,实现气体净化和净化剂再生。

物理吸附和化学吸附

物理吸附和化学吸附

哈尔滨商业大学食品工程学院
应用:
物理吸附在化学工业、石油加工工业、农业、医药工业、环境保护 等部门和领域都有广泛的应用。
最常用的是从气体和液体介质中回收有用物质或去除杂质,如气体 的分离、气体或液体的干燥、油的脱色等。
哈尔滨商业大学食品工程学院
2、化 学 吸 附
化学吸附:吸附质分子与固体表面原子(或分子)发生电子的转移、 交换或共有,形成吸附化学键(原子或离子相结合的能力)的吸附。简 单说是固体表面与被吸附物间的化学键力起作用的结果。可看做化学反 应。
哈尔滨商业大学食品工程学院
4.5离子交换的应用
(2)在硬水软化中的应用 水的软化是去除水中Ca2+,Mg2+ ,通过Na型阳离子交换柱使水中Ca2+,Mg2+ 与Na+交换,使其保留在树脂上。
C a2+
2R SO 3-N a+ + M g2+
2H C O 3SO 422C l-
C a2+
2R SO 3M g2+
代号
分类名称
0
强酸
1
弱酸
2
强碱
3
弱碱
4
螯合
5
两性
6
氧化还原
功能基
说明
-SO3H
-COOH,-PO3H3
-N+(CH3)3 ,
-N+
(CH3)2
CH2CH2OH
-N H 2,-N H R ,-N R 2
H2C
CH2COOH N
CH2COOH
(-N + (C H 3 )3 , -C O O H )
(-CH2SH)
(1)阴离子交换树脂

物理吸附仪和化学吸附仪

物理吸附仪和化学吸附仪

物理吸附仪和化学吸附仪全自动物理吸附和化学吸附仪是一种用于化学、材料科学领域的分析仪器,于2011年8月17日启用。

全自动物理、化学吸附测量,并可以通过TCD和质谱测量检测器测量吸附/脱附气体的种类和物质的量。

物理/化学吸附仪化学吸附是吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附。

由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。

特点化学吸附的主要特点是:仅发生单分子层吸附;吸附热与化学反应热相当;有选择性;大多为不可逆吸附;吸附层能在较高温度下保持稳定等。

化学吸附又可分为需要活化能的活化吸附(activated adsorption)和不需活化能的非活化吸附(non-activated adsorption),前者吸附速度较慢,后者则较快。

化学吸附是多相催化反应的重要步骤。

研究化学吸附对了解多相催化反应机理,实现催化反应工业化有重要意义。

吸附特点与物理吸附相比,化学吸附主要有以下特点:①吸附所涉及的力与化学键力相当,比范德华力强得多。

②吸附热近似等于反应热。

③吸附是单分子层的。

因此可用朗缪尔等温式描述,有时也可用弗罗因德利希公式描述。

捷姆金吸附等温式只适用于化学吸附:V/Vm=1/a·㏑CoP。

式中V是平衡压力为p时的吸附体积;Vm是单层饱和吸附体积;a和c0是常数。

④有选择性。

⑤对温度和压力具有不可逆性。

另外,化学吸附还常常需要活化能。

确定一种吸附是否是化学吸附,主要根据吸附热和不可逆性。

机理可分3种情况:①气体分子失去电子成为正离子,固体得到电子,结果是正离子被吸附在带负电的固体表面上。

②固体失去电子而气体分子得到电子,结果是负离子被吸附在带正电的固体表面上。

③气体与固体共有电子成共价键或配位键。

例如气体在金属表面上的吸附就往往是由于气体分子的电子与金属原子的d电子形成共价键,或气体分子提供一对电子与金属原子成配位键而吸附的。

有机污染物的吸附机理

有机污染物的吸附机理

有机污染物的吸附机理近年来,随着工业及经济的发展,人类在环境污染方面取得了一些成就,但也引发了有机污染物的大量释放,使环境污染更加严重,这就给人们带来了严重的健康和社会问题,由此形成关于有机污染物的一系列活动,为了缓解这些问题的影响,吸附技术作为一种有效的有机污染物处理技术受到了广泛的重视。

本文着重介绍了有机污染物的吸附机理以及吸附过程中的一些主要参数等,以期为有效的污染物处理技术的开发提供一些有价值的建议。

一、有机污染物的吸附机理可以将有机污染物的吸附分为物理吸附和化学吸附两种形式,两者吸附机理不同。

1.物理吸附物理吸附是指吸附物质和表面之间的空气间隙通过空气间隙产生引力和凝聚,形成因果关系,从而在表面上产生吸附力,使有机污染物物质附着在表面上,如表面吸附介质,以及吸附空气温度和压强的变化等。

物理吸附的作用机理不受有机污染物的电离性质的影响。

2.化学吸附化学吸附主要是指表面上化学成分与有机污染物物质之间形成分子间相互作用产生相互修,从而产生吸附力,使有机污染物物质附着在表面上,如吸附剂的可以形成络合物,从而改变有机污染物物质的电性质的形式。

二、吸附过程中的主要参数1.吸附时间吸附时间是指有机污染物物质附在表面上维持一定吸附强力所需要的时间。

随着时间的增加,有机污染物物质的吸附能力也会随之增加,但也会出现衰减现象,当吸附时间到达一定阶段时,有机污染物物质的吸附能力会发生明显的降低。

2.吸附速率吸附速率是指有机污染物物质在一定时间内从水体中被吸附到表面上的速率。

它受到吸附剂的类型、表面形状和尺寸、有机污染物物质的含量和浓度等多种因素的影响。

吸附剂的性质越稳定,其吸附速率越快;当有机污染物物质浓度增加时,其吸附速率也会增加。

3.吸附容量吸附容量是指吸附剂在一定条件下能够吸附有机污染物物质的最大量,这取决于吸附剂的物理化学性质、吸附介质的温度、压强等,它们影响着有机污染物物质的吸附效率。

吸附容量越大,有机污染物物质的吸附效率就越高。

吸附法的分类

吸附法的分类

吸附法的分类
吸附法主要可以分为物理吸附、化学吸附和离子交换吸附三类。

1. 物理吸附:基于吸附剂与溶质之间的分子间作用力即范德华力。

溶质在吸附剂上吸附与否或吸附量的多少主要取决于溶质与吸附剂极性的相似性和溶剂的极性。

一般物理吸附发生在吸附剂的整个自由表面,被吸附的溶质可通过改变温度、PH和盐浓度等物理条件脱附。

2. 化学吸附:会释放大量的热,吸附热高于物理吸附。

化学吸附一般为单分子层吸附,吸附稳定,不易脱附,故洗脱化学吸附质一般需采用破坏化学结合的化学试剂为洗脱剂。

化学吸附具有高选择性。

3. 离子交换吸附:所用吸附剂为离子交换剂。

离子交换剂表面含有离子基团或可离子化基团,通过静电引力吸附带有相反电荷的离子,吸附过程发生电荷转移。

离子交换的吸附质可以通过调节PH或提高离子强度的方法洗脱。

以上信息仅供参考,如有需要,建议查阅相关文献或咨询专业人士。

物理吸附和化学吸附的概念

物理吸附和化学吸附的概念

物理吸附和化学吸附的概念1. 哎呀妈呀,说起物理吸附和化学吸附的概念,那可真是一个让人脑袋瓜子嗡嗡的话题啊!不过别担心,咱们今天就用最通俗易懂的方式来聊聊这两个看似高大上的概念。

保准说完后,你就能跟身边的小伙伴们侃侃而谈,把他们都镇住!2. 物理吸附,简单来说就是两个东西之间玩"贴贴"的游戏。

它们之间没有什么深厚的感情,就是单纯地黏在一起。

就像是你把一块磁铁靠近冰箱门,"啪"的一下就吸上去了。

这种吸附力虽然不是很强,但胜在来去自如,想分开就分开,一点都不麻烦。

3. 有个小朋友听了这个解释后,眼睛一亮,说:"哇,那不就像我和我最好的朋友吗?我们天天黏在一起玩,但放学后就各回各家,第二天又能继续玩在一起!"4. 化学吸附呢,那可就不一样了。

这是两个物质之间产生了"真爱",它们之间发生了化学反应,形成了新的化学键。

这种吸附可不是闹着玩的,一旦在一起,就很难分开了。

就像是你把一块口香糖粘在头发上,想要分开可就费劲了。

5. 听到这里,刚才那个小朋友又插嘴说:"这不就像我爸妈吗?他们在一起这么多年了,感情越来越深,怎么也分不开!"6. 物理吸附和化学吸附的区别,就像是谈恋爱和结婚的区别。

物理吸附就像是谈恋爱,今天我喜欢你,明天可能就不喜欢了,分手很容易。

而化学吸附就像是结婚,两个人已经融为一体,想要分开可就没那么简单了。

7. 有个化学老师听了这个比喻后,哈哈大笑说:"这个比喻太妙了!以后我就用这个例子来给学生们讲解,保准他们记得清清楚楚!"8. 物理吸附的特点是:力量小、速度快、可逆性强。

就像是你往墙上贴海报,想贴就贴,想撕就撕,一点都不费劲。

而且,物理吸附不挑剔,几乎所有的物质表面都能发生物理吸附。

9. 有个学生听了后说:"哇,这不就像是我们班上的小明吗?他交朋友特别快,今天和这个好,明天和那个好,关系来得快去得也快!"10. 化学吸附的特点是:力量大、速度慢、不可逆。

物理吸附与化学吸附

物理吸附与化学吸附
a 由直线的斜率和截距可 求得常数 c和 Vm . BET公式能较好地表达全部五种类型吸附等温线的中间 部分, 以 p/p* = 0.05 ~ 0.35间为最佳. 其改进还需考虑表面不 均匀性、同层吸附分子间的相互作用, 以及毛细凝结现象等. 最重要的应用是测定吸附剂的比表面.常采用低温吸附气 体作为吸附质. 当第一层吸附热远大于吸附质的凝结热时, c >>1, 简化为所谓一点法公式: Va ≈ 1 a 12 Vm 1 − ( p / p*)
吸附热
因 ∆ adsV = Va − Vg ≈ −Vg ≈ −nRT / p ∆ ads H ∆ ads H ⎛ ∂p ⎞ =− ⎜ ⎟ = nRT 2 / p ⎝ ∂T ⎠ na T∆ adsV
∆ ads H m ⎛ ∂lnp ⎞ ⎜ ⎟ =− RT 2 ⎝ ∂T ⎠ na p2 ∆ ads H m ⎛ 1 1⎞ ⎜ − ⎟ ln = ⎜T T ⎟ p1 R 1⎠ ⎝ 2 RT2T1 p2 ln ∆ ads H m = T1 − T2 p1 由恒吸附量下的两组平衡温度压力数据, 可求摩尔吸附焓. 吸附热一般会随吸附量的增加而下降, 表明固体表面的 能量是不均匀的. 吸附总是首先发生在能量较高、 活性较大 的位轩, 然后依次发生在能量较低、活性较小的位置上. 14
θ =
bp 1+ bp
2AM
10
多分子层吸附理论——BET公式
布鲁瑙尔(Brunauer), 埃米特(Emmett)和特勒(Teller)3人 在朗缪尔单分子层吸附理论基础上提出多分子层吸附理论, 简称 BET理论. 该理论假设如下: • 固体表面是均匀的; • 吸附靠分子间力, 吸附可以是多分子层的; • 被吸附的气体分子横向之间无相互作用力; • 吸附与脱附建立起动态平衡.

物理吸附与化学吸附

物理吸附与化学吸附
吸附剂的性质
吸附剂的表面活性、孔径、孔容等性质也会影响化学吸附 的过程和结果,不同性质的吸附剂对同一种吸附质的吸附 能力可能会有很大差异。
03
物理吸附与化学吸附的比较
吸附力比较
物理吸附
物理吸附是通过分子间作用力(范德 华力)将气体或液体吸附在固体表面 。这种吸附力较弱,容易受到温度和 压力的影响。
原理
01
物理吸附的原理主要是由于分子 间的范德华力,包括色散力、诱 导力和取向力。这些力的大小取 决于分子间的距离和分子极性。
02
当气体分子遇到固体表面时,如 果它们的动能足够大,它们会克 服范德华力,碰撞到表面并被吸 附。
影响因素
温度
温度对物理吸附的影响较小,因为物 理吸附是可逆的,而且没有电子转移 。
物理吸附与化学吸附
汇报人: 202X-12-28
目 录
• 物理吸附 • 化学吸附 • 物理吸附与化学吸附的比较 • 吸附在工业中的应用 • 吸附的未来发展
01
物理吸附
定义
物理吸附是指吸附剂与吸附质之间通 过分子间作用力(范德华力)进行的 吸附。这种吸附没有电子转移,只是 分子间的引力作用。
物理吸附是一种可逆过程,即在较高 温度下,被吸附的物质可以脱附释放 出来。
常用的物理吸附剂包括活性炭、分子筛等,它们具有高比 表面积和孔容,能够吸附气体分子并实现高效分离。
催化剂载体
化学吸附在催化剂载体中具有重要作 用,催化剂载体能够提供活性中心, 促进化学反应的进行。
常用的催化剂载体包括氧化铝、硅酸 铝、分子筛等,它们能够提供酸性或 碱性的活性中心,促进化学反应的进 行。
表面粗糙度
表面粗糙度对物理吸附的影响较大。 粗糙的表面可以提供更多的吸附位点 ,增加物理吸附的可能性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学吸附
物理吸附
吸附质分子和吸附中心之 间化学键的形成
>80 kJ/mol 活化吸附,吸附速率慢 化学吸附热
分子间作用力,如永久性偶 极矩,诱导性偶极矩,四极吸引 作用等
0-40 kJ/mol
非活化吸附,吸附速率快
凝聚热
高温(>气体的液化点)
接近气体的液化点
有选择性,与吸附质,吸附 无选择性 剂本质有关
NH3
301
188
155
C2H4
577
427
286
243 209
三、吸附位能曲线 物理吸附位能变化:通常用Lennard-Jones曲线来描述
A2分子在固体表面S上的物理吸附位能曲线
QP:物理吸附热
活性原子在固体表面化学吸附位能变化:通常用Morse公式 近似计算
活性原子A在固体表面S上的吸附位能曲线
固体表面(surface)原子与体相(bulk)原子的最大区别: 表面原子配位不饱和,从而表现出高的化学反应活性。
吸附(adsorption):气体在固体表面的累积。 吸收(absorption):体相的吸附。 吸附剂(adsorbent):吸附气体的固体物质。 吸附质(adsorbate):被吸附的气体。 吸附态:吸附质在表面吸附以后的状态。 吸附中心/吸附位:吸附剂表面发生吸附的局部位置。 吸附过程:固体表面上的气体浓度由于吸附而增加的过程。 脱附(desorption): 固体表面气体浓度的减小。 脱附过程:气体在表面上的浓度减小的过程。
体相原子配位数:12 表面原子配位数:9 面心立方最密堆积(FCC)
3 fold site 三重吸附位
4 fold site 四重吸附位
桥位
ห้องสมุดไป่ตู้顶位
表面的吸附位
二、物理吸附(physisorption)与 化学吸附(chemisorption)
吸附作用
吸附热 吸附速率 脱附活化能 发生温度 选择性
吸附层 可逆性
四、化学吸附的分子轨道图 把金属-吸附质体系作为“表面分子”,其分子轨道由金属和 吸附分子轨道组成。 单原子的吸附
(a)强化学吸附键
(b)弱化学吸附键
(c)不能成键, 原子离开表面
原子在d-金属上化学吸附的简化轨道示意图
双原子分子的化学吸附
双原子分子(H2)在d-金属上化学吸附的轨道示意图
1)由HOMO组合新的分子轨道。 2)对LUMO做相同的处理。 3)观察这些轨道相对于金属Fermi能级的位置,并且找出哪 一个轨道被填充及填充的程度
Qa:形成吸附物种S-A所释放的能量。 ra: 平衡距离。
一个分子靠近表面时的能量变化情况
D:解离能 Ea:吸附活化能 Qa:化学吸附热 Ed:脱附活化能
Y:物理吸附态/前驱态 X:化学吸附过渡态 Z:化学吸附态
分子A2-表面S吸附体系的位能曲线
AYX线:表示一个分子在表面的物理吸附过程。 BXZ线:表示活性原子在表面的化学吸附过程。 AYXZ线:表示一个分子在表面的解离化学吸附过程。
Precursor state: a weakly bound state in which the molecule may have several potential sites for chemisorption during its residence on the surface.
从吸附位能曲线还可得出以下两个结论: 1、由于表面的吸附作用,分子在表面上解离需要克服 Ea能垒,在气相中直接解离则需要D,分子在表面上活 化比在气相中容易,这是由于催化剂吸附分子改变了 反应途径的结果。 2、在数值上,脱附活化能等于吸附活化能与化学吸附 热之和。原则上,因为能量的守和性是这一关系具有 普遍性。
等压线上A和B两个极大值对应于两种化学吸附,它 们发生在两种不同的吸附中心上。
二维等高的位能图来表示分子靠近固体表面时的能量变化情况
H2-金属表面的二维位能图
反应通道(虚线):开始H-H距离是恒定的,随着分子接近表面, 接着出现一个活化势垒,一直越过马鞍点(过渡态),虽然Z变 化较小,但H-H距离增加,最后分子解离成原子。
单层
多层
可逆或不可逆
可逆
某些气体的液化潜热和最大物理吸附热
气体
H2 O2 N2 CO CO2 CH4 C2H4 C2H2 NH3 H2O Cl2
Q
0.92 6.69 5.61 6.02 25.1 9.12 14.64 24.01 23.26 44.22 18.41
(kJ/mol)
Qmax 8.4 20.9 20.9 25.1 37.7 20.9 33.5 37.7 37.7 58.6 35.6 (kJ/mol)
化学吸附
活化吸附:需要活化能而发生的化学吸附
非活化吸附:不需要活化能的化学吸附,如 氢在金属表面的解离。
催化剂表面上存在着不同种 类的吸附中心,由于这些中 心与吸附质形成不同的表面 络合物,因而有各自的吸附 位能曲线。
能产生两种化学吸附体系的位能曲线
P=101.3 kPa
H2在铁催化剂上的吸附等压线
五、吸附态和吸附化学键
吸附物种/吸附态决定催化反应的最终产物,即催化剂的选择性。 5.1 氢的吸附:通常是解离吸附(dissociative adsorption)
两个规律: 1、占有的分子轨道和占有的表面轨道之间的相互作用原 则上产生一个排斥作用。因为成键和反键的化学吸附轨道 两者都将使占据的。然而,如果反键轨道落在Fermi能级 轨道之上,这种排斥作用将会部分或者全部的被解除(如 CO在Rh金属上5轨道的相互作用)。 2、产生成键轨道的相互作用,它可能出现在Fermi能级之 上或之下。由于吸附分子所参与的LUMO轨道相对于分子 的原子间的相互作用是反键的,相应轨道的占据将导致分 子的解离。如果是部分的占据,则对分子和表面间的成键 贡献小,同时化学吸附分子内所涉及原子的相互作用减弱 (如CO在大多数VIII族金属上2*轨道的情况)。
某些气体的化学吸附热(kJ/mol)
气体 Ti Ta Nb W Cr Mo Mn Fe Co Ni Rh Pt
H2
188
188 167 71 134
117
O2
720
494 293
N2
586
CO 640
293 192 176
CO2 682 703 552 456 339 372 222 225 146 184
相关文档
最新文档