东营市2021年中考数学二模试卷D卷

合集下载

2021-2021年中考数学二模试题(答案不全)

2021-2021年中考数学二模试题(答案不全)

2021-2021年中考数学二模试题(答案不全)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,数轴上有A,B,C,D四个点,其中绝对值为2的数对应的点是ABCA.点A与点C B.点A与点D1-2-10C.点B与点C D.点B与点DD22.2021年第一季度全国网上商品零售额6310亿元,将6310用科学记数法表示应为 A.6.310?103B.63.10?10 C.0.6310?10 D.6.310?102443.下列计算正确的是235826347A.2a+3a=6a B. a+a=a C. a÷a=a D. (a)= a4.如图,已知a//b, ?1?130?,?2?90?, 则?3?A.70? B. 100? C. 140? D.170?5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.若一个正多边形的每一个外角都是40?,则这个多边形的边数为A.7 B.8 C.9 D.10 7. 若x?1?(y?2)2?0,则(x?y)2021等于D.-32021A.-1 B.1 C.38.右图所示的几何体的俯视图是2021A B C D9. 如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为 A. 2 B.4 C. 6 D. 8 10. 下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上 B. 打开电视频道,正在播放《焦点访谈》2C. 射击运动员射击一次,命中十环D. 方程x��2x��1=0必有实数根2a?b?2 ,则3a?b的值为 11. 已知a、b满足方程组a?2b?6 A. 8 B. 4 C. -4 D. -8 12. 代数式x2?4x?5的最小值是A.-1 B.1 C.2 D.5 13.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫,从点A开始按ABC DAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2021cm时停下,则它停的位置是A. 点FB. 点EC. 点AD. 点C14.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止,设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图像是 A15.如图,在直角三角形ABC中,∠ACB=90°,CA=4.点P是半圆弧 AC的中点,连接BP,线段BP把图形APCB(指半圆和直角三角形 ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是 A.2 B.4 C.1.5π-2 D.B C (B')BA'A'C'B'CC' P D O . A 第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上)16.分解因式:3m2?6mn+3n2= .17. 要使二次根式x?2在实数范围内有意义,则实数x的取值范围是18.已知点A(4,6)与B(3,n)都在反比例函数y?k?k?0?的图象上,则n? . x19.如图所示,平行四边形的两条对角线及过对角线交点的任意一条直线将平行四边形纸片分割成六个部分,现在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为.20.如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若,2,,则的长为__________.21.已知二次函数y1=x-2x-3及一次函数y2=x+m,将该二次函数图象在x轴下方的部分沿x轴翻折到轴上方,图象的其余部分不变,得到一个新图象,求新图象与直线y2=x+m 有三个不同公共点时 m的值三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 22.(本题7分) ?2x?x?2,2x1.(1)解不等式组:? (2)化简:2??2x?1x?1x?1??x.?3y o xA23.(本题7分)(1)已知:如图,点B,F,C,E在一条直线上,BFCEDBF=CE,AC=DF,且AC∥DF.求证:∠B=∠E.(2)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,求图中阴影部分的面积.(结果保留π)24.(本题8分) 在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如下图所示:人数 40 频数劳动时间(时)频率 30 (人数) 300.5 12 0.12 18 20 1 30 0.3 1210 x 1.5 0.4 y 2 18 0 1 0.5 2 时间(时)m 合计 1(1)统计表中的m? ,x? ,y? ;(2)被调查同学劳动时间的中位数是时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.25. (本题8分) 某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程. 已知2021年投资1000万元,预计2021年投资1210万元.若这两年内平均每年投资增长的百分率相同.(1) 平均每年投资增长的百分率;(2)已知河道治污每平方米需投入400元,园林绿化每平方米需投入200元,若要求2021年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?26.( 本题9分)如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=k(x>0)的图象经过OB的中点E,且与边BC交于点D.x(1)求反比例函数的解析式和点D的坐标;(2)求三角形DOE的面积;(3)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线解析式.27.(本题9分)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方备用图向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC 1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=k BD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接22写出k的值和AC1+(kDD1)的值.28.(本题9分)如图,抛物线y=1x��3x��9与x轴交于A、B两点,与y轴交于点C,连222接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).解答题24-28题答案24.解:(1)由于频率为0.12时,频数为12,所以频率为0.4时,频数为40,即x?40;频数为18,频率应为0.18时,即y?0.18;m?12?30?40?18?100.(2)被调查同学劳动时间的中位数为1.5时;(3)略(4)所有被调查同学的平均劳动时间为0.5?0.12?1?0.3?1.5?0.4?2?0.18?1.32时.25.解:(1)设平均每年投资增长的百分率为x,根据题意,得21000(1+x)=1210, 解这个方程得:(舍去)答:平均每年投资增长的百分率为10%.(2)设园林绿化的费用是y万元,则河道治污的费用是(1210-y)万元,由题意,得解这个不等式组得:190≤y≤242.答:园林绿化的费用应不少于190万元且不多于242万元.26.解:(1)∵矩形OABC的顶点B的坐标是(4,2),E是矩形ABCD的对称中心,∴点E的坐标为(2,1),代入反比例函数解析式,解得k=2,∴反比例函数解析式为y=2,x∵点D在边BC上,∴点D的纵坐标为2,∴y=2时,解得x=1,∴点D的坐标为(1,2);(2)略(3)设直线与x轴的交点为F,矩形OABC的面积=4×2=8,∵矩形OABC的面积分成3:5的两部分,∴梯形OFDC的面积为×8=3,或∵点D的坐标为(1,2),∴若(1+OF)×2=3,解得OF=2,此时点F的坐标为(2,0),若(1+OF)×2=5,解得OF=4,此时点F的坐标为(4,0),与点A重合,×8=5,当D(1,2),F(2,0)时,,解得,此时,直线解析式为y=��2x+4,当D(1,2),F(4,0)时,,解得综上所述,直线的解析式为y=��2x+4或y=��x+.,此时,直线解析式为y=��x+,感谢您的阅读,祝您生活愉快。

中考数学二模试卷含答案

中考数学二模试卷含答案

中考数学二模试卷一.选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将符合题目要求的选项填入答题卡)1.2020﹣1的相反数是()A.﹣2020B.﹣C .D.20202.23000000用科学记数法表示应为()A.2.3×103B.23×106C.2.3×107D.23×1023.下列所给图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .4.如图,含45°角的三角板的直角顶点A在直线a上,顶点C在直线b上.若a∥b,∠1=58°,则∠2的度数为()A.85°B.110°C.103°D.118°5.下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3•a4=2a76.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形7.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同.设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168x2(1﹣x2)=1088.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式﹣2m2+2m+2020的值为()A.2018B.2019C.2020D.20219.对于一组数据:x1,x2,x3,…x10,若去掉一个最大值和一个最小值,则下列统计量一定不会发生变化的是()A.中位数B.平均数C.众数D.方差10.如图,反比例函数y1=经过矩形ABCD的顶点D,反比例函数y2=经过矩形ABCD 的顶点C.矩形ABCD的顶点A在x轴的负半轴上运动,矩形ABCD的顶点B在x轴的正半轴运动上,如果矩形ABCD的面积为定值,下列哪个值不变()A.a+b B.a﹣b C .D.ab二、填空题(每小题4分,共28分,将正确答案填入答题卡相应的位置)11.分解因式:9m2﹣n2=.12.不等式组:的解集为.13.如图,在△ABC中,∠C=90°,AC=6,若cos A =,则BC的长为.14.如图,在矩形ABCD中,E是边CD的延长线上一点,连接BE交边AD于点F,若AB =40,BC=60,DE=20,则AF的长为.15.如图,A,B,C,D是圆O上的四个点,点B是弧ABC的中点,如果∠ABC=72°,那么∠ADB=.16.如图,在扇形OAB中,∠AOB=90°,半径OA=2.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为.17.在Rt△AOB中,∠AOB=90°,OA=3,sin B =.动点M从点B出发,沿BO以1单位/秒的速度向点O运动;动点P从点B出发,沿BA以1单位/秒的速度向点A运动;P、M两点同时出发,任意一点先到达终点时,两点停止运动.设运动的时间为t.△PMO的面积为S,则s的最大值是.三、解答题(一)(3小题,每小题6分,共18分).18.(6分)计算:|1﹣|+(2020+π)0﹣2sin60°+2﹣2.19.(6分)先化简,再求值:,其中x =﹣3.20.(6分)如图,点A是∠MON边OM上一点,AE∥ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,直接写出∠OBE的大小.四、解答题(二)(8小题,每小题8分,共24分)21.(8分)某校九年级举行了“中国梦”演讲比赛活动,学校团委根据学生的成绩划分为A,B,C,D四个等级,并绘制了如下两个不完整的两种统计图.根据图中提供的信息,回答下列问题(1)参加演讲比赛的学生共有人,并把条形图补充完整;(2)扇形统计图中,m=;C等级对应的扇形的圆心角为度.(3)学校准备从获得A等级的学生中随机选取2人,参加全市举办的演讲比赛,请利用列表法或树状图法,求获得A等级的小明参加市比赛的概率.22.(8分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?23.(8分)如图所示,在四边形ABCD中,AC与BD交于O,AB=AD,CB=CD.BE⊥CD 于E,BE与AC交于F.CF=2BO.(1)求证:△BEC是等腰直角三角形;(2)求tan∠ACD的值.五、解答题(三)(2小题,每小题10分,共20分)24.(10分)如图,AB为⊙O的直径,点D为⊙O上任意一点,点C为劣弧BD的中点,连BD,BC并延长BC至P使得∠BDP=2∠CDP;(1)求证:DP为⊙O的切线;(2)若BC=DP时,求证:∠ABD =∠ABC;(3)在(2)的条件下,求DC:BD值.25.(10分)把一块含有30°的三角板△ABC,∠C=90°,∠B=30°,绕C点顺时针旋转,若A点落在AB边上时,得到△ODC,如图①所示,E为OD的中点,连CE.(1)求证:四边形ACEO是菱形;(2)如图②,以O为原点,AB所在直线为x轴,建立直角坐标系,若A(2,0),求经过点D、O、A三点的抛物线的关系式,并求出其的顶点坐标;(3)在(2)的条件下,如图③P(m,0)是x的正半轴上一点,过点P作y轴的平行线l,与直线DC交于点M,与抛物线交于点N,连接OM,ON.在图③中探究:是否存在点P,使△OMN是直角三角形;若存在,请直接写出P的坐标;若不存在,请说明理由.参考答案一.选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,将符合题目要求的选项填入答题卡)1.B.2.C.3.D.4.C.5.D.6.C.7.B.8.A.9.A.10.B.二、填空题(每小题4分,共28分,将正确答案填入答题卡相应的位置)11.(3m+n)(3m﹣n).12.1<x<3.13.8.14.40.15.54°.16.π﹣.17..三、解答题(一)(3小题,每小题6分,共18分). 18.解:原式=﹣1+1﹣2×+=﹣1+1﹣+=.19.解:当x =﹣3时,原式=÷[﹣]=÷=•==20.解:(1)如图,OB为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB =∠MON=24°,∵AB∥ON,∴∠OBA=∠NOB=24°,∴∠OBE=180°﹣∠OBA=180°﹣24°=156°.四、解答题(二)(8小题,每小题8分,共24分)21.解:(1)参加演讲比赛的学生共有:8÷25%=32(人),B等级的人数为:32﹣4﹣12﹣8=8,补全的条形统计图如右图所示;(2)m%=×100%=37.5%,即m=37.5,C等级对应的扇形的圆心角为:360°×=135°,故答案为:37.5,135;(3)设小明用a表示,另外三名学生用b、c、d表示,树状图如下图所示,则获得A 等级的小明参加市比赛的概率是,即获得A等级的小明参加市比赛的概率是.22.解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①根据题意得,y=100x+150(100﹣x),即y=﹣50x+15000;②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,此时最大利润是y=﹣50×34+15000=13300.即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是13300元.23.证明:(1)∵AB=AD,CB=CD,∴AC垂直平分BD,∴BD=2BO,∵CF=2BO,∴CF=BD,∵∠DBE+∠BDE=90°,∠BDE+∠DCO=90°,∴∠DBE=∠FCE,又∵∠BED=∠CEF,∴△BDE≌△CFE(AAS),∴BE=CE,又∵BE⊥CD,∴△BEC是等腰直角三角形;(2)如图,连接DF,∵△BDE≌△CFE,∴DE=EF,∴DF=EF,∵AC垂直平分BD,∴BF=DF=EF,∴BE=BF+EF =(+1)EF,∴CE =(+1)EF,∴tan∠ACD==﹣1.五、解答题(三)(2小题,每小题10分,共20分)24.(1)证明:连接OD .∵点C为劣弧BD的中点,∴BC=CD,∴∠DBC=∠CDB,∵∠BDP=2∠CDP,∴∠BDC=∠CDP=∠DBC,∵∠OBD=∠ODB,∠BAC=∠CDB,∴∠ODB+∠CDB+∠CDP=∠OBD+∠BAC+∠DBC,∵AB为⊙O的直径,∴∠OBD+∠BAC+∠DBC=90°,∴∠ODB+∠CDB+∠CDP=90°,∴OD⊥DP,∴DP为⊙O的切线;(2)证明:∵BC=DP,BC=DC,∴CD=DP.设∠BDC=x,则∠DBC=∠PDC=x,∴∠P=∠DCP=2x=∠BDP,∵∠P+∠DBC+∠BDP=180°,∴5x=180°,解得x=36°,∴∠BDP=72°,∴∠ABD=∠ODB=90°﹣∠BDP=18°,∴∠ABC=∠ABD+∠DBP=18°+36°=54°,∴∠ABD =∠ABC;(3)解:过点作CH⊥BD于H,∵BC=CD,∴DH =BD,在DB上截取DM=DC,作∠DCM的平分线CN交DB于N,设DM=DC=a,DN=x,∴∠DCM=∠DMC=72°,∠MCN=∠DCN=36°,∴∠MNC=72°,∠CDN=∠DCN=36°,∴MC=NC=DN=x,MN=a﹣x,∵∠MCN=∠CDN=36°,∠DMC=∠CMN,∴△MCN∽△MDC,∴,即,解得x =,∵MC=NC,CH⊥BD,∴NH=,在直角三角形DCH中,DH=DN+NH=x +=,∴cos36°==,∴BD =,∴DC:BD=1:=.25.(1)证明:∵∠C=90°,∠B=30°,∴∠A=60°,∵OC=AC,∴△OCA为等边三角形,∵点E为OD的中点,∴CE=EO =OD =AB=OA=AC,∴四边形ACEO是菱形.(2)解:过点D作DM⊥x轴于点M,∵OD=AB=2OA=4,∠DOB=60°,∴OM=OB=2,DM=2,∴点M与点B重合,∴点D的坐标为(﹣2,2),设过点D、O、A三点的抛物线的关系式为y=ax(x﹣2),把点D的坐标代入解析式得﹣2a×(﹣4)=2,解得a =,∴抛物线解析式为y ==,∴抛物线的顶点坐标为(1,).(3)由点C(1,),D(﹣2,2)得直线CD的解析式为y =,∵MN⊥OA,∴∠NOP=∠NMO,∴△MOP∽△ONP,则OP:NP=MP:OP,∴OP2=MP•NP,则,解得,此时,,当∠OMN=90°时,如图2,M,P两点重合时,此时P3的坐标为(4,0)当∠ONM=90°,如图3,N,P,A三点重合时,此时点P4(2,0),综上所述,当△OMN为直角三角形时点P的坐标为(5+或(5﹣,0)或(4,0)或(2,0).。

数学中考二模试卷(含答案解析)

数学中考二模试卷(含答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−120212.如图所示的几何体,从上面看得到的图形是()A.B.C.D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×1084.下列甲骨文中,不是轴对称图形的是()A.B.C.D.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +17.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.18.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃9.在同一平面直角坐标系中,函数y=x﹣k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A .20√3米B .10米C .10√3米D .20米11.如图,从一块直径为2m 的圆形铁皮⊙O 上剪出一个圆心角为90°的扇形ABC ,且点A 、B 、C 都在⊙O 上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 212.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = .14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 .15.若一个多边形的内角和等于其外角和的2倍,则它是 边形.16.方程6x 1+2x =11−2x +3的解是 .17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y (m )与小宁离开出发地的时间x (min )之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为米.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.20.(6分)解不等式组:{2(x−1)+1<x+2x−12>−1把解集在数轴上表示出来,并写出所有整数解.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切(1)求证:点A平分BĈ;(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.24.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?25.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=6x的图象交于A(2,m),B(n,1)两点,连接OA,OB.(1)求这个一次函数的表达式;(2)求△OAB的面积;(3)问:在直角坐标系中,是否存在一点P,使以O,A,B,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−12021【分析】利用相反数的定义分析得出答案,只有符号不同的两个数叫做互为相反数.【解析】2021的相反数是:﹣2021.故选:B.2.如图所示的几何体,从上面看得到的图形是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解析】从上边看是一个六边形,中间为圆.故选:D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×108【分析】科学记数法的表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.其中a是整数数位只有一位的数,10的指数n比原来的整数位数少1.【解析】4 400 000 000=4.4×109,故选:B.4.下列甲骨文中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【解析】A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°【分析】根据平行线的性质和三角板的角度解答即可.【解析】∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +1【分析】利用合并同类项法则、积的乘方法则、同底数幂的乘法法则、完全平方公式逐个计算得结论.【解析】∵x2与x不是同类项,不能合并,故选项A错误;(﹣2x3)2=4x6,故选项B正确;x2•x3=x5≠x6,故选项C错误;(x+1)2=x2+2x+1≠x2+1,故选项D错误.故选:B.7.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.1【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解析】原式=(x+1)(x−1)x−1=x +1. 故选:C .8.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃ 【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解析】由图可得,极差是:30﹣20=10℃,故选项A 错误,众数是28℃,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误, 平均数是:20+22+24+26+28+28+307=2537℃,故选项D 错误, 故选:B .9.在同一平面直角坐标系中,函数y =x ﹣k 与y =k x (k 为常数,且k ≠0)的图象大致是( ) A . B .C.D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决.【解析】∵函数y=x﹣k与y=kx(k为常数,且k≠0)∴当k>0时,y=x﹣k经过第一、三、四象限,y=kx经过第一、三象限,故选项A符合题意,选项B不符合题意,当k<0时,y=x﹣k经过第一、二、三象限,y=kx经过第二、四象限,故选项C、D不符合题意,故选:A.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A.20√3米B.10米C.10√3米D.20米【分析】首先证明BD=AD=20米,解直角三角形求出BC即可.【解析】∵∠BDC=∠A+∠ABD,∠A=30°,∠BDC=60°,∴∠ABD=60°﹣30°=30°,∴∠A=∠ABD,∴BD=AD=20米,∴BC=BD•sin60°=10√3(米),故选:C.11.如图,从一块直径为2m的圆形铁皮⊙O上剪出一个圆心角为90°的扇形ABC,且点A、B、C都在⊙O上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 2【分析】根据题意,可以求得AB 和BC 的长,从而可以得到此扇形的面积.【解析】连接AC ,∵AB =CB ,∠ABC =90°,AC =2,∴AB =BC =√2,∴此扇形的面积是:90π×(√2)2360=π2m 2, 故选:A .12.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a 的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.【解析】①y =ax 2+(2﹣a )x ﹣2=(x ﹣1)(ax +2).则该抛物线恒过点A (1,0).故①正确; ②∵y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴有2个交点,∴△=(2﹣a )2+8a =(a +2)2>0,∴a ≠﹣2.∴该抛物线的对称轴为:x =a−22a =12−1a .无法判定的正负.故②不一定正确;③根据抛物线与y 轴交于(0,﹣2)可知,y 的最小值不大于﹣2,故③正确;④∵A (1,0),B (−2a ,0),C (0,﹣2),∴当AB =AC 时,√(1+2a )2=√12+(−2)2,解得 a =1+√52.故④正确. 综上所述,正确的结论有3个.故选:C .二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = m (m ﹣3) .【分析】首先确定公因式m ,直接提取公因式m 分解因式.【解析】m 2﹣3m =m (m ﹣3).故答案为:m (m ﹣3).14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 12 .【分析】骰子共有六个面,每个面朝上的机会是相等的,而偶数有2,4,6,根据概率公式即可计算.【解析】∵骰子六个面中偶数为2,4,6,∴P (向上一面为偶数)=36=12;故答案为:12. 15.若一个多边形的内角和等于其外角和的2倍,则它是 六 边形.【分析】根据多边形的内角和公式与外角和定理列出方程,然后解方程即可.【解析】设这个多边形是n 边形,根据题意得,(n ﹣2)•180°=2×360°,解得n =6.故答案为:六.16.方程6x1+2x =11−2x+3的解是x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解析】去分母得:6x(1﹣2x)=1+2x+3(1+2x)(1﹣2x),整理得:6x﹣12x2=1+2x+3﹣12x2,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为1500米.【分析】根据题意和函数图象可以求得小宁的跑步速度和步行速度,从而可以求得小宁由跑步变为步行的时刻,进而求得小强骑车速度,再根据题意即可得到则当弟弟到家时,小宁离图书馆的距离.【解析】由图可得,小宁跑步的速度为:(4500﹣3500)÷5=200m/min,则步行速度为:200×12=100m/min,设小宁由跑步变为步行的时刻为a分钟,200a+(35﹣a)×100=4500,解得,a=10,设小强骑车速度为xm/min,200(10﹣5)+(10﹣5)x=3500﹣1000,解得,x=300,即小强骑车速度为300m/min,小强到家用的时间为:4500÷300=15min,则当弟弟小强到家时,小宁离图书馆的距离为:4500﹣10×200﹣(5+15﹣10)×100=1500m,故答案为:1500.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是①②④.【分析】由正方形的性质可得AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,由旋转的性质可得AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,由“HL”可证Rt△BEG≌Rt△BCG,可得∠EBG=∠CBG=22.5°,由“SAS”可证△BEH≌△BCH,可得CH=EH=EG=CG,∠BCH=∠BEH =45°,可求OH=2−√2,由等腰三角形的性质可求EH=√2OH=2√2−2,可求△BDG的面积.即可求解.【解析】∵四边形ABCD是正方形,∴AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,∵将△ABD绕着点B顺时针旋转45°得到△BEF,∴AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,∴BE=BC=2,在Rt△BEG和Rt△BCG中,{BE=BCBG=BG,∴Rt△BEG≌Rt△BCG(HL),故①正确;∴∠EBG=∠CBG=22.5°,∴∠BGC=67.5°,∠GHC=∠GBC+∠ACB=67.5°,∴∠BGC=∠GHC,∴CH=CG,在△BEH和△BCH中,{BE =BC ∠EBH =∠CBH BH =BH,∴△BEH ≌△BCH (SAS ),∴EH =CH ,∠BCH =∠BEH =45°,∴CH =EH =EG =CG ,∴四边形EHCG 是菱形,故②正确,∵∠BEH =45°,∠EOH =90°,∴∠OEH =∠OHE =45°,∴OH =OE =BE ﹣OB =2−√2,故④正确;∴EH =√2OH =2√2−2,∴CG =EH =2√2−2,∴DG =CD ﹣CG =4﹣2√2,∴△BDG 的面积=12×DG ×BC =12×(4﹣2√2)×2=4﹣2√2,故③错误, 故答案为:①②④.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.【分析】直接利用负指数幂的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解析】原式=3−1+2√3−√3=2+√3.20.(6分)解不等式组:{2(x −1)+1<x +2x−12>−1把解集在数轴上表示出来,并写出所有整数解. 【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解析】{2(x −1)+1<x +2①x−12>−1②, 解不等式①得x <3,解不等式②得x >﹣1,∴不等式组的解集为﹣1<x <3,数轴表示为:整数解为:0,1,2.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.【分析】证明△AFD≌△AEB(SAS),即可得出BE=DF.【解析】证明:∵四边形ABCD是菱形,∴AB=AD,∵E、F分别是AD和AB的中点,∴AF=12AB,AE=12AD,∴AF=AE,又∵∠F AD=∠EAB,∴△AFD≌△AEB(SAS),∴BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.【解析】(1)此次共调查的学生有:40÷72°360°=200(名); (2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共有25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是2025=45.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切̂;(1)求证:点A平分BC(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.【分析】(1)连接OA交BC于F.只要证明OF⊥BC即可解决问题.(2)连接OB.连接OA交BC于F.首先证明BE=AB,设OF=x,则AF=13﹣x,可得132﹣x2=(4√13)2−(13−x)2,解方程可求出OF,则BF可求出,由垂径定理可得结果.【解析】(1)证明:如图1,连接OA交BC于F.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠CFO,∵AD是⊙O的切线,∴∠OAD=90°,∴∠OFC=90°,∴OF⊥BC,̂,∴OA平分BĈ=AĈ.即AB(2)如图2,连接OB.∵AB ∥DE ,∴∠BCE =∠ABC ,∴BÊ=AC ̂=AB ̂, ∴BE =AB =4√13,∵OA ⊥BC ,∴AB 2﹣AF 2=BF 2,OB 2﹣OF 2=BF 2,设OF =x ,则AF =13﹣x ,∴132﹣x 2=(4√13)2−(13−x)2,解得:x =5,∴BF =2−OF 2=√132−52=12,∴BC =2BF =24.24.(10分)某商店欲购进A 、B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元;若购进A 种商品6件和B 种商品8件共需440元;(1)求A 、B 两种商品每件的进价分别为多少元?(2)若该商店,A 种商品每件的售价为48元,B 种商品每件的售价为31元,且商店将购进A 、B 共50件的商品全部售出后,要获得的利润超过348元,求A 种商品至少购进多少件?【分析】(1)设A 种进价为x 元,B 种进价为y 元.由购进A 种商品5件和B 种商品4件需300元和购进A 种商品6件和B 种商品8件需440元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.根据获得的利润超过348元,建立不等式求出其解即可.【解析】(1)设A 种进价为x 元,B 种进价为y 元.由题意,得{5x +4y =3006x +8y =440, 解得:{x =40y =25, 答:A 种进价为40元,B 种进价为25元.(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.由题意,得8a +6(50﹣a )>348,解得:a >24,答:至少购进A 种商品24件.25.(10分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (2,m ),B (n ,1)两点,连接OA ,OB .(1)求这个一次函数的表达式;(2)求△OAB 的面积;(3)问:在直角坐标系中,是否存在一点P ,使以O ,A ,B ,P 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)由点A ,B 在反比例函数图象上,求出m ,n ,进而求出A ,B 坐标,再代入一次函数解析式中,即可得出结论;(2)利用三角形的面积的差即可得出结论;(3)分三种情况:利用平移的特点,即可得出结论.【解析】(1)∵点A (2,m ),B (n ,1)在反比例函数y 2=6x 上,∴2m =6,n =6,∴m =3,∴A (2,3),B (6,1),∵点A (2,3),B (6,1)在一次函数y 1=kx +b 上,∴{2k +b =36k +b =1, ∴{k =−12b =4, ∴一次函数的表达式为y 1=−12x +4;(2)如图1,记一次函数y 1=−12x +4的图象与x ,y 轴的交点为点D ,C ,针对于y1=−12x+4,令x=0,则y1=4,∴C(0,4),∴OC=6,令y1=0,则−12x+4=0,∴x=8,∴D(8,0),∴OD=8,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∵A(2,3),B(6,1),∴AE=2,BF=1,∴S△AOB=S△COD﹣S△AOC﹣S△BOD=12OC•OD−12OC•AE−12OD•BF=12×4×8−12×4×2−12×8×1=8;(3)存在,如图2,当AB和OB为邻边时,点B(6,1)先向左平移6个单位再向下平移1个单位到点O(0,0),则点A 也先向左平移6个单位再向下平移1个单位到点P(2﹣6,3﹣1),即P(﹣4,2);当OA和OB为邻边时,点O(0,0)先向右平移2个单位再向上平移3个单位到点A(2,3),则点B也先向右平移2个单位再向上平移3个单位到点P'(6+2,1+3),即P'(8,4);当AB和OA为邻边时,点A(2,3)先向右平移4个单位再向下平移2个单位到点B(6,1),则点O也先向右平移4个单位再向下平移2个单位到点P''(0+4,0﹣2),即P'(4,﹣2);点P的坐标为(﹣4,2)或(4,﹣2)或(8,4).26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.【分析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,由勾股定理求得BD,根据正方形的性质和平行线的性质求得△AGF为等腰直角三角形,在Rt△BGF中根据勾股定理列出x的方程便可得出结果;②证明△ABE≌△ADP,得BE=DP,AE=AP,再由平行线得△BFQ的面积与△ABC的面积相等,从而得FQ与FB的比值,得∠DBF=30°,连接PF,证明△APF≌△AEF,得∠EFP=60°,根据三角函数关系得出PG=√3FG,便可得结论;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,当当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR =OQ的值最小,求出此时的OQ和OM便可求得MN+ND+√2NR的最小值.【解析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,如图1,∵四边形ABCD为正方形,AB=√2,∴∠DAG=∠BAD=∠ADC=∠ABC=90°,BD平分∠ADC和∠ABC,AB=AD=√2,∴∠ADB=45°,BD=√AB2+AD2=2,∵AF∥BD,∴∠DAF=∠ADB=45°,∴∠GAF=45°,∴∠AGF=∠GAF=45°,∴AG=GF,不妨设AG=GF=x,则BG=x+√2,∵BG2+GF2=BF2,BF=BD=2,∴x2+(x+√2)2=22,解得,x=√6−√22,或x=−√6+√22(舍),∴AF=√2AG=√3−1;②连接PF和DF,如图2,∵DG⊥BF,∴∠DGE=∠BAE=90°,∵∠AEB=∠DEG,∴∠ABE=∠GDE,∵∠BAE=∠DAP=90°,AB=AD,∴△ABE≌△ADP(ASA),∴BE=DP,AE=AP,设AB=a,则BF=BE=√2a,∵AF∥BD,∴S△FBD=S△ABD,∴12×√2a⋅FQ=12a2,∴FQ=√22a,∴sin∠QBF=FQBF=√22a√2a=12,∴∠QBF=30°,∵AF∥BD,∴∠AFB=∠DBF=30°,∠EAF=∠ADB=45°,∴∠EAF=∠P AF=45°,∵AF=AF,∴△AEF≌△APF(SAS),∴∠AFE=∠AFP=30°,∴∠EFP=60°,∴PG=√3FG,∵DG+PG=DP=BE,∴BE=DG+√3FG;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,如图3,则QR=DR,RK=BC,KL=OF,CR=BK,OL=FK,∵OE=OM=OB,∴∠OEM=∠OME,∠OBM=∠OMB,∵∠BME=135°,∴∠OEM+∠OBM=∠OME+∠OMB=135°,∴∠BOE=90°,∵四边形ABCD是正方形,AB=5,∴AB=BC=CD=AD=RK=6,∵AE=CR=1,∴QR=DR=5+1=6,BK=1,∴BE=√AB2+AE2=√26,∴OG=BG=12BE=12√26,OA=OB=OM'=√22BE=√13,∵∠BGH=∠BAE=90°,∠HBG=∠EBA,∴△BGH∽△BAE,∴GHAE=BGBA=BHBE,即GH1=12√265=√26,∴GH=110√26,BH=135,∴OH=OG﹣GH=25√26,∵∠OFH=∠BGH=90°,∠OHF=∠BHG,∴△OHF∽△BHG,∴HFHG=OHBH=OFBG,即HF110√26=25√26135=OF12√26,∴HF=25,OF=2,∴KL=OF=2,OL=FK=FH+BH+BK=4,∴QL=QR+RK+KL=12,∴OQ=√OL2+QL2=√42+122=4√10,由旋转知,∠PRN=90°,PR=RN,PQ=DN,∴PN=√2RN,∵OM+MN+ND+√2NR=OM+MN+PN+PQ≥OQ,∴当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR=OQ=4√10的值最小,∵OM=OB=√13,∴MN+ND+√2NR的最小值为:4√10−√13.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.【分析】(1)x2﹣(a+1)x+a=0,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,即可求解;(2)设点E(m,m2+2m﹣3),点F(﹣3﹣m,m2+4m),四边形EMNF的周长S=ME+MN+EF+FN,即可求解;(3)分当点Q在第三象限、点Q在第四象限两种情况,分别求解即可.【解析】(1)x2﹣(a+1)x+a=0,则x1+x2=a+1,x1x2=a,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,解得:a=5或﹣3,抛物线与y轴负半轴交于点C,故a=5舍去,则a=﹣3,则抛物线的表达式为:y=x2+2x﹣3…①;(2)由y=x2+2x﹣3得:点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,﹣3),设点E(m,m2+2m﹣3),OA=OC,故直线AC的倾斜角为45°,EF∥AC,直线AC的表达式为:y=﹣x﹣3,则设直线EF的表达式为:y=﹣x+b,将点E的坐标代入上式并解得:直线EF的表达式为:y=﹣x+(m2+3m﹣3)…②,联立①②并解得:x=m或﹣3﹣m,故点F(﹣3﹣m,m2+4m),点M、N的坐标分别为:(m,﹣m﹣3)、(﹣3﹣m,m+3),则EF=√2(x F﹣x E)=√2(﹣2m﹣3)=MN,四边形EMNF的周长S=ME+MN+EF+FN=﹣2m2﹣(6+4√2)m﹣6√2,∵﹣2<0,故S有最大值,此时m=−3+2√22,故点E的横坐标为:−3+2√22;(3)①当点Q在第三象限时,﹣﹣﹣﹣当QC 平分四边形面积时, 则|x Q |=x B =1,故点Q (﹣1,﹣4); ﹣﹣﹣﹣当BQ 平分四边形面积时, 则S △OBQ =12×1×|y Q |,S 四边形QCBO =12×1×3+12×3×|x Q |, 则2(12×1×|y Q |)=12×1×3+12×3×|x Q |, 解得:x Q =−32,故点Q (−32,−154);②当点Q 在第四象限时, 同理可得:点Q (−5+√372,15−3√372); 综上,点Q 的坐标为:(﹣1,﹣4)或(−32,−154)或(−5+√372,15−3√372).。

2021年中考数学试题及解析:山东东营-解析版

2021年中考数学试题及解析:山东东营-解析版

2021年山东省东营市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1、(2021•东营)的倒数是()A、2B、﹣2C、﹣D、考点:倒数。

专题:计算题。

分析:根据倒数的定义即可解答.解答:解:的倒数是2.故选A.点评:本题主要考查了倒数的定义,正确理解定义是解题的关键.2、(2021•东营)下列运算正确的是()A、x3+x3=2x6B、x6÷x2=x4C、x m•x n=x nmD、(﹣x5)3=x15考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

专题:计算题。

分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、x3+x3=2x3,故本选项错误;B、x6÷x2=x4,故本选项正确;C、x m•x n=x n+m,故本选项错误;D、(﹣x5)3=﹣x15,故本选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3、(2021•东营)一个几何体的三视图如图所示,那么这个几何体是()A、B、C、D、考点:由三视图判断几何体。

分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:从这个几何体的三视图上看,这个几何体一定是带棱的,故从C,D中选,D的主视图是三角形,俯视图是:,只有C的三视图符合条件.故选C.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4、(2021•东营)方程组的解是()A、B、C、D、考点:解二元一次方程组。

专题:计算题。

分析:解决本题关键是寻找式子间的关系,寻找方法消元,①②相加可消去y,得到一个关于x的一元一次方程,解出x的值,再把x的值代入方程组中的任意一个式子,都可以求出y的值解答:解:,①+②得:2x=2,x=1,把x=1代入①得:1+y=3,y=2,∴方程组的解为:故选:A,点评:此题主要考查了二元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.5、一副三角板如图叠放在一起,则图中∠α的度数为()A、75°B、60°C、65°D、55°考点:三角形的外角性质;三角形内角和定理。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

东营市2021年中考数学试题(含答案)

东营市2021年中考数学试题(含答案)

的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C .﹣D .2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2 B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y43.(3.00分)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A .B .C .D .4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣15.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.157.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A .B .C .D .9.(3.00分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC 上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()试卷集合A .B .C .D . 10.(3.00分)如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE=∠BAC=90°,AD=AE ,AB=AC .给出下列结论:①BD=CE ;②∠ABD +∠ECB=45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2)﹣CD 2.其中正确的是( )A .①②③④B .②④C .①②③D .①③④二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 元.12.(3.00分)分解因式:x 3﹣4xy 2= . 13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是 . 14.(3.00分)如图,B (3,﹣3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为 .中小学数学复习题试卷15.(4.00分)如图,在Rt △ABC 中,∠B=90°,以顶点C 为圆心,适当长为半径画弧,分别交AC ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于EF 的长为半径画弧,两弧交于点P ,作射线CP 交AB 于点D .若BD=3,AC=10,则△ACD 的面积是 .16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 . 17.(4.00分)在平面直角坐标系内有两点A 、B ,其坐标为A (﹣1,﹣1),B (2,7),点M 为x 轴上的一个动点,若要使MB ﹣MA 的值最大,则点M 的坐标为 . 18.(4.00分)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y=x +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点A 1(1,1),那么点A 2021中考备战的纵坐标是 .试卷 测试题19.(7.00分)(1)计算:|2﹣|+(+1)﹣3tan30°+(﹣1)﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.20.(8.00分)2021中考备战年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题: 图书种类 频数(本) 频率名人传记 175a 科普图书b 0.30小说 110 c其他 65 d (1)求该校九年级共捐书多少本; (2)统计表中的a= ,b= ,c= ,d= ; (3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本; (4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧试卷 测试题(1)求证:∠CAD=∠BDC ;(2)若BD=AD ,AC=3,求CD 的长.23.(9.00分)关于x 的方程2x 2﹣5xsinA +2=0有两个相等的实数根,其中∠A 是锐角三角形ABC 的一个内角.(1)求sinA 的值;(2)若关于y 的方程y 2﹣10y +k 2﹣4k +29=0的两个根恰好是△ABC 的两边长,求△ABC 的周长.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目: 如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=,BO :CO=1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题: 如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.25.(12.00分)如图,抛物线y=a (x ﹣1)(x ﹣3)(a >0)与x 轴交于A 、B的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3.00分)﹣的倒数是()A.﹣5 B.5 C .﹣D .【分析】根据倒数的定义,互为倒数的两数乘积为1.【解答】解:﹣的倒数是﹣5,故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)下列运算正确的是()A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2 B.a2+a2=a4C.a2•a3=a6 D.(xy2)2=x2y4【分析】根据完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方逐一计算可得.【解答】解:A、﹣(x﹣y)2=﹣x2+2xy﹣y2,此选项错误;B、a2+a2=2a2,此选项错误;C、a2•a3=a5,此选项错误;D、(xy2)2=x2y4,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握完全平方公式、合并同类项法则、同底数幂的乘法、积的乘方与幂的乘方.D .【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4.(3.00分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m 的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3.00分)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100 B.中位数是30 C.极差是20 D.平均数是30【分析】根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.【解答】解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100﹣10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是=不是30,所以选项D 不正确.故选:B.【点评】本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.6.(3.00分)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3.00分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正确选项是D.想办法证明CD=AB,CD∥AB即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.(3.00分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是()A .B .C .D .【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,所以AC=,故选:C.【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.A .B .C .D .【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【点评】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.(3.00分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:A.①②③④B.②④C.①②③D.①③④【分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【点评】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.(3.00分)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.中小学数学测试题是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011, 故答案为:4.147×1011 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 12.(3.00分)分解因式:x 3﹣4xy 2= x (x +2y )(x ﹣2y ) . 【分析】原式提取x ,再利用平方差公式分解即可. 【解答】解:原式=x (x 2﹣4y 2)=x (x +2y )(x ﹣2y ), 故答案为:x (x +2y )(x ﹣2y ) 【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 13.(3.00分)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是. 【分析】直接利用中心对称图形的性质结合概率求法直接得出答案.【解答】解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.故答案为:.【点评】此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.14.(3.00分)如图,B (3,﹣3),C (5,0),以OC ,CB 为边作平行四边【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15.(4.00分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是15.【分析】作DQ⊥AC,由角平分线的性质知DB=DQ=3,再根据三角形的面积公式计算可得.复习题由作图知CP 是∠ACB 的平分线,∵∠B=90°,BD=3,∴DB=DQ=3,∵AC=10,∴S △ACD =•AC•DQ=×10×3=15,故答案为:15. 【点评】本题主要考查作图﹣基本作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质.16.(4.00分)已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 20π .【分析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长l 为5,然后根据圆锥的侧面积公式:S 侧=πrl 代入计算即可.【解答】解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r 为4,圆锥的高为3,所以圆锥的母线长l==5,所以这个圆锥的侧面积是π×4×5=20π.故答案为:20π 【点评】本题考查了圆锥的计算,连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高.圆锥的侧面展开图为一中小学数学 17.(4.00分)在平面直角坐标系内有两点A 、B ,其坐标为A (﹣1,﹣1),B (2,7),点M 为x 轴上的一个动点,若要使MB ﹣MA 的值最大,则点M 的坐标为 .【分析】要使得MB ﹣MA 的值最大,只需取其中一点关于x 轴的对称点,与另一点连成直线,然后求该直线x 轴交点即为所求. 【解答】解:取点B 关于x 轴的对称点B′,则直线AB′交x 轴于点M .点M 即为所求. 设直线AB′解析式为:y=kx +b 把点A (﹣1,﹣1)B′(2,﹣7)代入 解得 ∴直线AB′为:y=﹣2x ﹣3, 当y=0时,x=﹣ ∴M 坐标为(﹣,0) 故答案为:(﹣,0) 【点评】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答. 18.(4.00分)如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y=x +b 和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形.如果点A 1(1,1),那么点A 2021中考备战的纵坐标是 .【分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.【解答】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x +∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x +解得b=∴OB2=5同理设点A3坐标为(a,b)把A2(5+b,b)代入y=x +解得b=以此类推,发现每个A 的纵坐标依次是前一个的倍则A2021中考备战的纵坐标是故答案为:【点评】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(7.00分)(1)计算:|2﹣|+(+1)0﹣3tan30°+(﹣1)2021中考备战﹣()﹣1;(2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,再判断即可.【解答】解:(1)原式==;(2)∵解不等式①得:x>﹣3,解不等式②得:x≤1∴不等式组的解集为:﹣3<x≤1,试卷 测试题组的解集是解(2)的关键.20.(8.00分)2021中考备战年东营市教育局在全市中小学开展了“情系疏勒书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题: 图书种类 频数(本) 频率名人传记 175a 科普图书b 0.30小说 110c 其他65 d (1)求该校九年级共捐书多少本; (2)统计表中的a= 0.35 ,b= 150 ,c= 0.22 ,d= 0.13 ; (3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本; (4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.【分析】(1)根据名人传记的圆心角求得其人数所占百分比,再用名人传记的人数除以所得百分比可得总人数; (2)根据频率=频数÷总数分别求解可得;【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.【点评】本题考查了列表法和树状图法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.21.(8.00分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(8.00分)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【分析】(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD的长.【解答】(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.【点评】本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.23.(9.00分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A 是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形【解答】解:(1)根据题意得△=25sin A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC 的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,试卷 测试题【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c=0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.24.(10.00分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=,BO :CO=1:3,求AB 的长. 经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= 75 °,AB= 4. (2)请参考以上解决思路,解决问题:如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB 中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【解答】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==.又∵AO=,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=4.故答案为:75;4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴==.∵BO:OD=1:3,∴==.∵AO=3,∴EO=,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=4.【点评】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.25.(12.00分)如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B 两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,求出x的值,确定出A与B坐标,根据已知相似三角形得比例,求出OC的长即可;(2)根据C为BM的中点,利用直角三角形斜边上的中线等于斜边的一半得到OC=BC,确定出C的坐标,利用待定系数法确定出直线BC解析式,把C坐标代入抛物线求出a的值,确定出二次函数解析式即可;(3)过P作x轴的垂线,交BM于点Q,设出P与Q的横坐标为x,分别代入抛物线与直线解析式,表示出坐标轴,相减表示出PQ,四边形ACPB面积最大即为三角形BCP面积最大,三角形BCP面积等于PQ与B和C横坐标之差乘积的一半,构造为二次函数,利用二次函数性质求出此时P的坐标即可.【解答】解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM的中点,即OC为斜边BM的中线,∴OC=BC,∴点C 的横坐标为,又OC=,点C在x轴下方,解得:b=﹣,k=,∴y=x ﹣,又∵点C (,﹣)在抛物线上,代入抛物线解析式,解得:a=,∴抛物线解析式为y=x2﹣x+2;(3)点P存在,设点P坐标为(x ,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,则Q(x ,x ﹣),∴PQ=x ﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,当△BCP面积最大时,四边形ABPC的面积最大,S△BCP =PQ(3﹣x)+PQ(x ﹣)=PQ=﹣x2+x ﹣,当x=﹣=时,S有最大值,四边形ABPC的面积最大,此时点P的坐标△BCP为(,﹣).【点评】此题属于二次函数综合题,涉及的知识有:二次函数图象与性质,待定系数法确定函数解析式,相似三角形的判定与性质,以及坐标与图形性质,熟练掌握各自的性质是解本题的关键.31。

2021人教版中考二模测试《数学试题》附答案解析

2021人教版中考二模测试《数学试题》附答案解析

人教版数学中考模拟测试卷第I 卷(选择题)一、单选题(1——10每小题3分11——16每小题2分共42分)1. 在2-,0,1,1-这四个数中,最大的数是( )A. 2-B. 0C. 1D. 1-2. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为( )A. 6750吨B. 67500吨C. 675000吨D. 6750000吨 3. 从数据43-,333.,9-,π,3-中任取一个数,则该数为无理数的概率为( ) A. 15 B. 25 C. 35 D. 454. 李老师给同学们出了一道单项式与多项式相乘的题目:﹣3x 2(2x ﹣[]+1)=﹣6x 3+6x 2y ﹣3x 2,那么“[]”里应当是( )A. ﹣yB. ﹣2yC. 2yD. 2xy5. 下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 2 (3) (3)3±=± 3412 (4) a a a ⋅= 532(5)a a a ÷=其中做对了( )道A. 1B. 2C. 3D. 46. 小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降价3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄,苹果)每公斤的价格分别是多少元( )A. (2.5,0.7)B. (2,1)C. (2,1.3)D. (2.5,1) 7. 一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是( )A 4 B. 5 C. 6 D. 78. 下列因式分解中,正确的是( )A. 2()ax ax x ax a -=-B. ()2222221a b ab c b b a ac ++=++C. 222()x y x y -=-D. 256(2)(3)x x x x --=-- 9. 函数m y x=-与(0)y mx m m =-≠在同一平面直角坐标系中的大致图像是( ) A. B. C. D. 10. 如图,码头A 在码头B 的正西方向,甲,乙两船分别从A ,B 两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是( )A. 北偏东30B. 北偏东60C. 北偏东45D. 北偏西60 11. 如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A . 甲B. 乙C. 丙D. 丁 12. 如图,已知点()A 0,6,()B 4,6,且点B 在双曲线k y (k 0)x=>上,在AB 的延长线上取一点C ,过点C 的直线交双曲线于点D ,交x 轴正半轴于点E ,且CD DE =,则线段CE 长度的取值范围是( )A. 6CE 8≤<B. 8CE 10≤≤C. 6CE 10≤<D. 6CE273≤< 13. 如图,已知AB ∥DE ,∠ABC=70°,∠CDE=140°,则∠BCD 的值为( )A. 20°B. 30°C. 40°D. 70°14. 如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A. ①②④B. ①②⑤C. ②③④D. ③④⑤ 15. 如图,点A ,B 为反比例函数y=k x 在第一象限上的两点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,若B 点的横坐标是A 点横坐标的一半,且图中阴影部分的面积为k ﹣2,则k 的值为( )A . 43B. 83C. 143D. 16316. 如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形ACD 和BCE,连结DE,则DE 长的最小值是( )A. 2B. 2C. 22D. 4第II卷(非选择题)二、填空题(每空3分共12分)17. 如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.18. 在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.19. 如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y 轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,B n,依次作正方形A2A3B3C3,A3A4B4C4,…,A n﹣1A n B n∁n,则A3的坐标为____,B5的坐标为_____.20. 李华同学准备化简:(3x2-5x-3)-(x2+2x□6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-5x-3)-(x2+2x×6);(2)当x=1时,(3x2-5x-3)-(x2+2x□6)的结果是-2,请你通过计算说明“□”所代表的运算符号.21. 如图,从左向右依次摆放序号分别为1,2,3,…,n的小桶,其中任意相邻的四个小桶所放置的小球个数之和相等.尝试求x+y的值;应用若n=22,则这些小桶内所放置的小球个数之和是多少?发现用含k(k为正整数)的代数式表示装有“4个球”的小桶序号.22. 在某项比赛中,已知不同小组的甲、乙两队的五次预选赛成绩(每次比赛的成绩为0分,10分,20分三种情况)分别如下列不完整的统计表及条形统计图所示.甲队五次预选赛成绩统计表比赛场次 1 2 3 4 5成绩(分)20 0 20 x 20乙队五次预选赛成绩条形统计图已知甲、乙两队五次预选赛成绩的众数相同,平均数也相同.(1)求出乙第四次预选赛的成绩;(2)求甲队成绩平均数及x的值;(3)从甲、乙两队前3次比赛中随机各选择一场比赛的成绩进行比较,求选择到的甲队成绩优于乙队成绩的概率.23. 如图,已知射线OC为∠AOB的平分线,且OA=OB,点P是射线OC上的任意一点,连接AP、BP.(1)求证:△AOP≌△BOP;(2)若∠AOB=50°,且点P是△AOB的外心,求∠APB的度数;(3)若∠AOB=50°,且△OAP为钝角三角形,直接写出∠OAP的取值范围.24. 如图①,长为120 km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B,A后立刻返回到出发站停止,速度均为40 km/h,设甲车,乙车距南站A的路程分别为y甲,y乙(km),行驶时间为t(h).(1)图②已画出y甲与t的函数图象,其中a=____,b=____,c=____;(2)分别写出0≤t≤3及3<t≤6时,y乙与时间t之间的函数关系式;(3)在图②中补画y乙与t之间的函数图象,并观察图象计算出在整个行驶过程中两车相遇的次数.25. 如图,抛物线P:y1=a(x+2)2-3与抛物线Q:y2=12(x-t)2+1在同一个坐标系中(其中a、t均为常数,且t>0),已知抛物线P过点A(1,3),过点A作直线l∥x轴,交抛物线P于点B.(1)a=________,点B的坐标是________;(2)当抛物线Q经过点A时.①求抛物线Q的解析式;②设直线l与抛物线Q的另一交点记作C,求ACAB的值;(3)若抛物线Q与线段AB总有唯一的交点,直接写出t的取值范围.26. 如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.答案与解析第I卷(选择题)一、单选题(1——10每小题3分11——16每小题2分共42分)1. 在2-,0,1,1-这四个数中,最大的数是()A. 2-B. 0C. 1D. 1-【答案】A【解析】【分析】先化简绝对值,再根据有理数的大小比较法则即可得.-=【详解】22有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,负数绝对值大的反而小>>>-则2101->>>-即2101-因此,这四个数中,最大的数是2故选:A.【点睛】本题考查了化简绝对值、有理数的大小比较法则,掌握有理数的大小比较法则是解题关键.2. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为()A. 6750吨B. 67500吨C. 675000吨D. 6750000吨【答案】B【解析】【分析】科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【详解】6.75×104吨,这个用科学记数法表示的数据的原数为67500吨.故选B.【点睛】本题考查了科学记数法﹣原数,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3. 从数据43-,333.,9-,π, ) A. 15 B. 25 C. 35 D. 45【答案】B【解析】【分析】根据概率=无理数个数与总情况数之比解答即可.【详解】解:无理数有π, ,所以取到无理数概率是25, 故选:B .【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.4. 李老师给同学们出了一道单项式与多项式相乘的题目:﹣3x 2(2x ﹣[]+1)=﹣6x 3+6x 2y ﹣3x 2,那么“[]”里应当是( )A. ﹣yB. ﹣2yC. 2yD. 2xy 【答案】B【解析】【分析】 根据题意列出算式,计算即可得到结果.【详解】解:根据题意得:(﹣6x 3+6x 2y ﹣3x 2)÷(﹣3x 2)﹣2x ﹣1=2x ﹣2y+1﹣2x ﹣1=﹣2y , 故选B .【点睛】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5. 下面是几位同学做的几道题,222(1)()a b a b +=+ 0(2)21a = 3=± 3412 (4) a a a ⋅= 532(5)a a a ÷= 其中做对了( )道 A. 1 B. 2 C. 3D. 4【答案】A 【解析】 【分析】 利用完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则进行计算即可解答. 【详解】解:222(1)()2a b a ab b +=++,故该选项错误;0(2)22a =,故该选项错误; 2(3) (3)3±=,故该选项错误;347(4) a a a ⋅=,故该选项错误;532(5)a a a ÷=,故该选项正确;故选:A .【点睛】本题考查了完全平方公式;零指数幂;算术平方根;同底数幂相乘;同底数幂相除的运算法则,熟练掌握并准确计算是解题的关键.6. 小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降价3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄,苹果)每公斤的价格分别是多少元( )A. (2.5,0.7)B. (2,1)C. (2,1.3)D. (2.5,1)【答案】A【解析】【分析】等量关系为:3×春节前葡萄的价格+2×春节前苹果的价格=8;7×春节后葡萄的价格+5×春节后苹果的价格=21,把相关数值代入计算即可.【详解】解:设春节后购物时,(葡萄,苹果)每公斤的价格分别是x 元,y 元. ()()30.520.387521,x y x y ⎧-++=⎨+=⎩解得 2.50.7.x y =⎧⎨=⎩故选A .【点睛】考查二元一次方程组的应用;根据总价得到两个等量关系是解决本题的关键.7. 一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【详解】解:几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故选B .【点睛】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8. 下列因式分解中,正确的是( )A. 2()ax ax x ax a -=-B. ()2222221a b ab c b b a ac ++=++C. 222()x y x y -=-D. 256(2)(3)x x x x --=--【答案】B【解析】【分析】分别利用提取公因式法以、公式法、十字相乘法分解因式,进而判断即可.【详解】解:A 、2(1)ax ax ax x -=-,故此选项错误; B 、()2222221a b ab c b b a ac ++=++正确; C 、22(+)()x y x y x y -=-,故此选项错误;D 、256(6)(+1)x x x x --=-,故此选项错误.故选:B .【点睛】此题主要考查了提取公因式法、公式法、十字相乘法分解因式,正确提取公因式、用对公式是解题关键.9. 函数m y x=-与(0)y mx m m =-≠在同一平面直角坐标系中的大致图像是( )A. B. C. D.【答案】A【解析】【分析】先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.【详解】A、由双曲线在一、三象限,得m<0.由直线经过一、二、四象限得m<0.正确;B、由双曲线在二、四象限,得m>0.由直线经过一、四、三象限得m>0.错误;C、由双曲线在一、三象限,得m<0.由直线经过一、四、三象限得m>0.错误;D、由双曲线在二、四象限,得m>0.由直线经过二、三、四象限得m<0.错误.故选:A.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于注意系数m的取值.10. 如图,码头A在码头B的正西方向,甲,乙两船分别从A,B两个码头同时出发,且甲的速度是乙的速度的2倍,乙的航向是正北方向,为了使甲乙两船能够相遇,则甲的航向应该是()A. 北偏东30B. 北偏东60C. 北偏东45D. 北偏西60【答案】B【解析】【分析】解直角三角形ABC可得∠CAB的度数,根据余角的定义,可得∠DAC的度数,根据方向角的表示方法,可得答案.【详解】作AD∥BC,如图,设BC=t,则AC=2t,∴sin∠CAB=CBAC=12,∴∠CAB=30°,∴∠DAC=60°,甲的航向应该是北偏东60°.故选B .【点睛】本题考查了解直角三角形和方向角,解直角三角形是解题的关键.11. 如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】 解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D .12. 如图,已知点()A 0,6,()B 4,6,且点B 在双曲线k y (k 0)x=>上,在AB 的延长线上取一点C ,过点C 的直线交双曲线于点D ,交x 轴正半轴于点E ,且CD DE =,则线段CE 长度的取值范围是( )A. 6CE 8≤<B. 8CE 10≤≤C. 6CE 10≤<D. 6CE 273≤<【答案】D【解析】【分析】过D作DF⊥OA于F,得到DF是梯形的中位线,根据反比例函数图形上点的坐标特征求出D的坐标,当O与E重合时,如图2,由DF=8,根据三角形的中位线的性质得到AC,根据勾股定理求得CE,当CE⊥x 轴时,CE=OA=6,于是求得结果.【详解】过D作DF⊥OA于F.∵点A(0,6),B(4,6),∴AB⊥y轴,AB=4,OA=6.∵CD=DE,∴AF=OF=3.∵点B在双曲线ykx=(k>0)上,∴k=4×6=24,∴反比例函数的解析式为:y24x=.∵过点C的直线交双曲线于点D,∴D点的纵坐标为3,代入y24x=得:324x=,解得:x=8,∴D(8,3).当O与E重合时,如图2.∵DF=8,∴AC=16.∵OA=6,∴CE22273AC OA=+=;当CE⊥x轴时,CE=OA=6,∴6≤CE≤273.故选D.【点睛】本题考查了是反比例函数与几何综合题,考查了在平面直角坐标系中确定点的坐标,梯形和三角形的中位线的性质,正确的作出辅助线是解题的关键.13. 如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为()A. 20°B. 30°C. 40°D. 70°【答案】B【解析】试题分析:延长ED 交BC 于F ,∵AB ∥DE ,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC ﹣∠MDC=70°﹣40°=30°,故选B .考点:平行线的性质.14. 如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <0,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <0,∴a ﹣(﹣2a )+c=3a+c <0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).15. 如图,点A,B为反比例函数y=kx在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为()A. 43B.83C.143D.163【答案】B 【解析】【分析】根据反比例函数图象上点的坐标特征,设B(t,kt),则AC=2CE=2t,可表示出A(2t,k2t),由点B和点A的纵坐标可知BD=2OC,然后根据三角形面积公式得到关于k的方程,解此方程即可.【详解】解:设B(t,kt ),∵AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,B 点的横坐标是A 点横坐标的一半,∴AC =2CE =2t ,∴A (2t ,k 2t ), ∴BD =2OC=2BE ,在△OCM 和△BEM 中OCM MEB CMO EMB OC BE ==∠∠⎧⎪∠∠⎨⎪=⎩∴△OCM ≌△BEM ,∴CM =EM=1t 2, 同理可证:△ODN ≌△AEN ,∴EN =DN=k 4t, ∴阴影部分的面积=111t k 1k ME BE NE AE t k 222222t 24t ⨯+⨯=⨯⨯+⨯⨯=-. 解得:k=83故选B .【点睛】本题考查了反比例函数图象上点的坐标特征,全等三角形的性质与判定,由几何图形的性质将阴影部分的面积进行转化是解题的关键.16. 如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE , 连结 DE , 则 DE 长的最小值是( )2B. 2C. 2D. 4【答案】B【解析】【分析】 设AC=x ,BC=4-x ,根据等腰直角三角形性质,得出CD=22x ,CE=22(4-x ),根据勾股定理然后用配方法即可求解.【详解】解:设 AC=x ,BC=4﹣x ,∵△CDA ,△BCE 均为等腰直角三角形,∴CD=22x ,CE=22(4﹣x), ∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE ²=CD ²+CE ²=()()2222114482422x x x x x +-=-+=-+ ∵根据二次函数的最值,∴当 x 取 2 时 ,DE 取最小值 ,最小值为:2.故答案为B.【点睛】本题考查了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.第II 卷(非选择题)二、填空题(每空3分共12分)17. 如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为_____.【答案】x >1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x >1时,x+b >ax+3;考点:一次函数与一元一次不等式.18. 在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.【答案】15【解析】【详解】设圆锥的底面圆的半径为r,根据题意得2πr=904180π⨯,解得r=1,所以所围成的圆锥的高=2241=15-考点:圆锥的计算.19. 如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y 轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,B n,依次作正方形A2A3B3C3,A3A4B4C4,…,A n﹣1A n B n∁n,则A3的坐标为____,B5的坐标为_____.【答案】(1). (72,0)(2). (318,18)【解析】【详解】解:当x=0,y=4,当y=0时,﹣x+4=0,x=4,∴OE=OF=4,∴△EOF是等腰直角三角形,∴∠C1EF=45°∴△B1C1E是等腰直角三角形,∴B1C1=EC1,∵四边形OA1B1C1为正方形,∴OC1=C1B1=EC1=2,∴B1(2,2),A1(2,0),同理可得:C2是A1B1的中点,∴B2(2+1=3,1),A2(3,0),B3(2+1+12=72,12),A3(72,0),B4(72+14=154,14),A4(154,0),B5(154+18=318,18).故答案为(72,0),(318,18).20. 李华同学准备化简:(3x2-5x-3)-(x2+2x□6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-5x-3)-(x2+2x×6);(2)当x=1时,(3x2-5x-3)-(x2+2x□6)的结果是-2,请你通过计算说明“□”所代表的运算符号.【答案】(1)2x2-17x-3;(2)“□”代表“-”.【解析】【分析】(1)先算乘法、再去括号、最后合并即可;(2)将x=1代入原式进行运算即可确定“□”所代表的运算符号.【详解】解:(1)原式=(3x2-5x-3)-(x2+12x)=3x2-5x-3-x2-12x=2x2-17x-3;(2)当x=1时,原式=(3-5-3)-(1+2□6)=-2,整理得:1+2□6=-3,即“□”代表“-”.【点睛】本题考查了整式的加减以及有理数的混合运算,熟练掌握相关运算法则是解答本题的关键.21. 如图,从左向右依次摆放序号分别为1,2,3,…,n的小桶,其中任意相邻的四个小桶所放置的小球个数之和相等.尝试求x+y的值;应用若n=22,则这些小桶内所放置的小球个数之和是多少?发现用含k(k为正整数)的代数式表示装有“4个球”的小桶序号.【答案】尝试:x+y=9;应用:99;发现:装有“4个球”的小桶序号为4k-1.【解析】【分析】尝试:根据“任意相邻的四个小桶所放置的小球个数之和相等”列出等式即可得到x+y的值;应用:根据题意可分别求出x,y的值,可以发现以“6,3,4,5”为一组循环出现,故可求出n=22时,小桶内所放置的小球个数之和;发现:根据规律,用含有k的代数式表示即可.【详解】尝试:根据题意可得6+3+4+5=4+5+x+y,∴x+y=9;应用:∵6+3+4+5=3+4+5+x,又∵x+y=9,∴x=6,y=3,∴小桶内所放置的小球数每四个一循环,∵22÷4=5⋯⋯2,∴(6+3+4+5)×5+9=99发现:装有“4个球”的小桶序号分别为3=4×1-1,7=4×2-1,11=4×3-1…,∴装有“4个球”的小桶序号为4k-1.【点睛】题目考查了数字的变化规律,通过数字的变化,体会数字变化为学生们带来的快乐.题目整体较难,特别是(3)中的总结性,更能体现学生的解决问题能力.22. 在某项比赛中,已知不同小组的甲、乙两队的五次预选赛成绩(每次比赛的成绩为0分,10分,20分三种情况)分别如下列不完整的统计表及条形统计图所示.甲队五次预选赛成绩统计表比赛场次 1 2 3 4 5成绩(分)20 0 20 x 20乙队五次预选赛成绩条形统计图已知甲、乙两队五次预选赛成绩的众数相同,平均数也相同.(1)求出乙第四次预选赛的成绩;(2)求甲队成绩的平均数及x的值;(3)从甲、乙两队前3次比赛中随机各选择一场比赛的成绩进行比较,求选择到的甲队成绩优于乙队成绩的概率.【答案】(1)乙队第4场的成绩为20分;(2)甲队成绩的平均数为16分,x=20;(3)49.【解析】【分析】(1)根据已知条件可判断出乙队成绩的众数为20分,则可求出第四场成绩为20分;(2)先计算出乙的平均成绩,据此可得甲的平均成绩,再根据平均数的公式列出关于x的方程,即可求解;(3)列表得出所有等可能结果,从中找到甲队成绩优于乙队成绩结果出,利用概率求解即可.【详解】解:(1)∵甲、乙两队五次预选赛成绩的众数相同,且甲队成绩的众数为20分,∴乙队成绩的众数为20分,则乙队第4场的成绩为20分,补全条形统计图如解图:(2)∵乙队五次成绩的平均数为15×(10+10+20+20+20)=16(分),∴甲队成绩的平均数为16分,由15×(20+0+20+x+20)=16,解得x=20;(3)列表如下: 乙甲1010 20 20(20,10) (20,10) (20,20) 0(0,10) (0,10) (0,20) 20(20,10) (20,10) (20,20)由上表可知,共有9种等可能的结果,其中甲队成绩优于乙队成绩的结果有4种,∴P (选择到的甲队成绩优于乙队成绩)=49. 【点睛】本题考查了列表法和树状图法,利用列表法和树状图法展示所有等可能结果,再从中选出符合条件的结果进行计算,也考查了统计的有关概念.23. 如图,已知射线OC 为∠AOB 的平分线,且OA =OB ,点P 是射线OC 上的任意一点,连接AP 、BP . (1)求证:△AOP ≌△BOP ;(2)若∠AOB =50°,且点P 是△AOB 的外心,求∠APB 的度数;(3)若∠AOB =50°,且△OAP 为钝角三角形,直接写出∠OAP 的取值范围.【答案】(1)证明见解析;(2)∠APB =100°;(3)0°<∠OAP < 65°或90°<∠OAP<155°.【解析】【分析】(1)根据“SAS ”证明即可;(2)根据三角形外心定义得到PA =PB =PO ,根据等腰三角形性质和三角形的外角性质求出∠APC =50°,根据∠APO =∠BPO 即可求解;(3)根据题意得=155-APO OAP ∠︒∠,分OAP ∠为钝角和OPA ∠为钝角两种情况讨论即可.【详解】解:(1)∵OP 平分∠AOB ,∴∠AOP =∠BOP ,又∵OA =OB ,OP =OP ,∴△AOP ≌△BOP ;(2)∵∠AOB =50°,∴∠AOP =∠BOP =25°,∵点P 是△AOB 的外心,∴PA =PB =PO ,∴∠A =∠AOP =25°,∴∠APC =∠A +∠AOP =50°,∵△AOP ≌△BOP ,∴∠APO =∠BPO ,∴∠BPC =∠APC =50°,∴∠APB =100°;(3)∵∠AOB =50°, ∴1=252AOP AOB ∠∠=︒ ,∴18025=155OAP APO ∠+∠=︒-︒︒,∴=155-APO OAP ∠︒∠,如图1,当OAP ∠为钝角时,90°<∠OAP<155° ;如图2,当OPA ∠为钝角时,90°<∠OPA<155°,即90°<155-OAP ︒∠<155°,∴0°<∠OAP < 65°∴∠OAP 的取值范围为:90°<∠OAP<155°或0°<∠OAP < 65°.【点睛】本题考查了角平分线的定义,全等三角形判断,三角形的外心,等腰三角形性质,三角形分类等知识,熟悉相关知识点是解题关键.24. 如图①,长为120 km 的某段线路AB 上有甲、乙两车,分别从南站A 和北站B 同时出发相向而行,到达B ,A 后立刻返回到出发站停止,速度均为40 km/h ,设甲车,乙车距南站A 的路程分别为y 甲,y 乙(km ),行驶时间为t (h ).(1)图②已画出y 甲与t 的函数图象,其中a =____,b =____,c =____;(2)分别写出0≤t≤3及3<t≤6时,y 乙与时间t 之间的函数关系式;(3)在图②中补画y 乙与t 之间的函数图象,并观察图象计算出在整个行驶过程中两车相遇的次数.【答案】(1)120,3,6;(2)y 乙=40120(03)40120(36)t t t t -+⎧⎨-<⎩;(3)画图象见解析,整个行驶过程中两车相遇次数为2.【解析】【分析】(1)根据题意和函数图象可以得到a 、b 、c 的值;(2)根据题意和(1)中的答案可以分别求得当0≤t≤3及3<t≤6时,y 乙与时间t 之间的函数关系式; (3)根据题意可以画出相应的函数图象,根据函数图象可以得到在整个行驶过程中两车相遇的次数.【详解】解:(1)由题意和函数图象可得,a =120,b =120÷40=3,c =2×3=6;故答案为:120,3,6;(2)当0≤t≤3时,设y 乙与时间t 之间的函数关系式为:y 乙=kt +b ,2=⎧⎨+=⎩b 103k b 0,得40=-⎧⎨=⎩k b 120, 即当0≤t≤3时,y 乙与时间t 之间的函数关系式为:y 乙=-40t +120;当3<t≤6时,设y 乙与时间t 之间的函数关系式为:y 乙=mt +n ,36+=⎧⎨+=⎩m n 0m n 120,得40120=⎧⎨=-⎩m n , 即当3<t≤6时,y 乙与时间t 之间的函数关系式为:y 乙=40t -120;∴y 乙与时间t 之间的函数关系式为:y 乙=40120(03)40120(36)t t t t -+⎧⎨-<⎩; (3)y 乙与t 之间的函数图象如解图所示,由图象可知,两个函数图形有两个交点,故整个行驶过程中两车相遇次数为2.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25. 如图,抛物线P :y 1=a (x +2)2-3与抛物线Q :y 2=12(x -t )2+1在同一个坐标系中(其中a 、t 均为常数,且t >0),已知抛物线P 过点A (1,3),过点A 作直线l ∥x 轴,交抛物线P 于点B . (1)a =________,点B 的坐标是________;(2)当抛物线Q 经过点A 时.①求抛物线Q 的解析式;②设直线l与抛物线Q的另一交点记作C,求ACAB的值;(3)若抛物线Q与线段AB总有唯一的交点,直接写出t的取值范围.【答案】(1)23;(-5,3);(2)①抛物线Q的解析式为:y2=12(x-3)2+1;②ACAB=23;(3)0<t 3.【解析】【分析】(1)先利用待定系数法求出抛物线P的解析式,即可得出结论;(2)①利用待定系数法求出抛物线Q的解析式,即可得出结论;②先求出AC,AB即可得出结论;(3)利用平移的特点和AB,AC的长即可得出结论.【详解】解:(1)∵抛物线P:y1=a(x+2)2-3过点A(1,3),∴9a-3=3,∴a=23,∴抛物线P:y1=23(x+2)2-3,∵l//x轴,∴点B的纵坐标为3,∴3=23(x+2)2-3,∴x1=1(点A的横坐标),x2=-5,∴B(-5,3).(2)①∵抛物线Q:y2=12(x-t)2+1过点A(1,3),∴12(1-t)2+1=3,∴t1=-1(舍去),t2=3,∴抛物线Q的解析式为:y2=12(x-3)2+1;∵l//x轴,∴点C的纵坐标为3,∴3=12(x-3)2+1,∴x1=1(点A的横坐标),x2=5,∴C(5,3),∴AC=5-1=4,由(1)知,B(-5,3),∴AB=1-(-5)=6,∴ACAB=46=23;(3)∵抛物线Q:y2=12(x-t)2+1∴抛物线Q的开口大小一定,顶点坐标的纵坐标是1也是定值,∴抛物线Q只是左右移动,当抛物线Q向右平移的过程中,点A在抛物线Q的左侧时,抛物线Q和线段AB有一个交点A,此时,t=3,由(2)知,AC=4,将抛物线Q向左平移4个单位时,和线段AB有两个交点,此段,-1<t≤3时,抛物线Q与线段AB有一个交点,再继续把抛物线Q向左移动,移动到点B在抛物线Q的左侧时,此时,此时,t=-3,同上,抛物线Q与线段AB有一个交点,-7≤t<-3,∵t>0,即:0<t≤3,抛物线Q与线段AB有一个交点.【点睛】此题是二次函数综合题,主要考查了待定系数法,交点坐标的求法,平移的性质,利用平移的性质得出t的范围是解本题的关键.26. 如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM 长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.【答案】(1)83;(2)3或43;(3)565x≤<【解析】【分析】(1)设BP=a,则PC=8-a,由△MBP~△DCP知MB BPDC CP=,代入计算可得;(2)分别求出⊙P与边CD相切时和⊙P与边AD相切时BP的长即可得;(3)①当PM=5时,⊙P经过点M,点C;②当⊙P经过点M、点D时,由PC2+DC2=BM2+PB2,可求得BP=7,继而知227465PM=+=.据此可得答案.【详解】(1)设BP=a,则PC=8-a,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴MB BPDC CP=,即488aa=-,解得83a=,故答案为:83.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,。

2021年中考数学模拟试卷附答案解析 (2)

2021年中考数学模拟试卷附答案解析 (2)

2021年中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤53.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×305.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.48.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是.10.(5分)已知+=3,求=.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b=﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.3.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A 错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.5.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【分析】由点A(﹣1,m),B(1,m),C(2,m﹣1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而减小,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,D错误;∵B(1,m),C(2,m﹣1),∴当x>0时,y随x的增大而减小,故B正确,C错误.故选:B.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.8.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)【分析】分析点P的运动规律找到循环规律即可.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是y(x﹣3)2.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)210.(5分)已知+=3,求=﹣.【分析】由+=3知=3,即a+b=3ab,整体代入到原式,计算可得.【解答】解:∵+=3,∴=3,则a+b=3ab,所以原式====﹣,故答案为:﹣.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得到OD∥AB,求得S△BDO=S△AOD,推出S△AOB=S△ABD=,过B作BH⊥OA于H,由等边三角形的性质得到OH=AH,求得S△OBH=,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加(4﹣4)m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.【分析】原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+5﹣2﹣2=3.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.【分析】(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意列出方程解答即可.(2)根据租用的8辆客车所载的总人数应大于等于师生的总人数和所需的费用应比单独租用车辆的费用少,列出不等式组进行求解,然后分类讨论.【解答】解:(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意,得:3x+2(x+140)=1880,解得:x=320答:42座客车租金320元/辆,60座客车租金460元/辆;(2)设租42座客车m辆,则60座客车(8﹣m)辆,根据题意得:42m+60(8﹣m)≥385•,320m+460 (8﹣m)≤3200,解得:3≤m≤5∵m为整数,∴m的值可以是4、5,即有2种方案;设总费用为W,则W=320m+460 (8﹣m)=﹣140m+3680,∵W随m的增大而减小大,∴当m=5时,W取得最小值,最小值为2980,17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.【分析】(1)把点A的坐标代入函数解析式,利用对称轴方程,联立方程组,解方程组求得a、b的值;(2)设点C的坐标是(0,m).由于没有指明直角△BCD中的直角,所以需要分类讨论:当∠CBD=90°、∠CDB=90°、∠BCD=90°时,利用勾股定理列出关于m的方程,通过解方程求得m的值;然后利用三角形的面积公式解答;(3)利用待定系数法确定直线OA解析式为.由抛物线上点的坐标特征和两点间的距离公式求得:,所以利用二次函数最值的求得推知:当PQ最大时,线段BQ为定长.又因为MN=2,所以要使四边形BQMN的周长最小,只需QM+BN最小.利用轴对称﹣最短路径问题得到点Q.最后利用方程思想解答.【解答】解:(1)∵过点的抛物线y=ax2+bx的对称轴是x=2,∴解之,得;(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).当∠CBD=90°时,有BC2+BD2=CD2.∴,解之,得,∴;当∠CDB=90°时,有CD2+BD2=BC2.∴,解之,得,∴;当∠BCD=90°时,有CD2+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时,△OBC的面积是或;(3)设直线y=kx过点,可得直线.由(1)可得抛物线,∴,∴当时,PQ最大,此时Q点坐标是.∴PQ最大时,线段BQ为定长.∵MN=2,∴要使四边形BQMN的周长最小,只需QM+BN最小.将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.设直线y=cx+d过点和点B(4,0),则解之,得∴直线过点Q2和点B.解方程组得∴点N的坐标为,∴点M的坐标为,所以点Q、M、N的坐标分别为,,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东营市2021年中考数学二模试卷D卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共6题;共12分)
1. (2分)下列计算正确的是()
A . a+2a2=3a3
B . 2a·4a=8a
C . a3•a2=a6
D . (a3)2=a6
2. (2分) (2016九上·仙游期末) 若直线y=3x+m经过第一、三、四象限,则抛物线y=(x-m) +1的顶点在第象限()
A . 一
B . 二
C . 三
D . 四
3. (2分)如图是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=,则边BC的长为()
A . 30 cm
B . 20 cm
C . 10 cm
D . 5 cm
4. (2分) (2019九上·新兴期中) a,b,c,d是成比例线段,其中a=3cm,c=6cm,d=4m,则b=()
A . 8cm
B . cm
C . cm
D . 2 cm
5. (2分)在正五边形ABCDE中,对角线AD , AC与EB分别相交于点M , N .下列结论错误的是()
A . 四边形EDCN是菱形
B . 四边形MNCD是等腰梯形
C . △AE M与△CBN相似
D . △AEN与△EDM全等
6. (2分)已知M是△ABC内的一点,且•=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为, x,y,则+的最小值是()
A . 20
B . 18
C . 16
D . 9
二、填空题 (共12题;共12分)
7. (1分) (2020八下·哈尔滨月考) 若无实数解,则m的取值范围是________.
8. (1分) (2017八下·定安期末) 方程﹣ =0的解是________.
9. (1分)(2018·嘉定模拟) 已知点在线段上,且 ,那么 ________.
10. (1分)(2011·苏州) 如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于________(结果保留根号).
11. (1分)(2020·荆州模拟) 如图,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A 测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为________米.(精确到0.1米,参考数据:,,)
12. (1分)(2017·广陵模拟) 如图,当小明沿坡度i=1:3的坡面由A到B行走了100米,那么小明行走的水平距离AC=________米.(结果可以用根号表示).
13. (1分) (2018九上·金华期中) 如果抛物线y=(a﹣1)x2的开口向下,那么a的取值范围是________.
14. (1分)(2017·青浦模拟) 已知在△ABC中,点D在边AC上,且AD:DC=2:1.设 = , =
.那么 =________.(用向量、的式子表示)
15. (1分)如图,△ABC中,∠ACB=90°,D为AB中点,BC=6,CD=5,则AB=________,AC=________.
16. (1分) (2018九上·安陆月考) 在平面直角坐标系xOy中,将抛物线平移后得到抛物线 .请你写出一种平移方法. 答:________.
17. (1分)(2020·惠山模拟) 如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=12,那么线段GE的长为________.
18. (1分)如图,OP=1,过P作PP1⊥OP ,得OP1= ;再过P1作P1P2⊥OP1且P1P2=1,得OP2= ;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018=________.
三、解答题 (共7题;共62分)
19. (5分)(2018·安顺) 计算: .
20. (5分)(2020·赤峰) 先化简,再求值:,其中m满足: .
21. (10分) (2018九下·龙岩期中) 已知抛物线y=﹣x2+bx+c的部分图象如图所示.
(1)求b、c的值;
(2)求y的最大值;
(3)写出当y<0时,x的取值范围.
22. (2分)(2015·舟山) 小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.
(1)求∠CAO′的度数.
(2)显示屏的顶部B′比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?
23. (10分)如图.点D是Rt△ABC斜边BC的中点,⊙O是△ABD的外接圆,交AC于点F. DE平分∠ADC ,交AC于点E.
(1)求证:DE是⊙O的切线
(2)若CE=4,DE=2,求⊙O的直径.
24. (15分)(2020·宜兴模拟) 如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB 的延长线相交于点P,AD与PC延长线垂直,垂足为D,CE平分∠ACB,交⊙O于E.
(1)求证:PC与⊙O相切;
(2)若AC=6,tan∠BEC= ,求BE的长度以及图中阴影部分面积.
25. (15分) (2017九上·辽阳期中) 已知,如图边长为2的正方形ABCD中,∠MAN的两边分别交BC、CD 边于M、N两点,且∠MAN=45°.
(1)求证:MN=BM+DN.
(2)若AM、AN交对角线BD于E、F两点,设BF=y,DE=x,求y与x的函数关系式.
参考答案一、单选题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共12题;共12分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共7题;共62分)
19-1、
20-1、21-1、
21-2、21-3、
22-1、
22-2、22-3、
23-1、
23-2、
24-1、
24-2、
25-1、
25-2、。

相关文档
最新文档