高等数学重积分笔记

合集下载

高数大一知识点总结重积分

高数大一知识点总结重积分

高数大一知识点总结重积分高数大一知识点总结:重积分高等数学中的重积分是一种扩展了二重积分的概念,它在多变量函数的积分中扮演重要的角色。

本文将对高数大一课程中的重积分进行总结和讲解。

一、重积分的概念和性质重积分是定义在三维空间内的函数的积分,通常用来计算多变量函数在某个区域上的累积效应。

与二重积分类似,重积分可以通过分割区域,将其近似为无穷小的小区域,然后对每个小区域进行积分,再将这些积分进行累加而得到。

重积分的计算通常与坐标系的选择有关,常见的坐标系有直角坐标系、极坐标系和柱坐标系等。

根据实际问题的特点和对称性的分析,选择合适的坐标系可以简化计算过程。

在计算重积分时,需要注意积分顺序的选择。

根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,这样有助于简化计算,并得到准确的结果。

重积分具有一些重要的性质,例如线性性、划分性和保号性等。

这些性质在具体计算过程中可以灵活运用,简化计算和分析。

二、重积分的计算方法1. 直角坐标系下的重积分计算方法直角坐标系下的重积分计算通常通过多次积分来实现。

根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,再对另一个自变量进行积分。

通过逐步积分,最终可以得到准确的结果。

2. 极坐标系下的重积分计算方法极坐标系下的重积分计算常常适用于具有旋转对称性的问题。

在极坐标系下,将函数和区域表示成极坐标形式,通过选择合适的积分顺序和极角范围,可以简化计算过程,得到准确的结果。

3. 柱坐标系下的重积分计算方法柱坐标系下的重积分计算通常应用于具有柱对称性的问题。

在柱坐标系下,将函数和区域表示成柱坐标形式,通过选择合适的积分顺序和柱角范围,可以简化计算过程,得到准确的结果。

三、重积分的应用领域重积分在科学和工程领域有广泛的应用。

例如,在物理学中,用重积分可以计算物体的质量、质心和转动惯量等;在电磁学中,可以用重积分计算电荷、电场和电势等;在流体力学中,可以用重积分计算流体的质量、流速和流量等。

高等数学定积分及重积分的方法与技巧

高等数学定积分及重积分的方法与技巧

高等数学定积分及重积分的方法与技巧第一部分 定积分的计算一、定积分的计算例1 用定积分定义求极限. )0(21lim 1>++++∞→a nn a a a a n . 解 原式=∫∑=⋅=∞→1011lim a ani n x n n i dx =aa x a +=++11111. 例2 求极限 ∫+∞→121lim xx n n dx .解法1 由10≤≤x ,知nn x x x ≤+≤210,于是∫+≤1210x x n ∫≤1n x dx dx .而∫10nx ()∞→→+=+=+n n n x dx n 0111101,由夹逼准则得∫+∞→1021lim xx n n dx =0. 解法2 利用广义积分中值定理()()x g x f ba ∫()()∫=b ax g f dx x dx (其中()x g 在区间[]b a ,上不变号), ().1011112102≤≤+=+∫∫n n nn dx x dx xx x x由于11102≤+≤nx,即211nx+有界,()∞→→+=∫n n dx x n01110,故∫+∞→1021lim x x n n dx =0. 注 (1)当被积函数为()22,x a x R +或()22,a x x R −型可作相应变换.如对积分()∫++3122112xxdx,可设t x tan =;对积分()02202>−∫a dx x ax x a,由于()2222a x a x ax −−=−,可设t a a x sin =−.对积分dx e x ∫−−2ln 021,可设.sin t e x =−(2)()0,cos sin cos sin 2≠++=∫d c dt td t c tb t a I π的积分一般方法如下:将被积函数的分子拆项,[分子]=A[分母]+B[分母]′,可求出22dc bdac A ++=,22dc adbc B +−=. 则积分 ()220cos sin ln 2cos sin cos sin πππtd t c B A dt td t c t d t c B A I ++=+′++=∫.ln2dc B A +=π例3 求定积分()dx x x x ∫−1211arcsin分析 以上积分的被积函数中都含有根式,这是求原函数的障碍.可作适当变换,去掉根式. 解法1 ()dxx x x ∫−1211arcsin 2tx x t ==12121211212arcsin arcsin arcsin 21arcsin 2tt d t dt tt ==−∫∫.1632π=解法2 ()dx x x x∫−1211arcsin .163cos sin cos sin 2sin 2242242πππππ==⋅=∫u du u u uu u u x 小结 (定积分的换元法)定积分与不定积分的换元原则是类似的,但在作定积分换元()t x ϕ=时还应注意:(1)()t x ϕ=应为区间[]βα,上的单值且有连续导数的函数; (2)换限要伴随换元同时进行;(3)求出新的被尽函数的原函数后,无需再回代成原来变量,只要把相应的积分限代入计算即可.例4 计算下列定积分(1)∫+=2031cos sin sin πx x xdx I , dx xx xI ∫+=2032cos sin cos π;(2).1cos 226dx e xx ∫−−+ππ解 (1)∫+=2031cos sin sin πxx xdx I)(sin cos cos 2023du u u uu x −+−=∫ππ=.sin cos cos 223∫=+πI dx xx x故dx xx xx I I ∫++==203321cos sin cos sin 21π=()41cos cos sin sin 212022−=+−∫ππdx x x x x . (2)=I .1cos 226dx e x x ∫−−+ππ()dxe xdu e uu x x u ∫∫−−+=−+−=2262261cos 1cos ππππ+++=∫∫−−2222661cos 1cos 21ππππdx e x dx e x e I x x x.3252214365cos cos 21206226πππππ=×××===∫∫−xdxxdx这里用到了偶函数在对称取间上的积分公式以及公式:dx xdx n n∫∫=2020cos sin ππ()()()()()()=⋅×−×−−=×−×−−=偶数奇数n n n n n n n n n n ,22421331,1322431π小结 (1)常利用线性变换把原积分化为可抵消或可合并的易于积分的形式。

大一高数重积分知识点总结

大一高数重积分知识点总结

大一高数重积分知识点总结在大一高数学习中,重积分是一个重要的知识点,它是对多重积分的深入学习和扩展。

在本文中,我们将对大一高数中重积分的相关知识点进行总结和概述。

一、重积分的定义重积分是对二重积分的进一步推广,用于计算曲顶柱体与曲面之间的空间体积。

对于三维空间中的函数f(x,y,z),其在某一立体区域D上的重积分定义为:∬Df(x,y,z)dV其中,dV表示体积元素,满足dV = dxdydz。

二、重积分的计算1. 直角坐标系下的重积分计算在直角坐标系下,计算重积分的方法有两种:先y后x的积分次序和先x后y的积分次序。

根据具体情况选择合适的积分次序进行计算,并利用定积分的性质进行积分计算。

2. 极坐标系下的重积分计算在极坐标系下,计算重积分相对简便。

利用极坐标系的变换关系,将被积函数和积分区域转化为极坐标系下的表示形式,然后按照定积分的性质进行积分计算。

3. 应用:质量、质心和转动惯量重积分在物理学和工程学中有着广泛的应用。

通过计算重积分可以求解三维空间中物体的质量、质心和转动惯量等参数,为实际问题的分析提供了数学工具。

三、重积分的性质1. 重积分的线性性质重积分具有线性性质,即对于任意常数k,函数f(x,y,z)和g(x,y,z),以及积分区域D,有以下等式成立:∬D[kf(x,y,z) + g(x,y,z)]dV = k∬Df(x,y,z)dV + ∬Dg(x,y,z)dV2. 重积分的保号性如果积分区域D上的函数f(x,y,z)始终大于等于0,则重积分的结果也大于等于0。

这一性质在实际问题中常用于判断物体的质量分布或概率密度分布等情况。

3. 重积分的积分域可加性对于积分区域D,若可以分解为两个互不相交的子区域D1和D2,则有以下等式成立:∬Df(x,y,z)dV = ∬D1f(x,y,z)dV + ∬D2f(x,y,z)dV四、常见的重积分问题1. 计算空间几何体的体积通过重积分的计算,可以求解复杂几何体的体积。

2016考研高等数学二重积分必背定理

2016考研高等数学二重积分必背定理

第 1 页 共 1 页 2016考研高等数学二重积分必背定理 在考研备考的复习中,我们要多下功夫在考研数学上,考研数学是我们取得高分的关键,为了使大家复习好考研数学,下面为大家带来2016考研高等数学二重积分必背定理,希望能够使大家复习备考轻松。

1、二重积分的一些应用
曲顶柱体的体积曲面的面积(A=∫∫√[1+f2x(x ,y)+f2y(x ,y)]d σ)
平面薄片的质量平面薄片的重心坐标(x=1/A ∫∫xd σ,y=1/A ∫∫yd σ;其中A=∫∫d σ为闭区域D 的面积。

平面薄片的转动惯量(Ix=∫∫y2ρ(x ,y)d σ,Iy=∫∫x2ρ(x ,y)d σ;其中ρ(x ,y)为在点(x ,y)处的密度。

平面薄片对质点的引力(FxFyFz)
2、二重积分存在的条件
当f(x ,y)在闭区域D 上连续时,极限存在,故函数f(x ,y)在D 上的二重积分必定存在。

3、二重积分的一些重要性质
性质如果在D 上,f(x ,y)≤ψ(x ,y),则有不等式∫∫f(x ,y)dxdy ≤∫∫ψ(x ,y)dxdy ,特殊地由于-|f(x ,y)|≤f(x ,y)≤|f(x ,y)|又有不等式|∫∫f(x ,y)dxdy|≤∫∫|f(x ,y)|dxdy.性质设M ,m 分别是f(x ,y)在闭区域D 上的最大值和最小值,σ是D 的面积,则有m σ≤∫∫f(x ,y)d σ≤M σ。

2016考研高等数学中值定理与导数的运用必背定理希望大家能够学会,大家要知道定理和定义对学好考研数学的重要性,这样大家能够在备考的时候手到擒来。

高等数学笔记(含数一内容)

高等数学笔记(含数一内容)

隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算

三重积分知识点总结

三重积分知识点总结

三重积分知识点总结一、三重积分的基本概念1. 几何意义三重积分的几何意义是在三维空间中求某一区域内函数的平均值。

我们可以想象三维空间被分割成无数个小立方体,每个小立方体的体积趋于零。

然后将函数在每个小立方体上的值相加,并对整个区域进行求和,得到的就是三重积分的值。

2. 定义三重积分的定义是对平面上的二重积分的推广。

设函数f(x, y, z)在空间区域V上有定义,V的边界为S,那么三重积分可以表示为:∭V f(x, y, z) dV其中,dV表示体积元素,它等于dxdydz,即三个方向上的微小长度的乘积。

3. 坐标变换在进行三重积分的计算时,有时需要进行坐标变换,以便简化积分的计算。

常见的坐标变换包括球坐标、柱坐标和直角坐标之间的转化。

通过坐标变换,可以将原积分区域变换成更容易处理的形式,从而简化计算步骤。

二、三重积分的计算方法1. 直角坐标系下的三重积分直角坐标系下的三重积分是最基本的计算方法,它通常通过分割积分区域,并利用定积分的性质逐步进行计算。

对于简单的积分区域和函数,直角坐标系下的三重积分计算比较直观和容易理解。

2. 球坐标系下的三重积分在球坐标系下进行三重积分的计算,可以避免一些复杂的计算步骤。

球坐标系下的积分区域通常是球形或者球形的一部分,利用球坐标系的简洁性可以简化积分的计算过程。

3. 柱坐标系下的三重积分柱坐标系下进行三重积分的计算,适用于柱状或圆柱状的积分区域。

柱坐标系的简化性使得积分的计算更加方便和高效。

三、三重积分的应用1. 物理学中的应用在物理学中,三重积分被广泛应用于计算物体的质量、密度、电荷分布等问题。

例如,通过三重积分可以计算物体的质心、转动惯量等物理量,也可以计算电荷在空间中的分布情况。

2. 工程学中的应用在工程学中,三重积分被用于计算空间中的流体流动、物体的温度分布、材料的应力分布等问题。

通过三重积分可以得到流体的流速、压强分布等关键信息,也能够计算物体的热传导、热辐射等问题。

高等数学(下册) 二重积分要点总结

高等数学(下册) 二重积分要点总结

2
V f ( x, y )dxdy ;
S xy
求平面薄片质量:在薄片区域上对薄片密度进行积分。 求薄片质心:
x
x 乘以密度的积分 y 乘以密度的积分 ;y 对密度的积分 对密度的积分
求薄片转动惯量:
I x y 2 乘以密度在薄片上积分 I y x 2 乘以密度在薄片上积分
比较:求质量对密度积分;求质心密度乘 x 积分(除质量) ,惯量密度乘 x 2 积分。
f ( 标系 系左右边型:
f ( x, y)dxdy
D

x b
x a
dx
y 2 ( x ) y1 ( x )
f ( x, y )dy
典型题:
极坐标系里 里外边型:
f ( x, y) dx dy
D



d
2 ( ) 1 ( )
区域 D 关于 X 轴对称 被积函数关于 Y 变量是 奇函数
f ( x, y)dxdy
D
0
f ( x , y ) f ( x, y )
四、计算二重积分步骤: 画出积分区域(注意必要时划分区域) 根据区域形式和被积函数形式选择合适的区 域描述 确定累次积分并计算(注意:充分利用区域对称性,函数奇偶性) 五、二重积分的类型题目: 交换积分顺序; 直角坐标和极坐标下积分的互相表示; 重积分的具体计算; 求曲面围成的曲顶柱形的体积:曲顶 z f ( x, y ) ,几何体在 xy 平面投影 S xy ,体积
二重积 积分要点 点总结
1、二重积 积分:二重积 积分性质就 就是一般积分 分性质,6 个性质,重 个 重点前三个 。 2、二重积 积分计算:必 必须掌握,必须算准 区域形式及 及描述 直角坐标系 系上下边型 计算公式

重积分知识点总结例题

重积分知识点总结例题

重积分知识点总结例题1. 重积分的定义在介绍重积分的定义之前,首先需要了解多元函数的概念。

多元函数是指自变量有多个的函数,通常表示为$f(x_1, x_2, ..., x_n)$。

在平面上,一元函数是自变量只有一个的函数,并且可以表示为$y = f(x)$。

而在空间中,两元函数是自变量有两个的函数,并且可以表示为$z = f(x, y)$,三元函数是自变量有三个的函数,并且可以表示为$w = f(x, y, z)$。

在多元函数的情况下,我们需要对其在一个区域上进行积分。

这就引出了重积分的概念。

重积分可以看作是对一个区域上的函数值在该区域上的加权平均。

重积分的定义如下:设$f(x, y)$是定义在闭区域$D$上的有界函数,$D$的面积记为$A(D)$,取$D$上的任意一组分割$P = \{R_i\}$和抽样点$Q = \{(\xi_i, \eta_i)\}$,$M_{ij}$是$f(x, y)$在$R_{ij}$上任意一点的函数值。

作Riemann和$$S(P, Q, f) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \Delta \sigma_{ij}$$如果极限$L$存在,不依赖于分割$P$和点$Q$的取法,即$L = \lim_{\lambda(P) \to0,\delta(Q) \to 0} S(P, Q, f)$存在,则称$f(x, y)$在闭区域$D$上可积,这个极限$L$称为$f(x, y)$在$D$上的重积分,记作$$\iint_D f(x, y) d\sigma = L$$其中,$d\sigma$表示对$D$内的面积元素进行积分。

如果$f(x, y)$在$D$上可积,则称$f(x, y)$在$D$上可积,否则称为不可积。

2. 重积分的性质重积分具有一些重要的性质,这些性质有助于我们进行重积分的计算和应用。

下面我们将介绍一些重要的性质。

(1)可加性设$f(x, y)$在闭区域$D$上可积,$D_1$和$D_2$是$D$的两个互不相交的子区域,其并集为$D = D_1 \cup D_2$,则有$$\iint_D f(x, y) d\sigma = \iint_{D_1} f(x, y) d\sigma + \iint_{D_2} f(x, y) d\sigma$$这就是重积分的可加性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学重积分笔记
重积分是高等数学中的一个重要概念,它涉及到空间内某些图形的面积、体积、重量等方面的计算。

以下是一些重积分的笔记内容: 1. 重积分的概念:重积分是一种积分方法,它可以用来计算空间内某些图形的面积、体积、重量等。

重积分的基本思想是将空间内的某个区域分割成多个小区域,然后对每个小区域进行积分。

最终通过求和的方式得到整个区域的面积、体积、重量等。

2. 重积分的基本公式:重积分的基本公式可以用来计算任意函数的重积分。

基本公式如下:
∫ABf(x,y)dxdy = ∫ABF(x,y)dydx + ∫BFCA(x,y)dydx - ∫ACBf(x,y)dxdy
其中,∫AB 表示空间内某个区域 AB 的面积,f(x,y) 表示区域AB 内的函数值,∫ABF(x,y)dydx 表示区域 AB 内部的函数值,∫BFCA(x,y)dydx 表示区域 AB 外部的函数值,CB 表示区域 AB 的边界。

3. 重积分的应用领域:重积分广泛应用于空间内的图形计算,例如计算球的体积、圆柱的体积、圆锥的体积等。

此外,重积分还可以用于计算曲线的长度、曲线的弧长、函数的极值点等。

4. 重积分的变量替换法:在重积分的计算中,有时候会遇到难以求解的积分,这时可以通过变量替换法来解决。

变量替换法是指将某些变量替换成其他变量,使得积分变得容易求解。

例如,当积分式中含有根号时,可以通过变量替换来解决。

5. 重积分的分部积分法:在重积分的计算中,有时候会遇到难以求解的积分,这时可以通过分部积分法来解决。

分部积分法是指将积分式中的某些变量拆分成两个变量,然后分别进行积分。

例如,当积分式中含有 lnx 时,可以通过分部积分来解决。

以上是重积分的一些笔记内容,希望有所帮助。

相关文档
最新文档