蛋白质工程和酶工程在现代工艺中的应用

合集下载

酶工程与蛋白质工程

酶工程与蛋白质工程

酶工程与蛋白质工程酶工程与蛋白质工程是现代生物技术的重要领域,它们以分子水平为基础,通过基因工程技术来改造酶和蛋白质。

酶工程主要研究酶的结构与功能关系以及酶催化反应机理,以此来优化酶的性质和功能;而蛋白质工程则致力于蛋白质的高表达、纯化和改造,进而实现分子水平的控制和利用。

两者交叉融合,共同应用于工业、医药、环保和食品等各个领域,促进了生物技术的发展和推广。

一、酶工程简介酶是一种生物催化剂,具有极高的选择性和催化效率。

酶工程旨在通过对酶的分子结构和催化机理的研究,优化酶的性质和功能,使其在特定条件下能够更高效地催化反应。

比如,通过改变酶的氨基酸序列,可以实现酶催化活性和稳定性的提高。

再比如,通过引入新的催化中心或变异剂,可以改变酶的底物特异性和反应特性。

这些优化方法可以显著提高酶的效率和选择性,为实现工业生产和科学研究提供了有效手段。

酶工程的具体步骤如下:1. 酶的筛选和分离。

这个步骤是酶工程的基础,通常需要从自然界中分离出能够催化特定反应的酶。

现代酶工程技术一般采用高通量筛选法,通过分子筛、高速离心、色谱法等方法来分离出酶的纯品。

2. 酶的分子结构分析。

这个步骤是为了了解酶的分子结构和功能关系,找到优化方案的基础。

目前,常用的酶的分析方法有X射线晶体学和核磁共振法。

3. 酶的基因工程改造。

通过基因工程技术,改变酶的氨基酸序列和三维结构,使其获得更高的活性和稳定性。

常用的方法有扩展、交换和修饰等方法。

4. 酶的活性和特性检测。

通过活性酶测定、底物特异性、pH和温度对酶催化反应的影响等方法来检测酶的改造效果。

5. 酶的产量提高。

通过使用表达载体、调节生产菌株的生长条件等方法,使酶的产量达到最高。

二、蛋白质工程简介蛋白质工程是将目标蛋白基因从生物体内放大、纯化、定位和表达,以达到高效率和高纯度的目的。

主要应用于药物研发、工业化生产、分子诊断和分子工业等领域,对于制造可溶性蛋白、表达蛋白、纯化蛋白和修饰蛋白等方面都发挥着重要作用。

浅析现代化生物工程中酶技术的研究与应用

浅析现代化生物工程中酶技术的研究与应用

浅析现代化生物工程中酶技术的研究与应用人类生命物体的基本特征之一就是不断地进行新陈代谢,新陈代谢是由许多有机化学反应组成的,如动植物的消化反应和各种物质的合成与分解等。

这些反应在体内进行地很快,原因是有生命的动植物体内存在着的一种生物催化剂一酶的作用。

酶制剂是在1833年由法国化学家佩思和珀索发现的,他们从麦芽提取液的酒精沉淀物中得到一种对热不稳定,而且能加速淀粉转变成糖的物质,称之为淀粉酶制剂。

1926年隆姆首次从刀豆中提纯得到脲酶结晶。

生物化工行业经过70多年的发展,对酶的分子结构,酶作用的机理及酶系统的自我调节已形成了一个完整的工业体系。

整个行业也出现了一些新的发展态势,在阐明生命活动的规律,探索工业、农业、畜牧业、医药及对疾病的诊断、治疗均有重要的意义。

新陈代谢包含了一些重要的有机化学,对于生命周期的循环起着重要的保障作用。

作为常见的生物催化剂,酶的存在有利于加快新陈代谢速度,从根本上保证了相关化学反应的持续进行。

最初的淀粉酶主要是从麦芽提取液中得到的。

此后随着现代生物工程技术的不断发展,研究工作者对于各种生物酶的结构和特性有了更加深入的了解,为这些酶应用范围的扩大奠定了坚实的基础。

1.1生物酶的主要特点生物酶本质上是一种蛋白质,主要产生于某些机体活细胞,在实际的应用中具有良好的催化效果。

常见的酶促反应主要是指生物酶参与的反应,对相关物质代谢速度的加快带来了一定的保障作用。

生物酶的主要特点包括:(1)高效的催化效率。

相对而言,酶的催化效率远远高于一般的催化剂,最大为1013倍;(2)稳定性差。

作为机体活细胞的蛋白质,生物酶很容易受到各种存在因素的影响,导致蛋白质现象的出现,从而使酶失去了活性。

这些内容客观地反映了生物酶稳定性差的特性;(3)专一性非常强。

一般的催化剂在实际的应用中可能会有多种选择。

而生物酶只针对一种化合物发挥自身的催化作用,具有高度的专一性;(4)酶活力可以随时调节。

蛋白酶在存在的过程中有着良好的特性,不同类型蛋白酶通过一定的机制实现彼此间的有效结合,才能具有更好的催化活力。

现代生物技术在食品工程中的应用

现代生物技术在食品工程中的应用

T logy科技食品科技按照技术研究与应用形式的不同,可将现代生物科学分为细胞工程、生物酶工程、蛋白质工程及基因工程等几种类型。

现代生物科学在食品生产各个环节的应用形式不同,为保障食品安全,在技术应用的过程中,相关企业与科研单位应在全面、深入认识各项生物技术特征的基础上,及时掌握前沿技术研究成果,为食品产业的创新化、多元化发展提供技术方面的支持。

1 现代生物技术在食品工程中的应用1.1 生物酶工程在食品生产与加工过程中,运用生物酶可有效提升食品的转化速率,增强生产效率,如在果汁、速溶茶等饮品的生产中应用生物酶,可提升产品的生产率。

生物酶技术可应用于产品外包装、添加剂生产领域,应大力推广。

以生物酶在调味产品生产中的应用为例,通过合理添加啤酒复合酶,可有效改善食品的营养结构、提升食品口感和促进肠胃消化等,对提高食品生产品质有着重要作用。

1.2 基因工程生物基因技术在食品领域的研究应用不断深化,在提升食品生产质效、降低生产成本和延长食品保存周期方面有显著成效。

生物基因技术应用优势具体表现为3个方面:①控制食品生产与加工的成本。

利用基因技术可不断创新现有的食品生产模式,降低食品产业生产原料、能源的损耗,同时,促进食品生产种类的多元化开发;②全面提升食品生产与加工的质效。

如在农作物种植环节,部分生物酶会对作物生长产生抑制影响,通过基因工程改造可科学控制酶的含量,为作物的健康成长提供保障。

在养殖产业中,利用基因改造技术可对家猪不同阶段的体重进行控制,对于贯彻落实科学养殖目标具有重要意义;③基因工程可使食品进行有效的发酵反应,提升发酵成效。

食品受菌种类型的影响,产生的发酵反应和需要的发酵周期存在差异。

如酱油、酸奶在发酵的过程中需不同的生物菌种,为有效提升发酵效果,运用基因技术对食品中酶的比例进行控制,可提升产品的抗氧化性能,从而延长食品的保存周期,增加食品风味[1]。

1.3 蛋白质工程蛋白质工程能改变生物原本的性状,或基于原有蛋白质基础性质生产具有新功能的新型蛋白质产品,改善凝乳酶、纤维素酶等的使用性质,为创新食品生产技术、推广蛋白质酶的使用和改善食品生产质量等提供技术支持。

蛋白质与酶的工程改造技术及其应用

蛋白质与酶的工程改造技术及其应用

蛋白质与酶的工程改造技术及其应用蛋白质是构成生物体细胞的基本结构单元,对于生命活动的各种过程都具有重要的作用。

酶则是生物体内催化反应的重要媒介,通过发挥催化活性加速生命过程,维持了细胞的生存。

传统的酶工程技术主要将重点放在酶的分离和纯化上,但是这种方法成本高、效率低,对于大规模生产和应用场景并不适用。

随着现代生物技术的不断发展,蛋白质与酶的工程改造技术不断更新,为生物制药、酶催化反应等领域提供了新的解决方案。

本文将介绍蛋白质与酶的工程改造技术及其应用。

一、蛋白质工程改造技术1.点突变技术点突变技术是将蛋白质基因的某个碱基或氨基酸序列进行改变,从而使其具有不同的功能、活性或特定的理化性质。

这种技术在人类疾病治疗、新型药物研发、工业酵素等领域有着广泛的应用。

例如,通过点突变技术可以将普通抗体转化为更强力、更稳定的人源化抗体,提高其在治疗上的效果;也可以将酵素的催化速率、热稳定性等进行调整,以适应特定的工业需求。

2.融合蛋白技术融合蛋白技术是将两个或多个不同蛋白质结构域进行连接,形成一个新的分子,从而具有多种不同的功能。

融合蛋白技术不仅可以产生新的蛋白质,还可以对原有蛋白质的稳定性、性质等进行调整。

例如,通过将大肠杆菌外膜蛋白(OmpA)与绿色荧光蛋白(GFP)进行融合,可以得到具有膜定位与荧光表达功能的融合蛋白,用于生物成像和药物靶向测定等领域。

3.点突变与融合蛋白技术的结合将点突变和融合技术相结合可以使得蛋白质的活性和稳定性得到双重提升。

例如,通过将发酵产物氨基酸脱羧酶(ADC)与乙醇磷酸酸转移酶(EPAT)进行融合,并进行点突变,可以得到具有更高催化效率和稳定性的蛋白质。

二、酶工程改造技术酶催化反应是生物科学和化学领域中的重要研究内容,具有广泛的应用前景。

酶工程改造技术可以通过改变酶的氨基酸组成、酶的整体结构、酶的环境条件等,调节酶的催化效率和稳定性,达到增强酶活性、改进反应过程、提高酶的选择性等目的。

现代生物化工中酶工程技术研究与应用

现代生物化工中酶工程技术研究与应用

现代生物化工中酶工程技术研究与应用1. 引言1.1 背景介绍生物化工作为生物技术领域的一个重要分支,是利用生物学原理和工程技术解决工业生产过程中的环境问题和提高生产效率的重要手段。

而酶工程技术作为生物化工领域的重要支撑技术,其在现代生物化工中发挥着越来越重要的作用。

在当前全球气候变暖和资源匮乏的大背景下,生物化工以其可持续性和环保性逐渐成为产业发展的主流方向。

而酶工程技术作为生物化工中的重要技术手段,将继续发挥其在提高生产效率、减少资源浪费和环境污染等方面的重要作用。

对现代生物化工中酶工程技术的研究与应用具有重要意义。

1.2 研究意义酶工程技术在现代生物化工中具有重要的意义。

通过酶工程技术可以改善传统化工生产工艺,提高生产效率,减少能源消耗,降低生产成本。

酶工程技术有助于开发新型的生物催化过程,可以实现对复杂化合物的高效合成,拓展生物合成的应用领域。

酶工程技术可以为医药和食品工业提供更加安全、高效和绿色的生产手段,为人类健康和生活质量的提升提供支持。

酶工程技术的研究还有助于深化对生命科学的理解,推动生物技术的发展和创新。

深入研究与应用酶工程技术对于推动现代生物化工的发展,促进科技进步和经济发展具有重要的意义。

1.3 研究目的研究目的是为了探索和发展酶工程技术在现代生物化工领域中的应用潜力,进一步提高生物转化过程的效率和产量。

通过深入研究酶的结构和功能特性,不断改良和优化酶的性能,实现对特定底物的高效催化转化,从而提高生产效率,降低能耗,减少废弃物排放,推动生物化工产业的可持续发展。

研究酶工程技术的前沿进展,探讨新型酶的发现和设计方法,探索利用合成生物学和基因编辑技术构建高效酶系统的可能性,为未来生物化工的发展提供技术支持和指导。

通过本文的研究,旨在加深对酶工程技术的理解,探索其在现代生物化工中的应用前景,促进技术创新和产业升级,推动生物资源的可持续利用和环境保护。

2. 正文2.1 酶工程技术概述酶工程技术是一门结合生物学、化学、工程学等多学科知识的交叉领域,是利用基因工程技术对酶进行改造和优化,以提高其在生物化工生产中的效率和稳定性的技术。

酶工程技术在食品工业中的应用

酶工程技术在食品工业中的应用

3、拓展应用领域:酶工程技术的运用领域将不断扩大,除了传统的食品加工 和制造领域外,还将在保健品、医药、环保等领域得到更广泛的应用。
4、食品安全与质量控制:利用酶工程技术建立更加快速、准确、灵敏的食品 安全检测方法和技术,提高食品质量安全水平。
5、适应环保要求:在酶工程技术的运用过程中,应注重环保和可持续发展, 减少对环境的污染和资源浪费。
谢谢观看
关键词:酶工程技术、食品工业、食品加工、食品改性、质量检测、蛋白质工 程技术、基因工程技术。
酶工程技术在食品工业中的应用
1、食品加工
酶工程技术在食品加工方面具有广泛的应用。例如,在奶制品行业,酶工程技 术可以用来水解乳糖,降低乳糖含量,使产品更加适合糖尿病患者食用。此外, 在肉类加工中,酶工程技术可以嫩化肉质,提高产品的口感和品质。
应用前景展望
随着科技的不断进步和人们健康意识的提高,酶工程技术在食品工业中的应用 前景十分广阔。未来,酶工程技术将在以下几个方面得到进一步发展:
1、开发新的酶制剂:随着生物技术的不断发展,将会有更多具有特殊功能的 酶被发现和开发出来,为食品工业提供新的加工助剂和添加剂。
2、提高生产效率:通过基因工程等手段对酶进行改造和优化,提高其催化效 率和稳定性,降低生产成本,从而提高酶工程技术的生产效率和经济效益。
2、食品改性
酶工程技术还可以用于食品改性。例如,通过使用特定的酶,可以破坏食物中 的某些成分,从而改变食物的口感、营养价值等。此外,酶还可以将果蔬加工 成具有特殊风味的食品,如柑橘类水果罐头中添加柚皮苷酶,可降解果胶,提 高产品的口感和透明度。
3、食品质量检测
酶工程技术也可以应用于食品质量检测。例如,在食品安全检测方面,酶联免 疫分析技术(ELISA)利用酶与抗体或抗原的反应,可快速检测食品中残留的 农药、兽药、毒素等有害物质。

生物酶在工业生产中的应用

生物酶在工业生产中的应用

生物酶在工业生产中的应用生物酶是一类具有催化活性的蛋白质,能够加速化学反应的进行,并在反应结束后恢复原状。

在工业生产中,生物酶广泛应用于许多领域,包括食品加工、纺织工业、制药业等。

本文将重点介绍生物酶在工业生产中的应用。

一、食品加工行业1. 面包制作在面包制作过程中,利用酵母中的蔗糖酶将蔗糖分解为葡萄糖,然后通过酵母发酵将葡萄糖转化为二氧化碳和乙醇,使面团发酵膨胀。

此外,还可以使用淀粉酶将面团中的淀粉分解为麦芽糖,提高面团的发酵性能。

2. 啤酒酿造在啤酒酿造过程中,利用酵母中的酵母酶将麦芽中的淀粉分解为单糖,然后利用酶进行发酵生成乙醇和二氧化碳,从而完成麦芽中的糖分转化为酒精的过程。

酶不仅提高了酿造的效率,还改善了啤酒的口感和质量。

3. 乳制品生产在乳制品生产过程中,酶起到了重要的作用。

例如,利用乳糖酶将牛奶中的乳糖分解为葡萄糖和半乳糖,使乳制品更易于消化吸收;利用凝乳酶将乳中的蛋白质分解为酸性蛋白质,促进乳凝块的形成等。

二、纺织工业1. 漂染工艺在纺织品的漂染过程中,常常需要使用酶来去除纤维素表面的杂质,提升纺织品的染色效果。

例如,利用纤维酶去除棉纤维表面的微小鳞片,增加纤维的柔软度和光泽度;利用苏木酶去除麻纤维表面的脂肪和润滑剂,提高染色的均匀性。

2. 石浆漂白在造纸工业中,石浆漂白是一个重要的环节。

利用漆酶或过氧化氢酶等酶类,可以有效去除石浆中的木质素、半纤维素和颜料等杂质,提高纸浆的质量和漂白效果。

三、制药业1. 酶制剂的开发与生产制药业中广泛使用的葡萄糖酶、淀粉酶、蛋白酶等酶制剂,用于药物合成、废水处理以及其他生产工艺中。

这些酶制剂能够提高反应的速度和产率,并且具有高效、环保等优点。

2. 蛋白质工程通过蛋白质工程,可以改造酶的结构和性能,使其适应更广泛的应用需求。

通过定向进化等技术手段,可以提高酶对特定底物的活性和选择性,为制药业的研发提供了更多可能。

综上所述,生物酶在工业生产中具有重要的应用价值。

7现代生物技术 酶工程与蛋白质工程 教学课件

7现代生物技术 酶工程与蛋白质工程 教学课件
生物发光分为两种,一种是由生物体内一种荧光酶作为催化剂参与发光反 应,另一种是生物体内某种蛋白质本身能发光。前者早在上世纪初就已被研究 得较为全面,而发光蛋白质的系统研究起源于上世纪50年代下村修所做的开 创性工作。
1955年两位美国海洋生物学家达文波特与尼可,首次发现了水母可以发 绿光,但他们无法解释原因,这一发现被下村修敏锐地捕捉到了。1961年, 当时还在普林斯顿大学工作的下村修与同事们,在当地的星期五港附近收 集了约一万只水母来研究,终于在一种叫做维多利亚水母的体内,分离纯 化了水母中的发光蛋白——水母素。他们还发现了另外一种蛋白,它在阳 光下呈绿色、钨丝下呈黄色、紫外光下呈强烈绿色。经过研究发现,这是 钙离子在与水母素的交互作用中发生了能量交换,从而产生了发光效应(一 种能量释放形式)。
诺贝尔化学奖解读 “绿色荧光蛋白”让未知世界显影
当地时间10月8日11时45分,诺贝尔自然科学奖最后一个奖项化学奖在 瑞典皇家科学院揭晓。3位美国科学家 ——美国伍兹·霍尔海洋生物学研究所 日裔科学家下村修、哥伦比亚大学神经生物学教授马丁·查尔菲、加州大学圣 迭戈分校华裔生物学家钱永健,因为发现了在生物化学领域极为重要的“绿色 荧光蛋白”而获此殊荣,3人将平分1000万瑞典克朗 (约140万美元)的奖金。 日本《读卖新闻》10月12日对该奖项进行了解读。
3、蛋白质芯片的制备
• 固相载体的选择和处理:膜载体;玻片载体 • 蛋白质靶标的处理:纯度高,并具生物活性 • 蛋白质靶标的固定 • 蛋白质芯片的封闭
4、蛋白质芯片的检测
标记:荧光染料;酶;融luorescent protein,GFP
绿色萤光蛋白最早是由下村修等人在1962年在一种学名 Aequorea victoria的水母中发现。其基因所产生的蛋白质, 在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光 的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光 蛋白质与钙离子(Ca+2)可产生交互作用。它是一种化学性 能稳定的小分子蛋白质,它能在紫外光激发下发出易于检测的 绿色荧光。gfp基因与目的基因相连接,不影响目的基因表达 且能较好地标识出目的基因位置。现已证实它是一种重要的 标记基因,在应用基因治疗胶质细胞瘤、探讨肿瘤侵袭机制与 模式,以及研究肿瘤微血管构建等方面具有重要作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质工程和酶工程在现代工艺中的应用
06120801 20081903 付婷钰
摘要:蛋白质工程[1],是指在基因工程的基础上,结合蛋白质结晶学,计算机辅助设计和蛋白质化学等多学科的基础知识通过对基因的人工定向改造等手段,对蛋白质进行修饰,改造和拼接以生产出能满足人类需要的新型蛋白质;酶作为一种生物催化剂,已广泛地应用于轻工业的各个生产领域。

近几十年来,随着酶工程不断的技术性突破,在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。

关键词:蛋白质工程酶工程应用
正文:
一、蛋白质工程的应用
1、在医药方面[2]
许多蛋白质工程的目标是设法提高蛋白质的稳定性。

在酶反应器中可延长酶的半衰期或增强其热稳定性,也可以延长治疗用蛋白质的贮存寿命或重要氨基酸抗氧化失活的能力。

在这个领域已取得了一些重要研究成果。

用蛋白质工程来改造特殊蛋白质为制造特效抗癌药物开辟了新途径。

如人的β- 干扰素和白细胞- 2 是两种抗癌作用的蛋白质。

但在它们的分子结构中,有一个不成对的基因,是游离的,因而很不稳定,会使蛋白质失去活性。

当通过蛋白质工程修饰这种不稳定的结构就可以提高这两种抗癌物质的生物活性。

美国的Cetus 公司成功地修饰了这两种治疗癌瘤的蛋白质,大大提高了它们的稳定性,已用于临床试验并取得了良好的效果。

具有抗癌作用的蛋白质工程产品免疫球蛋白质是一种高效治癌药物,它能成为征服癌症的“生物导弹”,即具有对准目标杀死特定癌细胞而不伤害正常细胞的特效。

近年来,澳大利亚医学科学研究所的一个微生物研究课题组经过多年的研究后发现了激发基因开始或停止产生癌细胞的蛋白质。

这种蛋白质在癌细胞生长过程中对癌基因起着开通或关闭的作用。

这个发现,对于通过蛋白质工程研制鉴别与控制多种类型的血液癌、固体癌的蛋白质有很好的作用,并为诊断和治疗癌症提供了新的方法。

目前,应用蛋白质工程研究开发抗癌及抗艾滋病等重大疑难病症等方面,均取得了重大进展。

另据实验,蛋白质工程还可以改变α1 抗胰蛋白(ATT)。

运用此工程技术在ATT 的Met358 和Ser359 之间切开后,可以与嗜中性白细胞弹性蛋白酶迅速结合而引发抑制作用。

在病理学的氧化条件下可导致Met358变成蛋氨酸硫氧化物使ATT 不可能与弹性蛋白酶的弹性位点相结合。

通过位点直接诱变,Met358 被Val 代替就成为抗氧化疗法的AAT 突变体。

含AAT 突变体的血浆静脉替代疗法已经用于AAT 产物基因缺陷疾病患者的治疗,并已取得明显疗效。

2、在农业方面
蛋白质工程正在成为改造农业,大幅度提高粮食产量的新途径。

如植物光合作用是利用白光能将二氧化碳转化成贮成能量淀粉,在植物叶片中普遍存在着一种重要的起催化作用的酶,它能固定住二氧化碳,这种酶叫核酮糖- 1.5- 二磷酸羧化酶。

而这种酶具有双重性:它既能固定二氧化碳,又会使二氧化碳在光照条件下通过光呼吸作用损失一半,即光
合效率只有50%。

现在。

这种酶的三维结构已经搞清楚了。

参与研究的工作人员认为,可以通过蛋白质工程改造这种酶,控制其不利于人需要的一面,从而大大提高其光合作用效率,增加粮食产量。

近年来,美国坎布里奇的雷普里根公司的科研人员立题,以蛋白质工程作为设计优良微生物农药的新思路,他们实施对微生物蛋白质结构进行修改,仅此一举,使微生物农药的杀虫率提高了10 倍。

3、在工业方面[3]
蛋白质工程在工业上的应用取得的成果亦是很多。

现以改变酶的动力学特性研制出高效
除污酶为例说明其应用价值。

酶的动力学基本规律__为:酶(E)- 底物(S)=酶- 底物复合物(ES)=酶(E)+产物(P)在这个反应过程中有4 个速率常数:E- S=ES=E+P在稳态阶段,ES 形成速率与分解速率相等,这个速率就是Km(Michaelis 常数)。

在数值上,Km 等于达到最大速率一半时的底物浓度。

Vmax 常在反应的初始阶段测定,反应进行中产物浓度将增加,K4 则不可忽视,高浓度的底物会抑制酶活性。

在底物低浓度时,酶的Km 是关键的参数。

如在枯草杆菌蛋白酶的活性位点内有一个Met 残基,作为去污剂的一种组分,该酶要置于氧化条件下使用。

利用位点直接诱变,用其他19种氨基酸的任何一种取代这个Met,这些突变酶在活性方面大不相同,除了CYS 代替Met 的突变酶外,其他突变酶的活性都下降,而Km 值提高。

含不可氧化氨基酸(如Cer,Ala 或Len)的突变酶在1 mol/LH2O中不失活,而Net 和CYS 酶则迅速失活。

研究者正是根据突变酶的动力学特性来确定枯草蛋白酶在去污剂中的应用,以提高其除污效率,加强去污作用。

另外,美国、日本等国家的科学工作者利用蛋白质工程研制生物元件来取代“硅芯片”,研制生物计算机,开发生物传感器的蛋白质都取得了重大进展。

还有利用蛋白质(酶)生产模仿羊毛、蚕丝、蜘蛛丝,其强度高、质量轻,均是蛋白质工程取得的应用性研究成果。

二、酶工程的应用
1、食品加工中的应用[4]
酶在食品工业中最大的用途是淀粉加工,其次是乳品加工、果汁加工、
烘烤食品及啤酒发酵。

与之有关的各种酶如淀粉酶、葡萄糖异构酶、乳糖酶、凝乳酶、蛋白酶等占酶制剂市场的一半以上。

目前,帮助和促进食物消化的酶成为食品市场发展的主要方向,包括促进蛋白质消化的酶(菠萝蛋白酶、胃蛋白酶、胰蛋白酶等),促进纤维素消化的酶(纤维素酶、聚糖酶等),促进乳糖消化的酶(乳糖酶)和促进脂肪消化的酶(脂肪酶、酯酶)等。

2、轻化工业中的应用
酶工程在轻化工业中的用途主要包括:洗涤剂制造(增强去垢能力)、毛皮工业、明胶制造、胶原纤维制造(粘接剂)牙膏和化妆品的生产、造纸、感光材料生产、废水废物处理和饲料加工等。

3、医药上的应用
重组DNA技术促进了各种有医疗价值的酶的大规模生产。

用于临床的各类酶品种逐渐增加。

酶除了用作常规治疗外,还可作为医学工程的某些组成部分而发挥医疗作用。

如在体外循环装置中,利用酶清除血液废物,防止血栓形成和体内酶控药物释放系统等。

另外,酶作为临床体外检测试剂,可以快速、灵敏、准确地测定体内某些代谢产物,也将是酶在医疗上一个重要的应用。

4、能源开发上的应用
在全世界开发新型能源的大趋势下,利用微生物或酶工程技术从生物体中生产燃料也是人们正在探寻的一条新路。

例如,利用植物、农作物、林业产物废物中的纤维素、半纤维素、木质素、淀粉等原料,制造氢、甲烷等气体燃料以及乙醇和甲醇等液体燃料。

另外,在石油资源的开发中,利用微生物作为石油勘探、二次采油、石油精炼等手段也是近年来国内外普遍关注的课题。

5、环境工程上的应用
在科学技术高度发展的同时,环境净化尤其是工业废水和生活污水的净化,作为保护自然的一项措施,具有十分重要的意义。

在现有的废水净化方法中,生物净化常常是成本最低而最可行的。

微生物的新陈代谢过程,可以利用废水中的某些有机物质作为所需的营养来源。

因此利用微生物体中酶的作用,可以将废水中的有机物质转变成可利用的小分子物质,同时达到净化废水的目的。

人们利用基因工程技术创造高效
菌种,并利用固定化活微生物细胞[5]等方法,在废水处理及环境保护工作中取得了显著的成效。

另外,生物传感器的出现为环境监测的连续化和自动化提供了可能,降低了环境监测的成本,加强了环境监督的力度。

参考文献:
[1] 万海清.生命科学概论[M].北京:化学工业出版社,2001.
[2] 孙毅.蛋白质工程的研究进展.[M].科技情报开发与进展,2006.
[3] 林学颜,张玲.现代细胞与分子生物学[M].北京:科学出版社,1999.
[4] 郭勇. 酶工程[M]. 北京:中国轻工业出版社,2004 .
[5] 刁惠敏,郭勇,彭志英. 固定化原生质体生产葡萄糖氧化酶[J]. 微生物学通报,2001 ,18(6 ):326 -328 .。

相关文档
最新文档