钢包渣线用耐火材料镁碳砖损毁的四个因素

合集下载

钢包耐火材料损坏原因及提高使用寿命的措施

钢包耐火材料损坏原因及提高使用寿命的措施

钢包耐火材料损坏原因及提高使用寿命的措施钢包耐火材料损坏的原因化学作用:1)钢水成分对耐火材料的侵蚀。

2)熔渣成分对耐火材料的侵蚀。

3)找耐火材料网认为在高温作用下,耐火材料自身产生的反应所造成的损坏,如新矿物的生成所产生的相变化带来的体积效应和在真空作用下的挥发等原因。

物理作用:1)钢水对耐火材料的冲刷作用。

2)钢水反复作用于耐火材料上造成的热冲击,引起连铸机耐火材料的开裂和剥落。

3)耐火材料自身的热膨胀效应造成的损坏。

4)髙温钢水对耐火材料的熔蚀作用。

人为原因:1)耐火材料的选择与搭配不恰当。

2)对耐火材料的使用不当。

如砌筑方式、烘烤方式不合适。

3)钢包周转期太长造成冷包。

4)拆包不当,损坏钢包永久层。

5)没有采取修补措施。

提高钢包使用寿命的主要措施(1)选择耐高温、耐侵蚀、耐热冲击的耐火材料作包衬。

(2)正确选择和搭配耐火材料,做到均衡砌包。

(3)了解所选用的耐火材料的性能,合理制订钢包的使用条件,如烘烤制度的制订等。

(4)尽可能加快钢包的使用周期,做到“红包”工作。

’(5)对包衬耐火材料损坏部分,及时进行喷补处理。

清理钢包维护包衬操作步骤(1)上一炉浇注完毕,尽快将钢包内余钢残渣倒尽。

(2)及时清理包口冷钢残渣。

(3)若包底有冷钢则必须将钢包横卧,用氧气将冷钢进行熔化清除。

(4)检查钢包渣线、包底、包壁、座砖损坏情况,及时进行修补及维护:a.由于砌筑或衬砖质量上的原因,钢包在使用过程中会造成局部的破损。

因此在淸除残钢残淹后,应修补侵蚀严重的部位。

b.为了提高钢包的使用寿命及防止漏钢,应该及时进行热修。

如热灌砖缝:热灌砖缝法是用调的较稀的火砖粉-水玻璃浆(或其他耐火粉料加粘结剂调和后),灌人砖缝内,由于水玻璃遇热起泡,故而往往要连续补几次。

热补孔洞:热补孔洞法是用较稠的火砖粉-水玻璃膏(或其他耐火粉料加粘结剂调和后)投补,并适当拍打。

热补座砖:热补座砖法同热补孔洞法。

修补应在安装水口以后进行,并用相当于水口砖外径的铁盖将水口挡住,防止泥料掉在水口上。

钢渣对镁碳耐火材料的浸蚀行为的研究

钢渣对镁碳耐火材料的浸蚀行为的研究

钢渣对镁碳耐火材料的浸蚀行为的研究李具中,李凤喜武汉钢铁公司炼钢总厂,武汉430083魏耀武, 李楠武汉科技大学耐火材料与高温陶瓷国家重点实验室培育基地,武汉 430081摘要:通过采用动态抗渣和静态抗渣二种研究方法,结合X-射线衍射分析、电子显微镜和能谱分析和化学分析等研究手段对某特殊钢用钢包渣线镁碳砖的浸蚀原因进行了分析。

结果表明,在静态抗渣条件下,某特殊钢渣对镁碳砖的浸蚀很小,熔渣沿着材料基质和镁砂晶界的低熔相渗透到了材料的内部。

在动态抗渣条件下,熔渣对镁碳砖的浸蚀较为严重。

要提高镁碳砖抗某特殊钢渣的浸蚀能力,必须降低镁碳砖中的杂质数量,优化镁碳砖的基质组成和显微结构。

关键词:某特殊钢,熔渣,镁碳砖,浸蚀Research of Etching Mg-C Refractories by Steel ResidueLi Juzhong, Li Fengxi(Wuhan Iron and Steel Company Limited Steel Making Plant, WuHan, 430083)Wei Yaowu, Li Nan(WUST’s State Key Laboratory Breeding Base of Refractories and Ceramics WuHan 430083 )Abstract: By adopting these methods of both dynamic anti-residue and static anti-residue, the reason why certainspecial steel can etch Mg-C brick has been analyzed by X-ray diffraction, electron microscope, energy spectrumanalysis and chemistry analysis. In conclusion, certain special steel etching Mg-C brick in static condition is lessthan in dynamic condition. To improve the ability to anti-etching of Mg-C brick of certain special steel, thequantity of impurity in Mg-C brick should be lowered, and the composition of Mg-C brick and micro-constructionshould be optimized.Keyword: certain special steel, residue, Mg-C brick, etch1.前 言碳耐火材料由于其热震稳定性好、抗熔渣浸蚀性优良而广泛应用于钢铁冶金行业。

钢包操作条件对耐火材料使用寿命的影响_田守信

钢包操作条件对耐火材料使用寿命的影响_田守信
[4] (J=A + Bn0.7) 。但是, 吹氩导致钢包渣表面的氧
式中: X、 r、 σ、 θ、 η 和 t 分别为渣渗透深度、 耐火材料 气孔半径、 表面张力、 润湿角、 渣黏度和渗透时间。 由 (4) 式可知, 渣向耐火材料渗透深度与渣黏 度的平方根成反比。因此渣黏度降低, 导致扩散深 度增加, 即渣黏度降低, 会使耐火材料反应变质层 加厚, 导致了侵蚀增加。渣渗入的耐火材料层的耐 火度降低, 烧结致密度增加, 与耐火材料原始层的 热膨胀等性能差异增加, 在钢包间歇使用过程中, 导致渣渗透层裂纹和剥落, 从而造成了耐火材料包 衬损耗。因此, 提高渣的黏度能降低耐火材料包衬 的侵蚀, 提高钢包的使用寿命。可以通过添加适量 的白云石和选用合理的造渣剂而控制渣黏度, 达到 减少耐火材料侵蚀和提高钢包使用寿命的目的。 2.4 真空处理的影响 很多精炼设备具有真空处理功能, 如 LF-VD、 VOD、 RH 和 DH 等。真空条件对耐火材料的损耗特 别是含碳耐火材料具有很大影响。根据化学平衡 原理, 在真空条件下, 将促进下列反应向右进行, 造 成耐火材料内部气化: MgO+C=Mg↑+CO↑, 4MgO+ 2Al=3Mg↑+MgAl2O4, MgO+Si=Mg↑+SiO↑, 5MgO+ B4C=5Mg↑+CO↑+2B2O2↑。 上述反应导致了含碳耐火材料内部松散, 强度 下降, 甚至粉化, 使包衬的使用寿命随 VD 比例和处 理时间的延长而线性下降[8]。因此, 在高温真空条 件下, 不宜选择铝粉、 硅粉和碳化硼这些易与氧化 镁发生氧化还原反应的添加物。它们不但不能提 高钢包的使用寿命, 反而降低使用寿命。而 CaO 不 易与碳发生氧化还原反应, 所以在一定条件下, MgO-CaO-C 比镁碳更适合这些特殊条件。 2.5 超高温的影响 在冶炼不锈钢过程中需要超高温, 即在 AOD 和 VOD 精炼炉内往往出现 1 700 ℃以上高温。温度增 加, 显著提高了耐火材料的侵蚀速度, 因此超高温 会导致耐火材料的严重侵蚀。超高温不但使渣黏 度降低和溶解度增加而导致熔蚀速度加快, 而且对 于含碳耐火材料严重影响了下列氧化还原反应: MgO+C=Mg↑+CO↑-热量, MgO+2Al=Mg↑+Al2O ↑-热量, MgO+Si=Mg↑+SiO↑-热量, 5MgO+B4C=

高合金钢精炼条件下钢包镁碳砖的侵蚀

高合金钢精炼条件下钢包镁碳砖的侵蚀

NAlHUo渊uAo/耐火材料2008。

42(4)307—308{:寸论・交流高合金钢精炼条件下钢包镁碳砖的侵蚀姚金甫田守信马志刚汪宁赵明宝山钢铁股份有限公司研究院上海201900摘要通过感应炉侵蚀试验和显微结构分析,研究了高合金钢精炼条件下钢包镁碳砖的侵蚀行为。

结果表明:钢包镁碳砖侵蚀较快的主要原因是较高的精炼温度,较长的精炼时间和较低的渣黏度。

高合金钢渣的黏度较低。

使侵蚀速度加快;精炼温度高加剧了MgO与C的脱碳反应,并且,随着温度升高,渣黏度降低,侵蚀加快;同时,精炼时间长也增加侵蚀程度。

关键词高合金钢,钢包,镁碳砖,侵蚀近年来,随着中国电力需求的强劲增长,电站锅炉管用四1钢的需求不断增加。

四1钢是一种附加值高、性能优异的高合金钢。

目前,由于宝钢T91高合金钢只占总产量的一小部分,其精炼采用的是通用钢包;渣线采用镁碳砖,包壁和包底为无碳包衬。

,19l钢冶炼工艺复杂,成分控制要求严格,精炼时间更长,加快了钢包渣线镁碳砖的损毁。

但是,究竟是什么原因导致其损毁加快,目前尚不清楚。

为此,本工作对高合金钢精炼条件下钢包渣线镁碳砖的侵蚀进行了专题研究。

1试验1.1渣样和钢样首先从现场取来钢样和渣样,并将大块的钢样切割成小块;采用铝镇静钢渣和CAS常规渣进行了对比试验,渣的化学组成见表l。

%T.Fb1~76一14渣种类,191渣常规渣1.2制样坩埚采用铝镁浇注料。

在制作坩埚时将镁碳砖试样预埋在成型坩埚的模具内,然后加入铝镁浇注料,振动成型。

待浇注料硬化后脱模,养护,烘烤后待用。

1.3试验内容将钢样、渣样置于坩埚内进行感应炉试验。

图1为感应炉侵蚀试验示意图,表2示出了镁碳砖的侵蚀试验条件。

为防止升温时钢水和镁碳砖的氧化,升温过程采取抽真空措施。

除了进行不同温度试验外,还进行了连续2炉的试验,即第一炉试验后,倒出渣和钢水,待坩埚冷却后,放入新的四1钢样和渣进行第二炉试验;也进行了2Crl3高合金钢的试验。

感应炉试验结束后,剖开坩埚,测量侵蚀厚度,并进行显微结构分析。

精炼钢包渣线砖侵蚀过快原因分析及解决办法

精炼钢包渣线砖侵蚀过快原因分析及解决办法

精炼钢包渣线砖侵蚀过快原因分析及解决办法镁碳砖具有良好的耐火度、抗渣侵性、耐热震性等,广泛应用于炼钢生产中。

在钢包精炼过程中,渣线镁碳砖的侵蚀通常是炉衬各部位损毁情况最为严重的区域,其长期遭受熔渣的化学侵蚀及机械冲刷,渣线镁碳砖的损毁是影响生产效率及生产成本的重要因素。

常见的钢包渣线部位耐火材料问题是出现孔洞和渣沟,渣线侵蚀过快发红、渣线出现深凹坑等现象。

我们从不同成分的炉渣、镁碳砖中碳含量及碳结构、镁碳砖的镁砂原料以及镁碳砖中的添加剂等方面对镁碳砖的侵蚀机理进行分析,得出镁碳砖的侵蚀损毁过程主要包括以下几种:氧化-脱碳-疏松-侵蚀-冲刷-脱落-损毁。

在这个过程中,由于碳的氧化脱除,使砖体组织疏松脆化,在钢液的冲刷下被磨损,同时,由于碳的氧化脱除及砖体疏松,炉渣向脱碳层渗透,并与镁砂颗粒反应。

1.精炼熔渣的侵蚀钢包经过LF、VD精炼处理,受到电弧光、真空以及钢渣冲刷的影响,加速渣线部位的侵蚀。

渣中的氧化钙,二氧化硅等物质与砖产生化学反应,使镁碳砖表面形成熔渣渗透层,造成内衬不连续的损坏。

低碱度熔渣中氧化铁及三氧化二铁都会对耐火材料造成侵蚀。

2.高温真空加速镁碳砖损毁镁碳砖在高温及真空下会加速挥发,真空脱气所带来的失重使耐火材料的强度和荷软降低,加速镁碳砖的蚀损。

3.在生产过程中,放钢温度低,精炼时大幅度提温,使电极附近炉渣温度过高,渣线部位又正好处于透气砖的远两端,属环流死区,钢渣温度无渣及时传递,造成弧点部位渣线侵蚀。

提高钢包渣线砖寿命的一些措施1.优化精炼渣系统精炼过程中加入轻烧白云石,提高渣中MgO浓度,提高熔渣的碱度和黏度,控制转炉下渣量,降低渣中FeO含量。

精炼炉渣碱度控制在4.2~5.0范围内,渣中FeO含量控制在0.5%左右,同时调整好炉渣的黏度,渣中MgO含量控制在12%左右,可有效降低炉渣对镁碳砖的侵蚀。

2.改进渣线砖材质研究发现,镁碳砖中使用的镁砂纯度越高,杂质中B2O3少,碳硫比例高时,衬砖的耐侵蚀性好。

耐火材料损毁原因和预防措施

耐火材料损毁原因和预防措施
2
耐火材料的损毁原因和预防措施
类型
原因
预防措施
备注永久收缩耐来自材料因长时间受热而收缩,砖缝裂开,引起拱砖脱落。
1、采用永久收缩小的耐火材料。
2、对外部进行冷却。
1、除硅质和电熔铸耐火材料外,其它耐火材料一般都多少具有永久收缩性。
2、即使是同一品种的耐火材料,由于所用原料和制造方法的不同,永久收缩也有很大差异,因此,不可把选择的重点只放在耐火度和化学成分上。
4、冷却耐火材料表面,使其温度保持在熔液的熔点以上50℃范围之内。
1、成为耐火材料损坏的主因较多。
2、部分熔渣向耐火材料渗透扩散,可在表面生成一些共熔变质层,这些变质层多数情况下在熔渣中溶解,因而它们的粘性、溶解度很重要。
3、认为耐火材料的熔失速度是以化学因素为主,物理因素居次的看法是不妥的,当接触耐火材料的熔渣粘度较小时,物理因素的比重增加。
4、耐火材料的耐蚀性不一定取决于它们的酸碱度。
5、熔态金属对耐火材料的侵蚀、除了磨损之外,尚有化学反应、熔态金属蒸汽的浸透等。另外,有时碳质耐火材料同金属熔融而生成合金。
气损
与耐火材料接触的气体引起化学变化,造成耐火材料的侵蚀和破坏。
1、采用与接触的气体或气体的凝结物反应速度慢的耐火材料。
2、采用透气性小、强度高的耐火材料。
3、砌缝应密实。
1、多数情况下,是在特殊的温度区域产生气损,气体深入耐火材料内部而引起膨胀、崩坏等。
2、最常见的是因为CO的接触分解使碳素崩坏,这种损坏多发生在高炉炉壁。
3、Cl2、SO2等气体也会造成耐火材料的损坏。
4、碱蒸汽、锌蒸汽等也会造成耐火材料的损坏。
5、镁质、铬镁质耐火材料和白云石质耐火材料在低温下吸收水蒸汽而崩坏。

钢包渣线砖为什么易损毁,如何改善渣线砖的使用寿命

钢包渣线砖为什么易损毁,如何改善渣线砖的使用寿命

钢包渣线砖为什么易损毁,如何改善渣线砖的使用寿命大家都知道,钢包渣线是钢水与空气直接接触的部位该部位由于温差与富氧环境的存在,使得侵蚀速度较其他部位明显加快,再加上钢水在运转过程中的倾翻及排渣作业,对渣线造成很大程度的破坏,因此钢包渣线的侵蚀一直以来都是炼钢炼铁行业的一个瓶颈问题,渣线位置不仅会出现侵蚀过快,还有结渣、发红、剥落、漏钢等等问题。

渣线砖一般是指钢包口向下数第三层至第八层区域内砌筑的耐火砖。

目前炼钢生产中,较为广泛的是在渣线位置使用镁碳质的耐火材料,从之前的镁碳砖砌筑到后来镁碳质浇注料的整体浇注,综合精炼过程当中的内衬问题的话,影响这个环节整体炉衬寿命的、损毁情况最严重的还是渣线部位。

那么今天我们从多个案例分析当中,针对渣线部位的损毁及耐材分析和冶炼工况环境及冶炼原料这几个方面来对这个问题进行探讨。

钢包精炼炉常见的设备包括LF炉、VD炉、VOD 炉、RH炉、AHF炉等,常见的钢包渣线部位耐材问题是渣线侵蚀过快,耐火内衬发红、出现孔洞、渣沟或者是渣线部位出现深凹坑等现象,尤以LF炉的渣线部位侵蚀最为常见和严重。

精炼钢包的工况环境为:1) LF 精炼温度1550~1610 ℃,精炼时间:35-45min;2)VD炉真空脱气,处理温度1550~1610℃,时间大于20min;3)精炼时造白渣,使用精炼合成渣、埋弧渣,碱度高(CaO与SiO2的质量比大于3.5);4)全程底吹氩搅拌;5)出钢温度平均在1650℃以上,钢水在钢包停留时间平均在130min 以上。

随着钢包二次精炼技术的发展,钢包用耐火材料也在这个过程中不断的朝前发展,它必须具备的条件有耐高温、耐热冲击、耐熔渣的侵蚀,还需要具有较高的机械强度、需要随钢水不断的搅动和冲刷。

对于渣线部位侵蚀的主要原因归结为四大方面:一是工艺因素,这个就包括了在钢铁冶炼过程当中的搅拌强度、送电量、处理时间等等;二是精炼渣的成分问题,渣中的F、MgO、Al2O3、CaO、TFe等元素对渣线砖的影响;第三是耐火材料及砌筑质量;第四则是机械损伤。

耐火砖损耗大的原因及措施

耐火砖损耗大的原因及措施

德士古炉耐火砖损耗大的原因及措施作者/来源:潘俊(上海焦化有限公司,上海 200241) 日期:2007-4-24上海焦化有限公司的德士古煤气化装置自1995年5月投入运行,装置一直运行较好,但耐火砖使用寿命短一直是困扰大家的一道难题。

1 耐火砖损伤模式分析针对不同的外部条件和耐火砖损伤消耗的不同规律,我们把气化炉耐火砖的损伤分为块状剥落、烧蚀损坏、冲蚀损坏、化学侵蚀等。

1.1 块状剥落模式块状剥落是气化炉耐火砖损耗和对寿命影响最大的一种模式。

减少或消除块状剥落就能大幅度提高耐火砖的寿命。

当耐火砖表面出现深度超过1.5mm、且具有一定面积的块状形态凹坑时,即认为耐火砖的损伤以块状剥落为主;而小于1.5mm时,我们认为是由烧蚀为主引起的深层蚀损,引起块状剥落的原因有以下几个方面。

1.1.1 砖与砖之间的相对位移由于各层砖在气化炉升温或降温过程中,升降温速率不同以及在发生热位移过程中所受到的约束和阻力不同,将会使砖与砖之间发生相对位移。

这种相对位移会在砖与砖的位移面上产生磨擦剪切力并具有局部撕开作用,导致耐火砖产生表面裂纹。

这些表面裂纹在以后的每次位移中扩展,并由于熔融炉渣和还原性介质在裂纹中的侵蚀扩散,导致砖的表面剥落,砖的位移过程本身也加速炉渣在裂纹中的侵蚀。

1.1.2 砖缝及炉渣侵蚀耐火砖之间的砖缝,不但为运行状态下高温熔融态炉渣的渗入及侵蚀提供了通道,而且这种炉渣侵蚀本身也促使砖缝不断加大。

这两种作用,都使炉渣与耐火砖侧面接触的表面增大,并使耐火砖在每一次由于热引起的收缩膨胀循环过程中,使耐火砖侧面遭受过度应力。

炉渣在砖缝中不仅沿着径向,而且还沿着耐火砖的圆周方向对炉砖产生侵蚀作用。

特别是在耐火砖侧面存在周向裂纹时,周向侵蚀速度更快,使耐火砖表面发生块状剥落。

因此耐火砖周向裂纹比径向裂纹对耐火砖寿命的影响和作用都更大。

1.2 烧蚀损耗模式气化炉内的温度场是一个不均匀、不稳定、甚至不连续的温度场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢包渣线用耐火材料镁碳砖损毁的四个因素
钢包渣线用耐火材料镁碳砖损毁因素归根结底就是碳的氧化,其中包括气相氧化、液相氧化、间接氧化、气孔的影响,详细分析如下:
一、气相氧化
即碳的直接氧化,即石墨在高温下由于与空气(O2)、水蒸汽(H2O)和碳酸气等共存而被氧化。

石墨在560℃以上就开始显著氧化而使含碳制品脱碳损耗,由图可以看出右边部分已被氧化成为脱碳区,在脱碳区中由于碳的氧化而形成了许多扩散通道,氧气和熔渣通过扩散通道进入砖内,在界面处和碳反应,反应产物通过扩散通道扩散出去。

由下图可以看出在1000℃时,系统中主要以CO气体形式存在,Pco≈0.1Mpa,生成的CO气体向外扩散,阻止了O2及其它气体的进入,从而起到气态“抗氧化剂”效果,所以碳是能够稳定存在的,但出钢后冷却过程中有可能被空气氧化。

同时含碳制品衬砖表面上附有渣层,可防止由空气引起碳的氧化,起到保护膜的作用,这种保护作用在1000℃以上特别明显。

二、液相氧化
MgO + C = Mg + CO
指溶渣中的铁氧化物和氧化锰等引起碳的氧化。

通常在冶炼过程中熔渣含有大量的氧化铁,其按下式反应使碳氧化:左图显示了熔渣中氧化铁的含量TFe(总量)与 MgO-C质炉衬砖损毁速度之间的关系。

它表明随着熔渣中总铁含量的增加,MgO-C质炉衬砖损毁速度变大。

同时,含碳制品表面形成脱碳层后,熔渣容易渗透并与颗粒反应,从而促进了颗粒向熔渣中溶解和溶出,导致结构疏松,加快了制品的损毁。

三、间接氧化
在高温下MgO与碳的反应,形成脱碳层,导致镁碳砖组织结构的恶化,促使熔渣向脱碳层侵蚀,与镁砂反应形成反应层,而正是由于低熔物的出现,引起熔蚀和冲蚀。

在1850℃时MgO(s)和CO(g)的标准生成自由能相等,所以反应式(1) 在1850℃下平衡,即这四种物质共存。

但上述条件是PMg(g)和PCO(g)均为1atm,而在实际应用中PMg(g)很低,所以MgO(S)和 C(S)在很低温度下就开始发生反应。

这对镁碳砖的损毁是极为有害的。

四、气孔对镁碳砖损毁的影响
镁碳砖中的气孔,特别是开口气孔,对镁碳砖的损毁具有重要的影响。

镁碳砖在使用过程中,主要是通过气孔促使碳的氧化损毁,进而加剧炉渣对砖衬的侵蚀,从而造成镁碳砖的损毁。

存在于砖中的开口气孔,冷却时从外部吸入空气,再加热时,空气中的氧气与周围的碳反应生成CO排出,这样的过程周而复始,使气孔率增大。

另外,存在于镁碳砖中的结合剂,是气孔产生的重要因素。

作为镁碳砖的结合剂,一般添加3%~4%的酚醛树脂,成型后的气孔率较低约为3%左右。

但在使用过程中,酚醛树脂加热分解,产生H2O、H2、CH4、CO、CO2等气体蒸发排出,气体蒸发的通路便形成气孔,也使气孔率增大。

这样,存在于空气中的氧以及炉渣中的氧化物等便通过气孔对砖加以侵蚀,一方面促进了碳的氧化损毁,另一方面加剧了炉渣与砖中MgO的反应,造成镁碳砖的损毁。

钢包用镁碳砖理化指标
本文参考自洛阳华珩耐火材料有限公司的文章。

相关文档
最新文档