vasp经验总结
VASP经验小结

怎样设置ENCUT
• ENCUT energy cutoff in eV : default taken from POTCAR-file important! 重要到几乎最好不要手工去设置 除非文献告诉你要用多少,或者经过结果可靠性的 验证 当然,为了测试一下提交的任务,也不妨先设个较 小的值 附加说明: 当且仅当POTCAR里头没有设置ENCUT时(其实貌似 没有才是常态),才受PREC设置影 响从POTCAR里找出相应的ENMAX/ENMIN值来设置。 PREC= Low Medium Accurate High ENCUT= ENMIN ENMAX ENMAX 130%ENMAX 对于多个元素的POTCAR不同的ENMAX/ENMIN, 都取最大值
ISMEAR=0 在大的体系或K点很少时用0,计算半导体或绝缘体时用-5 计算金属时用1或2
ALGO =Normal 原子个数大于20时用Fast 小于20 时用Normal LREAL=F 原子个数大于20时用Auto 小于20 时用F(alse)
VASP 超原胞晶体结构 band relax
每种元素的质量每种元素的质量每种元素的价电子数每种元素的价电子数分波态密度分波态密度电子数电子数自旋向上向下个数的差别自旋向上向下个数的差别doscar确定如何设置每个波函数的部分占有数确定如何设置每个波函数的部分占有数展开的宽度单位展开的宽度单位evdoscar文件中的能量范围文件中的能量范围evlrealroptggavoskowndipolamixbmixlwavelchargandlvtotlelflorbitnparlrealroptggavoskowndipolamixbmixlwavelchargandlvtotlelflorbitnpar决定投影操作在实空间还是倒空间进行决定投影操作在实空间还是倒空间进行numberofgridpointsfornonrealspace对对lda决定对交换决定对交换关联泛函是否采用形式形式11采用元胞中心坐标元胞中心坐标混合参数混合参数控制是否输出波函数电荷密度和总局域势控制是否输出波函数电荷密度和总局域势控制是否输出电子局域函数控制是否输出电子局域函数elfcar件件控制是否输出投影波函数到文件控制是否输出投影波函数到文件procarheproout并行计算numberofgridpointsfornonlocalprojinrealspacelda方法生成的赝势进行关联泛函是否采用voskowilkhe采用00不采用
VASP表面计算步骤小结

VASP表面计算步骤小结(侯博士)一、概述vasp用“slab”模型来模拟表面体系结构。
vasp计算表面的大概步骤是:材料体性质的计算;表面模型的构造;表面结构的优化;表面性质的计算。
二、分步介绍1、材料体性质计算:本步是为了确定表面计算时所需的一些重要参数:ENCUT、SIGMA(smearing 方法为ISMEAR=1 或0时;而通常表面体系结构优化时选择这种smearing方法)、晶格参数。
<一>在计算前,要明确:何种PP;ENCUT;KPOINTS ;SIGMA;PREC;EX-CO,这其实是准备proper input files。
a. 何种PP选择的PP能使计算得到的单个原子能量值在1meV~10meV之间。
[参见P 21]所求得的单原子能量(对称性破缺时)可用来提高结合能的精度。
b. ENCUT [ 参见P 14 ]选择的ENCUT应使得总能变化在0.001eV左右为宜。
注意:试探值最小为POTCAR中的ENMAX(多个时,取最大的),递增间隔50;另外,在进行变体积的结构优化时,最好保证ENCUT=1.3ENMAX,以得到合理精度。
c. PREC [参见P 16]控制计算精度的最重要参数,决定了(未指定时)ENCUT、FFT网格、ROPT取值。
一般计算取NORMAL;当要提高Stress tensor计算精度时,HIGH 或ACCURATE,并手动设置ENCUT。
d. EDIFF & EDIFFG [参见P16]EDIFF 判断电子结构部分自恰迭代时自恰与否,一般取默认值=1E-4;EDIFFG 控制离子部分驰豫e. ISTART & ICHARGE [参见P 16]ISTART = 1, ICHARG = 11:能带结构、电子态密度计算时;ISTART =0, ICHARG = 2:其余计算ISTART = 1,ICHARG = 1(其他所有不改变):断点后续算设置f. GGA & VOSKOWN [参见P 16]GGA=91: Perdew -Wang 91;GGA=PE: Perdew-Burke-ErnzerhofVOSKOWN=1( GGA=91时);VOSKOWN=默认(其余情况)g. ISIF [参见P 16]控制结构参数之优化。
VASP磁性计算总结篇

VASP磁性计算总结篇以下是从VASP在线说明书整理出来的非线性磁矩和自旋轨道耦合的计算说明。
非线性磁矩计算:1)计算非磁性基态产生WAVECAR和CHGCAR文件。
2)然后INCAR中加上ISPIN=2ICHARG=1 或 11 !读取WAVECAR和CHGCAR文件LNONCOLLINEAR=.TRUE.MAGMOM=注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁矩,如MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y方向有磁矩②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR 文件)或者ICHARG=1 或11(有WAVECAR 和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。
磁各向异性能(自旋轨道耦合)计算:注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。
自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。
如下:LSORBIT = .TRUE.SAXIS = s_x s_y s_z (quantisation axis for spin)默认值:SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。
要使初始的磁矩方向平行于选定方向,有以下两种方法:MAGMOM = x y z ! local magnetic moment in x,y,zSAXIS = 0 0 1 ! quantisation axis parallel to zorMAGMOM = 0 0 total_magnetic_moment ! local magneticmoment parallel to SAXIS (注意每个原子分别指定)SAXIS = x y z !quantisation axis parallel to vector (x,y,z),如 0 0 1两种方法原则上应该是等价的,但是实际上第二种方法更精确。
vasp 计算知识

vasp 输入文件中的ISMEAR参数指的是波函数占据数目,但是这个到底是什么意思?可以浅显一点讲吗
就是说电子在费米面附近占据数从0突变到1,这是个deta函数,为了计算方便,用一个平滑点的函数在费米面附近代替这个deta函数,这样计算就不容易振荡,易于收敛。ismear就是可以采用这种方法:将SIGMA在不同大小的kmesh下进行静态计算测试,对每一个SIGMA值求“entropy T*S”值,可以得出一系列(一般取两条)不同kmesh下SIGMA与“entropy T*S”对应的曲线,将这些曲线比较,取不同kmesh曲线的“entropy T*S”差值最小的点对应的SIGMA值即可。具体参数设置可以参看侯柱峰编写的《VASP软件包使用入门指南》中“§5.7节ISMEAR和SIGMA”。
SIGMA的值是展宽,决定了电子的占有数,当它取不同值时,对金属体系的费米能处的电子占有数变化很大。一般地对于半导体和绝缘体来说SIGMA=0.05就够小了,金属的默认取值0.2。如果计算的体系是金属,在静态计算物理量时,则用ISMEAR=-5,这时不必设置SIGMA(此时SIGMA的取值对结果没有影响)。如果对体系进行驰豫,先用ISMAR=1或2(金属体系)或0(半导体或绝缘体)优化出SIGMA,得到优化的结构后,再进行静态计算(ISMEAER=0用的比较多,手册上的说法不管什么计算取ISMEAR=0然后找一个合适的SIGMA就可以)。另外,SIGMA的值依赖于kmesh的大小,当kmesh发生改变时SIGMA的值也需要重新优化取值。
最好是每做一个计算,都要先做一个SIGMA的检测以选取合适的SIGMA值,不过在有了可靠的经验以后就不用每次都做了。绝缘体SIGMA可以取得小一点,金属的不要取的太小否则不容易收敛。在收敛速度可以接受的情况下可以适当减小SIGMA。
VASP计算DOS和能带

VASP计算DOS和能带个人总结一:VASP计算DOS和能带1.计算DOS①POSCAR②POTCAR③KPOINTS(建议以Gamma为中心取点,通常K×a≈45即可)④INCAR(越简洁越好)第一步:结构优化SYSTEM=**ISTART=0ENCUT=500(最好对其进行测试)EDIFF=1E-5EDIFFG=-0.01NSW=100ISIF=2IBRION=2【优化后计算DOS可以一步完成,也可以分为两步来完成,主要是计算量涉及到计算时间的差别】第二步:静态自洽(此时可稍微降低K点数,用第一步优化得到的CONTCAR作为POSCAR进行计算)SYSTEM=**ISTART=0PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500ISMEAR=-5LCHARG=.TRUE.注意:此时得到的E-feimi是准确的,需要记下(grep ‘E-fermi’OUTCAR)第三步:非自洽计算(采用高密度K点)SYSTEM=**ISTART=1ICHARG=11LMAXMIX=2/4/6(VASP官网原话:If ICHARG is set to 11 or 12, it is strongly recommened to set LMAXMIX to twice the maximum l-quantum number in the pseudpotentials. Thus for s and p elements LMAXMIX should be set to 2, for d elements LMAXMIX should be set to 4, and for f elements LMAXMIX should be set to 6)PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500(截断能最好与上一步保持一致)ISMEAR=-5LORBIT=10/11(推荐11,可以得到能级分裂的数据)优化后计算DOS一步完成:(采用高密度K点)SYSTEM=**ISTART=1PREC=AccurateEDIFF=1E-5EDIFFG=-0.01ENCUT=500ISMEAR=-5LORBIT=10/112.计算能带①POSCAR②POTCAR③KPOINTS:使用Line-mode格式,给出高对称性K点之间的分割点数,分割越密,路径积分就越准确。
VASP的个人经验手册

2
方和方法是: 在第 87 和 88 行前加上#,把这两行注释掉,然后去掉第 91,92 和 93 行前的#。 修改前和后的内容为分别为: LIB = -L../vasp.4.lib -ldmy ../vasp.4.lib/linpack_double.o \
../vasp.4.lib/lapack_double.o -L/usr/local/lib /usr/local/lib/libblas.a # # the following lines should allow you to link to atlas based blas #LIB = -L../vasp.4.lib -ldmy ../vasp.4.lib/linpack_double.o \ # ../vasp.4.lib/lapack_double.o -L/usr/local/lib \ # -L$(HOME)/archives/BLAS_OPT/ATLAS/lib/Linux_ATHLONTB/ -lf77blas –latlas #LIB = -L../vasp.4.lib -ldmy ../vasp.4.lib/linpack_double.o \ # ../vasp.4.lib/lapack_double.o -L/usr/local/lib /usr/local/lib/libblas.a # # the following lines should allow you to link to atlas based blas LIB = -L../vasp.4.lib -ldmy ../vasp.4.lib/linpack_double.o \
VASP磁性计算总结篇

在线说明书整理出来的非线性磁矩和自旋轨道耦以下是从VASP合的计算说明。
非线性磁矩计算:和CHGCAR文件。
1)计算非磁性基态产生WAVECAR)然后INCAR中加上2ISPIN=2文件和CHGCAR11 !读取WAVECAR ICHARG=1 或LNONCOLLINEAR=.TRUE. MAGMOM=注意:①对于非线性磁矩计算,要在x, y 和 z方向分别加上磁矩,如MAGMOM = 1 0 0 0 1 0 !表示第一个原子在x方向,第二个原子的y方向有磁矩②在任何时候,指定MAGMOM值的前提是ICHARG=2(没有WAVECAR和CHGCAR文件)或者ICHARG=1 或11(有WAVECAR和CHGCAR文件),但是前一步的计算是非磁性的(ISPIN=1)。
磁各向异性能(自旋轨道耦合)计算:注意: LSORBIT=.TRUE. 会自动打开LNONCOLLINEAR= .TRUE.选项,且自旋轨道计算只适用于PAW赝势,不适于超软赝势。
.自旋轨道耦合效应就意味着能量对磁矩的方向存在依赖,即存在磁各向异性能(MAE),所以要定义初始磁矩的方向。
如下:LSORBIT = .TRUE.SAXIS = s_x s_y s_z (quantisation axis for spin)默认值: SAXIS=(0+,0,1),即x方向有正的无限小的磁矩,Z方向有磁矩。
要使初始的磁矩方向平行于选定方向,有以下两种方法:MAGMOM = x y z ! local magnetic moment in x,y,zSAXIS = 0 0 1 ! quantisation axis parallel to zorMAGMOM = 0 0 total_magnetic_moment ! local magnetic moment parallel to SAXIS (注意每个原子分别指定)SAXIS = x y z ! quantisation axis parallel to vector (x,y,z),如 0 0 1两种方法原则上应该是等价的,但是实际上第二种方法更精确。
个人非常好的VASP学习与总结

精析V ASP目录第一章LINUX命令11.1 常用命令11.1.1 浏览目录11.1.2 浏览文件11.1.3 目录操作11.1.4 文件操作11.1.5 系统信息1第二章SSH软件使用22.1 软件界面22.2 SSH transfer的应用32.2.1 文件传输32.2.2 简单应用3第三章VASP的四个输入文件33.1 INCAR 33.2 KPOINTS 43.3 POSCAR 43.4 POTCAR 5第四章实例54.1 模型的构建54.2 VASP计算84.2.1 参数测试(VASP)参数设置这里给出了赝势、ENCUF、K点、SIMGA一共四个参数。
是都要验证吗?还是只要验证其中一些?84.2.2 晶胞优化(Cu) 134.2.3 Cu(100)表面的能量144.2.4 吸附分子CO、H、CHO的结构优化154.2.5 CO吸附于Cu100表面H位174.2.6 H吸附于Cu100表面H位184.2.7 CHO吸附于Cu100表面B位194.2.8 CO和H共吸附于Cu100表面204.2.9 过渡态计算21第一章Linux命令1.1 常用命令1.1.1 浏览目录cd: 进入某个目录。
如:cd /home/songluzhi/vasp/CH4 cd .. 上一层目录;cd / 根目录;ls: 显示目录下的文件。
注:输入目录名时,可只输入前3个字母,按Tab键补全。
1.1.2 浏览文件cat:显示文件内容。
如:cat INCAR如果文件较大,可用:cat INCAR | more (可以按上下键查看) 合并文件:cat A B > C (A和B的内容合并,A在前,B在后) 1.1.3 目录操作mkdir:建立目录;rmdir:删除目录。
如:mkdir T-CH3-Rh1111.1.4 文件操作rm:删除文件;vi:编辑文件;cp:拷贝文件mv:移动文件;pwd:显示当前路径。
如:rm INCAR rm a* (删除以a开头的所有文件)rm -rf abc (强制删除文件abc)tar:解压缩文件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
POSCAR.sh chmod +x POSCAR.sh 改为可执行文件 ./POSCAR.sh 运行
VASP中,用Berry Phase的方法计算极化值
INCAR中要添加的参数: LCALCPOL=.TRUE. 打开计算Berry的开关 EDIFF=1E-6 精度 DIPOL=0.4 0.4 0.4 选取参考点,任意选的,但是不要和离子重合
BP计算极化过程中,Dipole设置问题
设置在计算离子的dipole时的参考点即设置 DIPOL(注意的是,它的 设置需要使得原子移动前后的原子都在这个参考点的一侧。比如这个例 子中 Al处于(0,0,0),As处于(0.25, 0.25, 0.25)位置,而将DIPOL设置为( 0.5, 0.5, 0.5)和(0.125, 0.125, 0.125)都是可以的,但是在考虑移动Al原子时,不要将
NELM = 40 # maximum of 40 electronic steps
杂化泛函的计算 --HF Functional
GGA=PS(选用的赝势文件为PBBEsol, =PE为PBE的方法) LHFCALC = .True. PRECFOCK = Normal # NKRED = 2 (设置此参数容易报错,不知为何) TIME = 0.4 HFSCREEN = 0.2 AEXX = 0.25 #the exact exchange is used
2、ALGO, IALGO, LDIAG If the self-consistency loop does not converge within 40 steps, it will probably not converge at all. In this case you should reconsider the tags IALGO, LDIAG, and the mixing-parameters. 一般情况下,或使用IALGO=48时遇到收敛问题的话,可以考虑设IALGO为38, 或设置ALGO=Normal or Fast (in VAS P.4.5 and later versions)。 Default ALGO = Normal 3、NELMDL NELMDL gives the number of non-selfconsistent steps at the beginning In some cases (for instance MD’s, or ionic relaxation) you might set NELMIN to a larger value (4 to 8)
用VASP计算DOS
ISTA-5 LORBIT=11
将上一步自洽计算得到的CHG、CHGCAR拷贝至同一目录下 准备好KPOINTS文件,增加k点网格
用VASP计算能带
ISTART= 1 ICHARG = 11
简立方的高对 称点 NAME 20 Line-mode Rec 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0
首先,判断一个体系是否有可能存在极化 1.看晶胞所属的群是否是极化群,磁性有影响时要考虑进去。 MS查看对称性,找到所对应的群。 http://homepage.univie.ac.at/nikos.pinotsis/spacegroup.html#14 找到对应的点群 铁电体物理,钟维烈著,P651。附录一,30个晶体点群。 10个极性点群是非常有可能产生极化的,11个非极性中兴对称群是可能有 极化的,11个中心对称点群是没有极化的。
此段从别处复制的,侵删
加真空-用MS
1.Build-surface-Cleave surface (0 0 1)指沿c方向加真空层,要 是在其他方向上加对应修改一 下就可 点击Cleave就行
2.Build-Crystal-Build Vacuum Slab Vacuum thickness就是真空层的厚度 点击 Build 即可
点电荷估计: 晶格某一方向所有原子坐标*离子价态相加,与优化后相加得到的值对比。
Spin orbital coupling (SOC)的计算 (LMCO为例)
ISTART=1 ICHARG=1 要读取WAVCAR 最好选取1而不用11,对结果影响是比较大的
LSORBIT=.TRUE. LMAXMIX=6 计算soc的时候一定要有此参数,d电子4,f电子6 MAGMOM=6*0 0 0 4 0 0 4 0 0 4 0 0 -4 0 0 -4 0 0 -4 0 0 3 0 0 3 0 0 3 0 0 3 0 0 -3 0 0 -3 0 0 -3 0 0 -3 72*0 SAXIS=1 1 1 磁矩的方向(见vasp手册,有两种设置方法) NBANDS=408 能带数是线性计算的二倍 ISYM=0 计算soc最好去掉对称性 GGA_COMPAT=.FALSE.
原子移动原胞之外即偏移量为负数;另外也不要将DIPOL设置在所要移动的原子上,
如果是这样 的话,则会导致移动该原子后,该原子不在DIPOL的同一侧,使得原子 移动之后的极化的Berry-phase项要比平衡态时的大很多。) 要注意的就是DIPOL 的设置,以及原子移动的选取:不要将DIPOL设置在某个原子 位置上,原子移动的选取要保证原子在移动前后都是DIPOL的同一侧
最后可以将.cif的文件放到vesta里面。 导出.vasp的文件,就能放到vasp中运算 了
Partial charge density(PCD)计算-VASP
/blog/static/2094090822012892478779/ 定义: Partial charge density计算或称为Band decomposed charge density计算,即计算 特定的某个(或某些)k点和本征值(这些k点和本征值是相互对应的)所对应的本征波函 数的平方(也就是电荷密度)。 第一种Partial Charge分析的INCAR ISTART = 1 ICHARG = 1 LPARD=.TRUE. IBAND= 20 21 22 23 KPUSE= 1 2 3 4 LSEPB=.TRUE. LSEPK=.TRUE.
vasp计算总结
加U(LMCO为例)
LDAU=.TRUE. LDAUTYPE=2 #The simplified (rotationally invariant) approach to the LSDA+U
#specifies the l-quantum number for which the on-site LDAUL= -1 2 2 -1 interaction is added (-1=no on-site terms added, 1= p, 2= d, 3= f, Default: LDAUL=2)
LDAUU=0 5.5 4 0 #specifies the effective on-site Coulomb interaction parameters LDAUJ=0 1.5 1 0 #specifies the effective on-site Exchange interaction parameters.
bnd000.dat文件的第一列数据是k点距离的绝对值,第二列数据是以 Ferim level为参考的本征值。
简立方的高对称点
能量本征值文件EIGENVAL
第一行,前三个整数无意义,第四个整数,如果是2, 表 示是自旋极化的计算,如果是1, 表示非自旋极化的计算。
60 60 1 1 0.1158924E+02 0.5522500E-09 0.2280000E-08 0.5522500E-09 0.5000000E-15 1.000000000000000E-004 第2至5行的数据含义不大明确,可以不管它。 CAR YFTO 492 32 300 第6行的数据表示:第一个数表示体系总的价电子数目,第二个数 表示的计算能带时总的k点数目,第三个数表示的是计算能带时计 算了多少条能带。 0.3742002E-15 0.1262379E-14 0.3742002E-15 0.1388889E-01 1 -46.511682 第8行的前三个数是k点的坐标,第四个数是相 2 -46.511280 应k点的权重。 3 -46.451176 4 -46.449273 第9行给出的是该k点对应的本征值的序号(即第几 5 -46.199455 条能带),及相应的本征值。 6 -46.197355
NPAR=16(使用核数为4,16,64此种) ALGO=ALL
Berry Phase计算极化,老方法
一般来说,现在都用新方法来计算极化,因为用起来方便。 老方法的话还要把三个方向分来来计算,等于要跑三个任务,相对复杂,但是
准确性可能好一些。
LBERRY=.TRUE. IGPAR=3 #1,2,3对应x, y, z方向 NPPSTR=7 DIPOL=0.5 0.5 0.5 EDIFF=1E-5
找最低能量的晶格参数C
#!/bin/sh rm WAVECAR for i in 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 (改为要计算的值) do cat > POSCAR <<! (POSCAR文件,要计算的量改为 $i)
! echo "$i" ; mpirun -np 10 vasp >display.log E=`grep "TOTEN" OUTCAR | tail -1 | awk '{printf "%12.6f \n", $5 }'` mv display.log display.log-$i mv OUTCAR OUTCAR-$i mv DOSCAR DOSCAR-$i echo $i $E >>comment done