第四章异方差检验的eviews操作
eviews异方差检验步骤

eviews异方差检验步骤Eviews是一款常用的经济学软件,它允许用户进行多种统计分析,其中包括异方差检验。
异方差是指随着自变量的变化,因变量的方差也会发生变化。
在实际分析中,如果忽略了异方差,则会导致统计结果不准确。
因此,在使用Eviews进行分析时,进行异方差检验十分重要。
以下是Eviews进行异方差检验的步骤:1. 打开Eviews软件,并导入所需的数据。
在“工作文件”菜单下选择“打开文件”,找到所需的数据文件并打开。
2. 选择变量。
单击“变量”菜单,并选择要检验的因变量和自变量。
如果有多个自变量,在本例中就需要选择多个自变量。
3. 进行回归分析。
单击“Quick”菜单下的“Estimate Equation”选项,进行回归分析。
在回归分析中,需要输入因变量和自变量,并进行模型估计。
4. 异方差检验。
在回归分析完成后,单击“View”菜单下的“Residual Diagnostics”选项,进入错误项诊断。
5. 在错误项诊断中选择异方差检验。
在错误项诊断面板中,选择“Heteroskedasticity Tests”选项,并选择所需的异方差检验类型。
在Eviews中,通常可以使用Breusch-Pagan/Godfrey测试或White 测试来检验异方差。
6. 查看结果。
完成异方差检验后,Eviews会返回检验结果。
如果结果显示存在异方差,则需要进行调整,以消除异方差的影响。
总之,在使用Eviews进行经济学分析时,进行异方差检验至关重要,可以保证模型分析的准确性和可靠性。
上述步骤简单易懂,只要按照步骤操作,就可以轻松地完成异方差检验。
第四章 异方差检验的eviews操作

第四章异方差性例4.1.4一、参数估计进入Eviews软件包,确定时间范围,编辑输入数据;选择估计方程菜单:(1)在Workfile对话框中,由路径:Quick/Estimate Equation,进入Equation Specification对话框,键入“log(y) c log(x1) log(x2)”,确认ok,得到样本回归估计结果;(2)直接在命令栏里输入“ls log(y) c log(x1) log(x2)”,按Enter,得到样本回归估计结果;(3)在Group的当前窗口,由路径:Procs/Make Equation,进入Equation Specification窗口,键入“log(y) c log(x1) log(x2)”,确认ok,得到样本回归估计结果。
如表4.1:表4.1图4.1估计结果为:(3.14) (1.38) (9.25)R2=0.7798 D.W.=1.78 F=49.60 RSS=0.8357括号内为t统计量值。
二、检验模型的异方差(一)图形法(1)生成残差平方序列。
①在Workfile的对话框中,由路径:Procs/Generate Series,进入Generate Series by Equation对话框,键入“e2=resid^2”,生成残差平方项序列e2;②直接在命令栏里输入“genr e2=resid^2”,按Enter,得到残差平方项序列e2。
(2)绘制散点图。
①直接在命令框里输入“scat log(x2) e2”,按Enter,可得散点图4.2。
②选择变量名log(x2)与e2(注意选择变量的顺序,先选的变量将在图形中表示横轴,后选的变量表示纵轴),再按路径view/graph/scatter/simple scatter ,可得散点图4.2。
③由路径quick/graph进入series list窗口,输入“log(x2) e2”,确认并ok,再在弹出的graph窗口把line graph换成scatter diagram,再点ok,可得散点图4.2。
演示文稿1 异方差的Eviews操作

Log likelihood
12.47256
Durbin-Watson stat
1.964715
Std. Error t-Statistic
0.860976 0.103769 0.048599
1.861356 3.135885 10.43388
Mean dependent var
S.D. dependent var
④输入:Scat X e2
亦可合并输入: Scat X resid^2
2. 帕克(Park)检验与戈里瑟(Gleiser)检验
基本思想: 尝试建立方程:
e~i2 f (X ji ) i 或
| e~i | f ( X ji ) i
选择关于变量X的不同的函数形式,对方程 进行估计并进行显著性检验,如果存在某一 种函数形式,使得方程显著成立,则说明原 模型存在异方差性。
异方差的Eviews操作
计量经济学 2009-11
几种异方差的检验方法: 1. 图示法 (1)用X-Y的散点图进行判断
看是否存在明显的散点扩大、缩小或复 杂型趋势(即不在一个固定的带型域中)
【 Eviews操作】 输入:Scat X Y
(2)X- e~i2 的散点图进行判断
看是否形成一斜率为零的直线。
2
e2i
(n c k 1)
F
2
2
e1i
(n c k 1)
2
F( n c k 1, n c k 1)
2
2
⑤给定显著性水平,确定临界值F(v1,v2),
若F> F(v1,v2), 则拒绝同方差性假设, 表明存在异方差。
当然,还可根据两个残差平方和对应的子样 的顺序判断是递增型异方差还是递减异型方差。
eviews异方差的检验

田青帆1006010131 国贸1001班建立模型Y t=β1+β2X t+uX:1994-2011年中国国内生产总值Y:1994-2011年中国进口总额数据来源:国泰安数据服务中心/p/sq/一、异方差的检验1、图示法由上图可以看出,残差平方项e2随X的变动而变动,一次,模型很可能存在异方差,但是否确实存在异方差还应通过更进一步的检验。
2、等级相关系数检验t值为29.48788,自由度为18-2=16在95%的显著水平下,查表可得t0.025(16)=2.1199t>t0.025(16),说明X i和|e i|之间存在系统关系,则说明模型中存在异方差3、戈德菲尔德-夸特检验(样本分段比检验)在本例中,样本容量为18,删去中间4个观测值,余下部分平分的两个样本区间:1-7和12-18,他们的样本数都是7个,用OLS方法对这两个子样本进行回归估计,结果如下图所示计算检验统计量FF=[RSS2/(n2-k)] ÷[RSS1/(n1-k)]n2-k=n1-k=7-2=5F=RSS2/RSS1=4588102/229037.4=20.03在95%的显著水平下,查表可得F0.05(5,5)=5.05 F>F0.05(5,5)所以,模型存在异方差4、戈里瑟(Glejser)检验用残差绝对值建立的回归模型为|e i|=α1+α2 (1/X i)由上表可知,回归模型为|e i|=1416.049+10.37101(1/X i)≠0,则存在异方差α25、怀特检验由上图可知:P值=0.017140﹤0.05,所以存在异方差二、异方差的修正(加权最小二乘法)1、选择1/x为权数,即对模型两边同时乘以1/x,使用最小二乘法进行回归估计,所得结果如下:由上图可知,P值=0.0001﹤0.05,模型依然存在异方差2、选择1/|e|为权数,即对模型两边同时乘以1/|e|,使用最小二乘法进行回归估计,所得结果如下:此时,P值=0.2139>0.05,将异方差模型变成了同方差。
异方差的eviews操作

异方差的eviews操作图3-1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。
图3-2 我国制造业销售利润回归模型残差分布图3-2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
2、Goldfeld-Quant检验⑴将样本安解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图3-3),其残差平方和为2579.587。
SMPL 1 10LS Y C X图3-3 样本1回归结果⑶利用样本2建立回归模型2(回归结果如图3-4),其残差平方和为63769.67。
SMPL 19 28 LS Y C X图3-4 样本2回归结果⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.372.2405.0=>=F F ,所以存在异方差性3、White 检验⑴建立回归模型:LS Y C X ,回归结果如图3-5。
图3-5 我国制造业销售利润回归模型⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图3-6。
图3-6 White 检验结果其中F 值为辅助回归模型的F 统计量值。
取显著水平05.0=α,由于2704.699.5)2(2205.0=<=nR χ,所以存在异方差性。
计量经济学Eviews软件应用4 【异方差】-1次课

ei 0 1
1 Xi
i
帕克提出如下的假定函数形式:
ei2
X e 1 i
0i
即:
ln e i2 ln01 ln X ii
或者:
ei201Xii
以 Gleiser 检验为例,其具体步骤如下:
(a):根据样本数据用最小二乘法 (OLS) 估计回归模
型并求残差 e i ; (b):分别建立残差绝对值 e i 对每一个解释变量的各 种回归方程;
掌握运用Eviews软件检验异方差的几种方 法 (G-Q检验、White检验、Gleiser检验与 Park检验) 及解决异方差 (加权最小二乘法 WLS) 的基本操作方法和步骤,并能对软件 运行结果进行解释。
Eviews软件操作实例
例1:表4-1给出了 1998 年我国主要制造工业销售收
入 (X) 与销售利润 (Y) 的统计资料(单位: 亿元),现 根据此数据资料建立我国制造工业利润函数模型, 并采用常用的方法对该模型是否存在异方差进行检 验;若检验存在异方差性,请尝试消除它。
上述回归方程表明利润函数存在异方差性。
以上怀特检验、戈里瑟检验和帕克检验方法统称 为残差回归检验法。
Eviews软件操作实例
例1:
6、异方差的修正:加权最小二乘法(WLS)
设一元线性回归模型为 Y i01X ii,如果
Var(i)i2,则用 i 除以模型得到:
Y i 01X ii,,,,,,,,,,,,,,,,,(4 .1 .5 )
Y i01Xii是否存在异方差性。在例 1中,样本数
据个数为 n28,c n 4 为了使两个子样本的容量相 同,从中间去掉 8 个数据,即取c=8;
因此,利用 Eviews 进行 G-Q 检验的具体步骤为:
第四章 异方差检验的eviews操作
第四章异方差性例4.1.4一、参数估计进入Eviews软件包,确定时间范围,编辑输入数据;选择估计方程菜单:(1)在Workfile对话框中,由路径:Quick/Estimate Equation,进入Equation Specification对话框,键入“log(y) c log(x1) log(x2)”,确认ok,得到样本回归估计结果;(2)直接在命令栏里输入“ls log(y) c log(x1) log(x2)”,按Enter,得到样本回归估计结果;(3)在Group的当前窗口,由路径:Procs/Make Equation,进入Equation Specification窗口,键入“log(y) c log(x1) log(x2)”,确认ok,得到样本回归估计结果。
如表4.1:表4.1图4.1估计结果为:(3.14) (1.38) (9.25)R2=0.7798 D.W.=1.78 F=49.60 RSS=0.8357括号内为t统计量值。
二、检验模型的异方差(一)图形法(1)生成残差平方序列。
①在Workfile的对话框中,由路径:Procs/Generate Series,进入Generate Series by Equation对话框,键入“e2=resid^2”,生成残差平方项序列e2;②直接在命令栏里输入“genr e2=resid^2”,按Enter,得到残差平方项序列e2。
(2)绘制散点图。
①直接在命令框里输入“scat log(x2) e2”,按Enter,可得散点图4.2。
②选择变量名log(x2)与e2(注意选择变量的顺序,先选的变量将在图形中表示横轴,后选的变量表示纵轴),再按路径view/graph/scatter/simple scatter,可得散点图4.2。
③由路径quick/graph进入series list窗口,输入“log(x2) e2”,确认并ok,再在弹出的graph窗口把line graph换成scatter diagram,再点ok,可得散点图4.2。
eviews的异方差检验
异方差的处理
文档附赠有可编辑的3D小人素材
地区
北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东
农业总产值 亿元 115.48 117.60
1639.07 322.65 620.42 837.50 641.50 971.94 126.74 1542.53 735.92 1054.01 685.30 621.26 2604.07
,所以存在异方差性。 ⒊White检验 ⑴建立回归模型:LS Y C X,回归结果如图6。
图6
⑵在方程窗口上点击View\Residual Test\ White Heteroskedastcity no cross terms ,检验结果如 图7。
图7
直接观察相伴概率p值的大小,若p值较小,则认为存 在异方差性。 ⒋Park检验 ⑴建立回归模型 结果同图6所示 。 ⑵生成新变量序列:GENR LNE2=log RESID^2
SMPL 20 31 LS Y C X
图5
⑷计算F统计量:F R2 /S R1 S S 2S 2/6 35.9 8 1 6 .4 5
RSS1 和RSS2分别是模型1和模型2的残差平方和。 取
F6.4 5F 0.05 2.98
F 0 .0( 1 5 1 2 1 ,1 1 2 1 ) 2 .98
农业总产值 亿元
1152.09 1243.15 1328.70 970.55 224.17 401.48 1316.60 392.20 683.80 39.49 629.34 458.73 49.16 111.12 767.00
农作物播种面 积 千公顷 7030.01 7390.71 4363.05 5594.40 754.32 3134.66 9278.24 4464.53 5801.86 232.92 4044.74 3759.00 516.68 1189.83 4202.63
异方差的eviews操作
实验三异方差的检验与修正实验目的1、理解异方差的含义后果、2、学会异方差的检验与加权最小二乘法实验内容一、准备工作。
建立工作文件,并输入数据,用普通最小二乘法估计方程(操作步骤与方法同前),得到残差序列。
表2列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
表2 我国制造工业1998年销售利润与销售收入情况二、异方差的检验1、图形分析检验⑴观察销售利润(Y)与销售收入(X)的相关图(图3-1):SCAT X Y图3-1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。
图3-2 我国制造业销售利润回归模型残差分布图3-2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
2、Goldfeld-Quant检验⑴将样本安解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图3-3),其残差平方和为2579.587。
SMPL 1 10LS Y C X图3-3 样本1回归结果⑶利用样本2建立回归模型2(回归结果如图3-4),其残差平方和为63769.67。
SMPL 19 28 LS Y C X图3-4 样本2回归结果⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.372.2405.0=>=F F ,所以存在异方差性3、White 检验⑴建立回归模型:LS Y C X ,回归结果如图3-5。
异方差检验的eviews操作
第四章异方差性例4.1.4一、参数估计进入Eviews软件包,确定时间范围,编辑输入数据;选择估计方程菜单:(1)在Workfile对话框中,由路径:Quick/Estimate Equation,进入Equation Specification对话框,键入“log(y) c log(x1) log(x2)”,确认ok,得到样本回归估计结果;(2)直接在命令栏里输入“ls log(y) c log(x1) log(x2)”,按Enter,得到样本回归估计结果;(3)在Group的当前窗口,由路径:Procs/Make Equation,进入Equation Specification窗口,键入“log(y) c log(x1) log(x2)”,确认ok,得到样本回归估计结果。
如表4.1:表4.1图4.1估计结果为:(3.14) (1.38) (9.25)R2=0.7798 D.W.=1.78 F=49.60 RSS=0.8357括号内为t统计量值。
二、检验模型的异方差(一)图形法(1)生成残差平方序列。
①在Workfile的对话框中,由路径:Procs/Generate Series,进入Generate Series by Equation对话框,键入“e2=resid^2”,生成残差平方项序列e2;②直接在命令栏里输入“genr e2=resid^2”,按Enter,得到残差平方项序列e2。
(2)绘制散点图。
①直接在命令框里输入“scat log(x2) e2”,按Enter,可得散点图4.2。
②选择变量名log(x2)与e2(注意选择变量的顺序,先选的变量将在图形中表示横轴,后选的变量表示纵轴),再按路径view/graph/scatter/simple scatter,可得散点图4.2。
③由路径quick/graph进入series list窗口,输入“log(x2) e2”,确认并ok,再在弹出的graph窗口把line graph换成scatter diagram,再点ok,可得散点图4.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章异方差性例4.1.4
一、参数估计
进入Eviews软件包,确定时间范围,编辑输入数据;选择估计方程菜单:
(1)在Workfile对话框中,由路径:Quick/Estimate Equation,进入Equation Specification
对话框,键入“log(y) c log(x1) log(x2)”,确认ok,得到样本回归估计结果;(2)直接在命令
栏里输入“ls log(y) c log(x1) log(x2)”,按Enter,得到样本回归估计结果;(3)在Group的当前窗口,由路径:Procs/Make Equation,进入Equation Specification窗口,键入“log(y) c log(x1) log(x2)”,确认ok,得到样本回归估计结果。
如表4.1:
表4.1
图4.1
估计结果为:
(3.14) (1.38) (9.25)
R2=0.7798 D.W.=1.78 F=49.60 RSS=0.8357
括号内为t统计量值。
二、检验模型的异方差
(一)图形法
(1)生成残差平方序列。
①在Workfile的对话框中,由路径:Procs/Generate Series,进入Generate Series by Equation 对话框,键入“e2=resid^2”,生成残差平方项序列e2;②直接在命令栏里输入“genr e2=resid^2”,按Enter,得到残差平方项序列e2。
(2)绘制散点图。
①直接在命令框里输入“scat log(x2) e2”,按Enter,可得散点图4.2。
②选择变量名log(x2)与e2(注意选择变量的顺序,先选的变量将在图形中表示横轴,后选的变量表示纵轴),再按路径view/graph/scatter/simple scatter,可得散点图4.2。
③由路径quick/graph进入series list窗口,输入“log(x2) e2”,确认并ok,再在弹出的graph窗口把line graph换成scatter diagram,再点ok,可得散点图4.2。
图4.2
由图4.2可以看出,残差平方项e2对解释变量log(X2)的散点图主要分布图形中的下三角部分,大致看出残差平方项e2随log(X2)的变动呈增大的趋势,因此,模型很可能存在异方差。
但是否确实存在异方差还应通过更进一步的检验。
(二)Goldfeld-Quanadt检验
(1)对变量取值排序(按递增或递减)。
①在Workfile窗口中,由路径:Procs/Sort Series进入sort workfile series对话框,键入“X2”,如果以递增型排序,选Ascending,如果以递减型排序,则应选Descending,点ok。
本例选递增型排序,选Ascending。
②直接在命令栏里输入“sort x2”(默认为升序),再按Enter。
(2)构造子样本区间,建立回归模型。
在本例中,样本容量n=31,删除中间1/4的观测值,即大约7个观测值,余下部分平分得两个样本区间:1-12和20-31,它们的样本个数均是12个。
在Sample菜单里,把sample值改为“1 12”再用OLS方法进行第一个子样本回归估计,估计结果如表4.2。
表4.2
同样地,在Sample菜单里,把sample值改为“20 31”再用OLS方法进行第二个子样本回归估计,估计结果如表4.3。
表4.3
(3)求F统计量值。
基于表4.2和表4.3中残差平方和RSS的数据,即Sum squared resid的值,得到
RSS1=0.0702和RSS2=0.1912,根据Goldfeld-Quanadt检验,F统计量为:
F= RSS2/ RSS1=0.1912/0.0702=2.73。
(4)判断。
在5%与10%的显着性水平下,查F分布表得:自由度为(9,9)的F分布的临界值分别为F0.05=3.18与F0.10=2.44。
因为F=2.73< F0.05(9,9)=3.18,因此5%显着性水平下不拒绝两组子样方差相同的假设,但F=2.73> F0.10(9,9)=2.44,因此10%显着性水平下拒绝两组子样方差相同的假设,即存在异方差。
(三)White检验
①由表4.1的估计结果,按路径view/residual tests/white heteroskedasticity(cross terms),进入White检验,其中cross terms表示有交叉乘积项。
得到表4.4的结果。
表4.4
辅助回归结果为:
(1.87) (-2.09) (-1.01) (2.56) (1.58) (0.47)
R2=0.6629
由表4.4结果得到:怀特统计量nR2=31×0.6629=20.55,查χ2分布表得到在5%的显着性水平下,自由度为5的χ2分布的临界值为χ20.05=11.07,因为nR2=20.55>χ20.05=11.07,所以拒绝同方差的原假设。
②由表4.1的估计结果,按路径view/residual tests/white heteroskedasticity(no cross terms),进入White检验,其中no cross terms表示无交叉乘积项。
得到表4.5的结果。
表4.5
去掉交叉项后的辅助回归结果为:
(5.64)(-4.14)(-1.64)(4.10)(1.67)
R2=0.6599
有怀特统计量nR2=31×0.6599=20.46,因此,在5%的显着性水平下,仍是拒绝同方差这一原假设,表明模型存在异方差。
三、异方差性的修正
(一)加权最小二乘法(WLS)
(1)生成权数。
按路径:Procs/Generate Series,进入Generate Series by Equation对话框,键入
“w=1/sqr(exp(93.20-25.981*log(x2)+1.701*(log(x2))^2))”或者直接在命令栏输入“genr
w=1/sqr(exp(93.20-25.981*log(x2)+1.701*(log(x2))^2))”生成权数w。
(2)加权最小二乘法估计(WLS)。
在表4.1的结果中,由路径:Procs/Specify/Estimate进入Equation Specification对话框,点击Options按钮,在Estimation Options对话框的weighted前面打勾并在下面输入栏处输入w,如图4.3,连续两次确认OK后,得到表4.6的估计结果:
图4.3
表4.5
加权最小二乘法估计(WLS)结果为:
(3.23) (3.80) (9.61)
R2=0.9984 D.W.=1.72 F= 8602.18 RSS=0.3705
可以看出运用加权最小二乘法消除异方差性后,LnX1参数的t检验有了显着的改进,这表明即使在1%显着性水平下,都不能拒绝从事农业生产带来的纯收入对农户人均消费支出有着显着影响的假设。
虽然LnX1的参数值有了较大程度的提高,但仍没有LnX2的参数估计值大,说明其他来源的纯收入确实比来自农业经营的纯收入对农户人均消费支出的影响更大一些。
(3)检验加权回归模型的异方差性。
在命令栏中直接输入“ls w*log(Y) w w*log(X1) w*log(X2)”,按回车键,输出结果如表4.6:
表4.6
得到的加权回归模型的OLS回归结果:
对该模型进行怀特检验,得到无交叉乘积项的回归结果如表4.7所示:
表4.7
辅助回归结果为:
R2=0.2699
怀特统计量nR2=31×0.2699=8.3669,该值小于5%显着性水平下、自由度为6的χ2分别的相应临界值χ20.05=12.59,因此,不拒绝同方差的原假设。