中考数学重点知识点及重要题型
中考数学十大必考题型

中考数学十大必考题型有许多,这里列举一些常见的题型:
1. 方程问题:这是中考必考题型,主要考察方程的解法、方程组的解法以及应用题等。
2. 函数图像问题:主要考察函数图像的画法、图像的变化以及根据图像求函数解析式等。
3. 圆的相关问题:中考数学中,圆是必考内容之一,包括圆的性质、圆的有关定理、定理的应用等。
4. 三角形的问题:中考数学中,三角形也是一个重要的考点,包括三角形的内角和、三角形的分类讨论、直角三角形、等腰三角形、等边三角形的性质和定理等。
5. 最值问题:中考数学中,常常会涉及到一些最值问题,如一元二次方程的最值、三角函数的最值、几何图形的最值等。
6. 统计与概率问题:中考数学中,统计与概率也是一个重要的考点,包括数据的收集、数据的整理、数据的分析、概率的求法等。
7. 开放性试题:这类试题可以考查学生的发散性思维和创新能力,是中考数学的一个热点。
8. 跨学科问题:如与物理、化学、生物等结合在一起的应用题,考查综合运用数学知识解决实际问题的能力。
9. 阅读理解题:中考数学也常涉及到一些阅读理解题,需要学生认真阅读题目并理解题目的意思。
10. 方案设计题:这类题目需要学生设计出符合题意的方案,需要学生有一定的创新能力。
需要注意的是,中考数学试题千变万化,除了以上十大必考题型外,还有许多其他类型的题目,例如难题、新题等。
考生需要掌握好基础知识,并多做练习,才能应对各种不同类型的题目。
以上是中考数学十大必考题型的简要介绍,希望能对您有所帮助。
总之,考生在备考中考数学时,需要注重基础知识的学习和练习,同时要注意培养自己的思维能力和创新能力。
2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
中考数学必考题型及解题技巧

中考数学必考题型及解题技巧
1. 嘿,中考数学里函数题可是必考的呀!比如说一次函数,那简直就是常客。
就像走路,你得知道往哪儿走、走多快呀!遇到一次函数的应用题,咱不慌,先把关键信息找出来,设好未知数,列好方程,这不就解决啦?
2. 哇塞,几何图形的证明题那也是必须拿下的!你看那些三角形、四边形,就像一个个神秘的小城堡等你去探索。
比如证明两个三角形全等,把条件一对,思路不就来了嘛,就跟开锁一样顺利!
3. 还有方程和不等式呢!这就像是你手里的武器,用来解决各种实际问题。
像那种购物优惠的题目,不就是用方程或不等式来算算怎么最划算嘛,多有意思呀!
4. 统计与概率也不能小瞧哦!这不就是生活中的各种可能性嘛。
比如抽奖,你就可以用概率知识算算自己中奖的机会大不大,是不是很神奇?
5. 动点问题可刺激啦!就像一场刺激的追逐赛。
看着那个点跑来跑去,你要赶紧抓住它的规律呀。
比如在图形上运动的点,要仔细分析它的轨迹,找到解题关键,别让它跑啦!
6. 最后啊,别忘了那些基础的计算!这可是根基呀!像简单的加减乘除,要是错了那可就太可惜啦!做题的时候认认真真,别小瞧这些小细节哟!
总之,中考数学的这些必考题型都别怕,掌握了技巧就都能拿下,相信自己,加油呀!。
2023年北京中考数学重难题型专题

2023年北京中考数学重难题型专题1. 介绍2023年北京中考数学试题将继续注重考查学生的基础知识和思维能力。
本文将围绕2023年北京中考数学试题中的重难题型进行专题解析,帮助考生们更好地应对考试。
2. 题型分析2.1. 组合与排列题型组合与排列是中考数学中的难点之一,考生往往在这类题目上容易失分。
在解决组合与排列题型时,考生需熟练掌握基本的排列与组合知识,灵活运用公式与方法,同时要对排列组合的实际问题有一定的抽象思维能力。
2.2. 几何题型几何题型在中考数学中占据比重较大,几何知识的掌握程度直接关系到考生的数学成绩。
在解决几何题型时,考生需要深刻理解几何原理,善于利用图形的性质,勤加练习,灵活运用几何知识解决各种类型的几何问题。
2.3. 代数题型代数题型主要包括方程与不等式、函数及图像等内容。
考生在解决代数题型时,需熟练掌握各种代数运算和变形技巧,理解函数的性质并能准确绘制函数图像。
3. 解题技巧3.1. 理清思路在解决数学难题时,理清思路是至关重要的。
考生在做题时应该逐步分析题目,梳理解题思路,明确每一步的解题思路和方法。
3.2. 多用图形辅助在解决几何题型时,考生可以通过绘制图形来帮助理解和解决问题。
图形能够直观地表现问题,有助于找出问题的关键点,因此在解决几何难题时,考生可以多用图形辅助。
3.3. 灵活运用方法在解决排列组合、代数等数学题型时,考生需要灵活运用各种方法和技巧。
例如在排列组合题型中,可以用组合数的性质来简化问题;在代数题型中,可以用方程的变形和不等式性质来快速解题。
4. 经典例题分析以下是2023年北京中考数学试题中的一些经典难题,通过这些例题的分析,帮助考生更好地理解解题技巧。
4.1. 组合与排列题型例题:某班有5名男生和6名女生,从中选出3名同学组成一个三人组,求其中至少有一名男生的方案数。
解析:在这个问题中,考生需要运用组合数的性质求解。
首先计算出全体学生组成三人组的方案数,然后计算出全女生组成三人组的方案数,最后用总数减去全女生组成三人组的方案数即可得到答案。
中考数学必考题型分析及解题策略总结

中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。
在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。
3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
中考数学重点难点分值题型分布

中考数学重点难点分值题型分布第一章数与式1.1实数考点1:实数的分类与实数的有关概念掌握题型:选择题、填空题; 分值:3分考试内容:1.实数的定义与分类2.实数的大小比较3.数轴4.相反数、倒数、绝对值5.无理数的估算考点2:实数的运算掌握题型:选择题、填空题;分值:3分、4分考试内容:1.平方根与立方根2.实数的混合运算考点3:科学计数法掌握与近似数了解题型:选择题;分值:3分考试内容:1.科学记数法2.近似数1.2代数式考点1:代数式理解——必考点题型:选择题;分值:4分考试内容:1.列代数式表示简单的数量关系2.能解释一些简单代数式的实际意义或几何意义考点2:求代数式的值题型:解答题;分值:6分考试内容:1.代数式的值的概念“了解2.根据问题所提供的资料,求代数式的值1.3整式考点1:整式及其运算灵活运用题型:填空题;分值:3分考试内容:1.整式的有关概念了解2.整数指数幂的意义和基本性质了解3.整式加减乘除法运算的法则4.会进行简单的整式加减乘除法运算考点2:整式乘法公式灵活运用——必考点题型:填空题;分值:3分、4分考试内容:1.完全平方公式、平方差公式的几何背景了解2.平方差公式、完全平方公式3.用平方差公式、完全平方公式进行简单计算考点3:因式分解灵活运用题型:填空题;分值:3分、4分考试内容:1.因式分解的意义及其与整式乘法之间的关系了解2.用提取公因式法、、公式法进行因式分解,会在实数范围内分解因式1.4分式与二次根式考点1:分式的概念与基本性质灵活运用——必考点题型:选择题;分值:3分考试内容:1.分式的概念了解2.确定分式有意义的条件3.确定使分式的值为零的条件4.分式的基本性质5.约分和通分考点2:分式的运算掌握——必考点题型:解答题;分值:6分考试内容:1.分式的加、减、乘、除、乘方运算法则2.简单的分式加减乘除乘方运算,用恰当方法解决与分式有关的问题考点3:二次根式掌握——必考点题型:选择题;分值:3分1.二次根式的概念2.最简二次根式3.二次根式的运算第二章方程组与不等式组2.1整式方程考点1:一元一次方程掌握,灵活运用题型:选择题、解答题;分值:3分、6分、8分考试内容:1.方程是刻画现实世界数量关系的一个数学模型了解2.运用一元一次方程解决简单的实际问题3.方程的解的概念了解4.由方程的解求方程中字母系数的值5.一元一次方程的有关概念了解6.一元一次方程的解法考点2:一元二次方程掌握,灵活运用——必考点题型:选择题、填空题;分值:3分、4分1.一元二次方程的概念了解2.一元二次方程的解法3.用一元二次方程根的判别式判断根的情况4.运用一元二次方程解决简单的实际问题2.2分式方程考点1:分式方程及其解法——必考点题型:选择题、填空题;分值:3分、4分考试内容:1.分式方程的概念2.分式方程的增根3.分式方程的求解4.分式方程的检验考点2:分式方程的应用题型:解答题;分值:10分考试内容:1.利用分式方程解决生活实际问题2.注意分式方程要对方程和实际意义进行双检验2.3方程组考点1:二元一次方程组题型:解答题;分值:7分考试内容:1.二元一次方程组的有关概念了解2.代入消元法、加减消元法的意义3.选择适当的方法解二元一次方程组考点2:二元一次方程组的应用——必考点题型:解答题;分值:9分考试内容:运用二元一次方程组解决简单的实际问题2.4不等式组考点1:不等式和一元一次不等式组题型:选择题、填空题;分值:3分、4分考试内容:1.不等式的意义了解2.根据具体问题中的数量关系列出不等式3.不等式的基本性质4.利用不等式的性质比较两个实数的大小5.一元一次不等式的解集了解6.解不等式组考点2:一元一次不等式组的应用——必考点题型:解答题;分值:8分考试内容:根据具体问题中的数量关系,用一元一次不等式或不等式组解决简单问题第三章变量与函数3.1位置的确定与变量之间的关系考点1:平面直角坐标系题型:选择题、填空题;分值:3分考试内容:1.坐标平面内点的坐标特征的运用2.坐标轴、原点对称的点的坐标的特征考点2:函数及其图象题型:选择题、填空题;分值:3分、8分考试内容:1.求函数自变量的取值范围2.根据条件写出函数关系式3.用描点法画出函数图像考点3:函数的有关应用题型:选择题;分值:3分考试内容:解决与函数有关的应用型问题3.2一次函数考点1:一次函数的概念、图象和性质题型:解答题;分值:3分、10分考试内容:1.对一次函数概念的理解理解2.根据已知条件用待定系数法确定函数解析式3.会画一次函数图象并能根据图象解决相关的问题4.根据自变量的变化判断函数值的增减情况灵活运用5.由函数值的取值范围判断自变量的取值范围,求一次函数图象的交点坐标考点2:一次函数的应用题型:解答题;分值:9分考试内容:与一次函数有关的应用问题灵活运用3.3反比例函数考点1:求反比例函数解析式题型:填空题;分值:4分考试内容:1.对反比例函数的理解2.根据已知条件用待定系数法确定反比例函数解析式考点2:反比例函数的图象和性质题型:解答题;分值:8分考试内容:1.会画反比例函数的增减性;掌握比例系数K的几何意义考点3:反比例函数的应用题型:填空题、解答题;分值:3分、9分考试内容:1.反比例函数与一次函数图象与性质的综合应用2.确定与反比例函数有关的应用型问题3.4二次函数考点1:二次函数的图象和性质题型:选择题、解答题;分值: 3分、3分考试内容:1.用配方法把抛物线的解析式y=ax2+bx+ca≠0化为y=ax-h2+ka≠0的形式2.根据已知条件用待定系数法确定二次函数的解析式3.根据抛物线的位置确定a、b、c的符号,根据公式确定抛物线的顶点和对称轴4.根据自变量的变化判断二次函数值的增减情况5.根据函数图象求一元二次方程的根,由一元二次方程根的情况判断抛物线与x轴的交点;根据图象判断一元二次不等式的解集考点2:二次函数的综合应用题型:解答题;分值:10分、12分考试内容:1.利用二次函数解决简单的实际问题2.与二次函数有关的综合应用第四章图形的认识4.1角、相交线与平行线考点1:角题型:选择题;分值:3分考试内容:1.角的有关概念了解2.角的比较、角的和差计算3.余角、补角考点2:相交线题型:选择题;分值:3分考试内容:1.对顶角2.垂线、点到直线的距离3.作已知直线的垂线4.命题、定理、证明考点3:平行线题型:选择题;分值:3分考试内容:1.平行线的性质2.平行线间的距离3.平行线的判定4.2三角形及其全等考点1:三角形的相关概念题型:选择题;分值:3分考试内容:1.角平分线、中线、高线、中位线以及性质2.画任意三角形的角平分线、中线和高3.三角形的稳定性、三边关系定理、三角形内角和定理考点2:三角形全等题型:填空题、解答题;分值:3分考试内容:1.全等三角形对应边相等、对应角相等2.三角形全等的判定定理:SAS, ASA, AAS, SSS, HL 4.3等腰三角形与直角三角形考点1:等腰三角形题型:选择题;分值:3分考试内容:1.等腰三角形的有关概念、性质和判定2.等边三角形的有关概念、性质和判定考点2:直角三角形题型:选择题;分值:3分考试内容:1.直角三角形的概念、性质和判定2.勾股定理及其逆定理:4.4多边形与平行四边形考点1:多边形题型:选择题;分值:3分考试内容:多边形和正多边形的概念、内角和与外角和公式了解考点2:平行四边形题型:解答题;分值:9分考试内容:1、平行四边形的概念和性质2、平行四边形的判定4.5特殊的平行四边形考点1:矩形题型:选择题、填空题、解答题;分值:3分、8分考试内容:1.矩形的概念、性质2.矩形的判定考点2:菱形题型:选择、解答;分值:3分、10分考试内容:1、菱形的概念、性质2、菱形的判定考点3:正方形题型:选择题、解答题;分值:3分考试内容:1.正方形具有矩形和菱形的性质2.既是矩形又是菱形的四边形是正方形4.6梯形依据考情选用题型:填空题;分值:3分考试内容:1.梯形的概念和性质2.等腰梯形的概念、性质和判定3.直角梯形的概念第五章圆5.1圆的性质及与圆有关的位置关系考点1:圆的有关概念与性质题型:选择题、解答题;分值:3分、4分、9分考试内容:1.垂径定理及其推论的应用2.弧、圆心角、圆周角之间的关系3.圆周角定理及其推论考点2:与圆有关的位置关系题型:选择题、解答题考试内容:1.点和圆的位置关系2.直线和圆的位置关系3.切线的性质和判定5.2与圆有关的计算题型:选择题、填空题、解答题;分值:3分、10分考试内容:1.求圆的周长、弧长及简单组合图形的周长2.求圆的面积、扇形的面积及简单组合图形的面积3.圆柱的侧面积和全面积的计算4.圆锥的侧面积和全面积的计算第六章空间与图形6.1圆形的轴对称、平移与旋转考点1:轴对称的概念及性质题型:选择题;分值:3分考试内容:1.轴对称的概念及性质2.基本图形的对称性及轴对称的应用考点2:图形的平移题型:选择题;分值:3分考试内容:1.平移的概念和性质2.简单图形的平移及平移的应用考点3:图形的旋转题型:选择题;分值:3分考试内容:1.旋转的概念及性质2.基本图形的旋转及旋转的应用6.2图形的相似考点1:相似的有关概念题型:近5年未考考试内容:成比例线段、比例的基本性质、黄金分割考点2:相似三角形的性质与判定题型:填空题;分值:3分考试内容:1.相似的概念及相似的判定2.相似的性质、多边形相似比、周长比与面积比考点3:位似的概念与性质题型:选择题;分值:3分考试内容:1.位似的概念和性质2.利用位似放大或缩小图形,会在坐标系中作位似图形并求出对应的坐标6.3解直角三角形题型:选择题、填空题、解答题;分值:3、6分考点1:锐角三角函数考试内容:1.锐角三角函数的定义及其性质2.特殊角的三角函数值考点2:解直角三角形考试内容:1.解直角三角形的概念2.直角三角形的边角关系3.仰角、俯角、坡度坡比4.用三角函数解决与直角三角形有关的实际问题6.4视图与投影考点1:几何体及其展开图题型:选择题;分值:3分考试内容:基本几何体的展开图考点2:几何体的三视图题型:选择题;分值:3分考试内容:画基本几何体或简单组合体的三视图,根据三视图描述实物考点3:投影题型:近五年未考考试内容:1.中心投影和平行投影2.影子、视点、视角和盲区的概念第七章统计与概率7.1统计考点1:数据的收集题型:选择题;分值:3分考试内容:1.普查和抽样调查2.总体、个体、样本和样本容量3.用样本估计总体的思想考点2:数据的处理题型:选择题;分值:3分考试内容:1.求一组数据的平均数包括加权平均数、众数、中位数、极差与方差2.根据具体问题,选择合适的统计量表示数据的集中程度或离散程度3.根据统计结果做出合理的判断和预测考点3:统计图表题型:解答题;分值:4分、8分考试内容:1.用扇形统计图表示数据2.频数、频率的概念,频数分布的意义和作用3.列频数分布表,画频数分布直方图和频数分布折线图4.利用统计图表解决简单的实际问题7.2概率考点1:事件的分类题型:选择题;分值:3分考试内容:不可能事件、必然事件和随机事件考点2:概率的计算题型:解答题;分值:10分考试内容:1.概率的意义2.运用列举法包括列表、画树状图计算简单事件发生的概率考点3:用频率估计概率题型:填空题;分值:3分考试内容:大量重复试验时,可以用频率估计概率解决一些实际问题。
初中数学基础知识及经典题型完整版(实用的中考专题复习指导书)

综合知识讲解目录第一章绪论11.1初中数学的特点11.2怎么学习初中数学21.3如何去听课51.4几点建议6第二章应知应会知识点72.1代数篇72.2几何篇11第三章例题讲解17第四章兴趣练习294.1代数部分294.2几何部分45第五章复习提纲50第一章绪论1.1初中数学的特点1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.1.2怎么学习初中数学1,培养良好的学习兴趣。
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。
”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。
“好”和“乐”就是愿意学,喜欢学,这就是兴趣。
兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。
在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。
那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。
听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。
所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。
只有回归现实才能对概念的理解切实可*,在应用概念判断、推理时会准确。
2,建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。
高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。
中考数学核心考点+重点题型+高分秘籍+题组训练+过关检测(全国通用)第03讲实数的混合运算(附答案)

中考数学一轮复习资料五合一《核心考点+重点题型+高分秘籍+题组特训+过关检测》(全国通用版)第3讲实数的混合运算核心考点:相反数、绝对值、倒数1.相反数:只有符号不同,而绝对值相同的两个数称为互为相反数,若a、b互为相反数,则a+b=0. 2.倒数:1除以一个不等于零的实数所得的商,叫做这个数的倒数.若a、b互为倒数,则ab=1. 3.绝对值:数轴上表示数a的点与原点的距离,记作|a|.核心考点2:幂的运算(a≠0)(1)a m∙a n=a m+n (2)a m÷a n=a m−n(3)(a m)n=a mn (4)(ab)n=a n b n(5)a−n=1a n(6) a0=1核心考点3:平方根、算术平方根、立方根、二次根式0,0)a b=≥≥0,0) a b ≥>核心考点4:特殊角的三角函数值实数的混合运算题一般都以解答题形式考查,并且都放在解答题的开始部分,属于基础题1.计算:()()220233441-+-÷+-【分析】混合运算要先看看有哪几种运算,再考虑运算顺序.【详解】原式31621=+÷-381=+-=10【反思】混合运算题,有三个关键之处,其一是运算顺序,其二是要对每种运算的公式要熟练,其三是要细心.2.计算:01112cos 45(1)()42π--+︒++. 【分析】本题中包含四种运算,特殊角的三角函数值,这个要牢记;第二种是零指数;第三种是算术平方根;第四是负指数运算。
负指数运算是混合运算中的一个难点,易错。
原式=0112cos 45(1)()2π--+︒12122=++ 32=. 【反思】此题考查了实数的运算,零次幂与负整数指数幂的含义,特殊角的三角函数值,熟练掌握运算法则是解本题的关键,特殊三角函数值要记牢.3.计算:()1012cos303220223π-⎛⎫︒+-+-- ⎪⎝⎭ 【分析】特殊角三角函数值,绝对值和零指数幂,负整数指数幂,可同时化简,这样可以减少步骤原式2213=-213=-0=.【反思】本题主要考查了实数的混合计算,零指数幂,负整数指数幂,特殊角三角函数值,熟知相关计算法则是解题的关键.4.计算:()1013220222cos303π-⎛⎫-+---+︒ ⎪⎝⎭. 【分析】绝对值,零指数幂,负整数指数幂,特殊角三角函数值,这四项可同时化简.原式2312=-+231=-2=-.【点睛】本题主要考查了实数的混合计算,特殊角三角函数值,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键.5.计算:()011333tan 609--+-+︒.【分析】先计算器乘方与化简二次根式,并把特殊性角的三角函数值代入,再计算加减即可.(0133tan 60-+︒11133=-+1=【反思】本题考查实数的混合运算,熟练掌握实数的运算法则,零指数与负整理指数法则,熟记特殊角的三角函数值是解题的关键.——细心是计算正确的法宝细心对于学习数学是至关重要的,因为数学题中处处都要计算,而细心是能计算正确的法宝,所以在中考数学中要想得高分,细心是最重要的!策略三:细心是计算正确的法宝!1. 计算:()2012cos60220223π-⎛⎫--+- ⎪⎝⎭︒.2. 计算:()1201|4| 3.143π-⎛⎫---+- ⎪⎝⎭.3.()()2023013tan 301 3.14π-+︒--4. ()101202323-⎛⎫-+ ⎪⎝⎭.5. 2122-⎛⎫+ ⎪⎝⎭6. 计算:()1016023π-⎛⎫︒+- ⎪⎝⎭7. ()10211tan60512-⎛⎫--++ ⎪⎝⎭.8. 计算:()2012022π32cos 452-⎛⎫-+----︒ ⎪⎝⎭.9.计算:212tan 6023-⎛⎫+︒ ⎪⎝⎭.10.计算:011(4)2sin 60()4π---+︒+.1. +0(2)π--5+2023(1)-21()3-+2. (012π2+.3. ()201921-.4. 计算:()1014sin 601tan 4520222-⎛⎫︒+-︒-- ⎪⎝⎭.5. 24sin 45︒-.6. 201|2()(2020)2π-+--.7. 计算:020221122514538. 计算:02cos 452021︒;9. ()2012 3.143π-⎛⎫--- ⎪⎝⎭;100|(3)π--. 第3讲 实数的混合运算 题组训练详细解答1.计算:()2012cos60220223π-⎛⎫--+- ⎪⎝⎭︒.2.计算:()1201|4| 3.143π-⎛⎫---+- ⎪⎝⎭. 3.()()2023013tan 301 3.14π-+︒--4()101202323-⎛⎫-+⎪⎝⎭.52122-⎛⎫+ ⎪⎝⎭6.计算:()1016023π-⎛⎫︒+- ⎪⎝⎭7()10211tan60512-⎛⎫--++ ⎪⎝⎭. (2tan605+8.计算:()2012022π32cos 452-⎛⎫-+----︒ ⎪⎝⎭.9.计算:212tan 6023-⎛⎫+︒ ⎪⎝⎭.10.计算:011(4)2sin 60()4π---+︒+.过关检测详细解答1+0(2)π--5+2023(1)-21()3-+ 解:原式21519=+--+ 6=2(012π2+.4.计算:()1014sin 601tan 4520222-⎛⎫︒+-︒-- ⎪⎝⎭.524sin 45︒-.6201|2()(2020)2π-+--.7.计算:02022112251453 020221122514531521353-+-⨯ 58.计算:02cos 452021︒;9()2012 3.143π-⎛⎫--- ⎪⎝⎭;100|(3)π--.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点:一元二次方程的基本概念.一元二次方程的常数项是..一元二次方程的一次项系数为,常数项是. .一元二次方程的二次项系数为,常数项是. .把方程()化为一般式为.知识点:直角坐标系及点的位置.直角坐标系中,点(,)在轴上。
.直角坐标系中,轴上的任意点的横坐标为. .直角坐标系中,点(,)在第一象限. .直角坐标系中,点(,)在第四象限. .直角坐标系中,点(,)在第二象限.知识点:已知自变量的值求函数值.当时,函数32 x 的值为. .当时,函数的值为. .当时,函数的值为.知识点:基本函数的概念及性质.函数是一次函数. .函数是正比例函数. .函数是反比例函数. .抛物线()的开口向下. .抛物线()的对称轴是. .抛物线的顶点坐标是()..反比例函数的图象在第一、三象限.知识点:数据的平均数中位数及众数.数据的平均数是. .数据的众数是..数据,,,,的中位数是.知识点:特殊三角函数值.°23. .° ° . .° ° . .° ..° ° .知识点:圆的基本性质.半圆或直径所对的圆周角是直角. .任意一个三角形一定有一个外接圆..在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. .在同圆或等圆中,相等的圆心角所对的弧相等. .同弧所对的圆周角等于圆心角的一半. .同圆或等圆的半径相等..过三个点一定可以作一个圆. .长度相等的两条弧是等弧..在同圆或等圆中,相等的圆心角所对的弧相等. .经过圆心平分弦的直径垂直于弦。
知识点:直线及圆的位置关系.直线及圆有唯一公共点时,叫做直线及圆相切. .三角形的外接圆的圆心叫做三角形的外心. .弦切角等于所夹的弧所对的圆心角..三角形的内切圆的圆心叫做三角形的内心. .垂直于半径的直线必为圆的切线..过半径的外端点并且垂直于半径的直线是圆的切线. .垂直于半径的直线是圆的切线. .圆的切线垂直于过切点的半径.知识点:圆及圆的位置关系.两个圆有且只有一个公共点时,叫做这两个圆外切. .相交两圆的连心线垂直平分公共弦..两个圆有两个公共点时,叫做这两个圆相交. .两个圆内切时,这两个圆的公切线只有一条. .相切两圆的连心线必过切点.知识点:正多边形基本性质.正六边形的中心角为°. .矩形是正多边形..正多边形都是轴对称图形. .正多边形都是中心对称图形.知识点:一元二次方程的解.方程042=-x 的根为 ......方程的两根为......方程()()的两根为..方程()的两根为......方程的两根为 .....33知识点:方程解的情况及换元法.一元二次方程02x的根的情况是 .-+x342=.有两个相等的实数根.有两个不相等的实数根.只有一个实数根.没有实数根.不解方程,判别方程的根的情况是..有两个相等的实数根. 有两个不相等的实数根.只有一个实数根. 没有实数根.不解方程,判别方程的根的情况是..有两个相等的实数根. 有两个不相等的实数根.只有一个实数根. 没有实数根.不解方程,判别方程的根的情况是..有两个相等的实数根.有两个不相等的实数根.只有一个实数根.没有实数根.不解方程,判别方程的根的情况是..有两个相等的实数根. 有两个不相等的实数根.只有一个实数根. 没有实数根.不解方程,判别方程的根的情况是..有两个相等的实数根. 有两个不相等的实数根.只有一个实数根. 没有实数根.不解方程,判别方程的根的情况是..有两个相等的实数根. 有两个不相等的实数根.只有一个实数根. 没有实数根. 不解方程,判断方程25的根的情况是.有两个相等的实数根. 有两个不相等的实数根.只有一个实数根. 没有实数根. 用 换 元 法 解方 程 时, 令 32-x x ,于是原方程变为 .2222. 用换元法解方程时,令23x x - ,于是原方程变为 . 222 . 2. 用换元法解方程(1+x x )(1+x x )时,设1+x x ,则原方程化为关于的方程是 .知识点:自变量的取值范围.函数2-=x y 中,自变量的取值范围是 . ≠ ≤ ≥ ≠ .函数31-x 的自变量的取值范围是 . > . ≥ . ≠ . 为任意实数 .函数11+x 的自变量的取值范围是 . ≥ . > . ≠ . ≠.函数的自变量的取值范围是 . ≥ ≤ ≠ 为任意实数 .函数的自变量的取值范围是 . > ≥ ≠ 为任意实数知识点:基本函数的概念.下列函数中,正比例函数是 .. x 8-.下列函数中,反比例函数是 . .x8 .下列函数:①;②;③;④x8.其中,一次函数有 个 . 个 个 个 个知识点:圆的基本性质.如图,四边形内接于⊙,已知∠°,则∠的度数是 .•BOADA. ° . ° . ° . ° .已知:如图,⊙中, 圆周角∠°,则圆周角∠的度数是 . ° ° ° ° .已知:如图,⊙中, 圆心角∠°,则圆周角∠的度数是 . ° ° ° °.已知:如图,四边形内接于⊙,则下列结论中正确的是 . .∠∠° .∠∠° .∠∠° .∠∠.半径为的圆中,有一条长为的弦,则圆心到此弦的距离为 ..已知:如图,圆周角∠°,则圆心角∠的度数是 . ° ° ° .已知:如图,⊙中,弧的度数为°,则圆周角∠的度数是 . ° ° ° . 已知:如图,⊙中, 圆周角∠°,则圆心角∠的度数是 . ° ° ° °. 在⊙中,弦的长为,圆心到的距离为,则⊙的半径为 . . . 已知:如图,⊙中,弧的度数为°,则圆周角∠的度数是 . ° ° ° °.在半径为的圆中,有一条弦长为,则圆心到此弦的距离为 . . .知识点:点、直线和圆的位置关系.已知⊙的半径为㎝,如果一条直线和圆心的距离为㎝,那么这条直线和这个圆的位置关系为 ..相离 .相切 .相交 .相交或相离.已知圆的半径为,直线和圆心的距离为,那么这条直线和这个圆的位置关系是 . .相切 .相离 .相交 . 相离或相交 .已知圆的半径为,那么点和这个圆的位置关系是.点在圆上 . 点在圆内 . 点在圆外 .不能确定.已知圆的半径为,直线和圆心的距离为,那么这条直线和这个圆的公共点的个数是 . 个 个 个 .不能确定.一个圆的周长为 ,面积为 ,如果一条直线到圆心的距离为π,那么这条直线和这个圆的位置关系是 ..相切 .相离 .相交 . 不能确定.已知圆的半径为,直线和圆心的距离为,那么这条直线和这个圆的位置关系是 .•DBCAO••CBAO•BOCAD•BOCAD •CBAO.相切.相离.相交.不能确定. 已知圆的半径为,直线和圆心的距离为,那么这条直线和这个圆的位置关系是. .相切.相离.相交. 相离或相交. 已知⊙的半径为,则的中点和这个圆的位置关系是 ..点在圆上. 点在圆内. 点在圆外.不能确定知识点:圆及圆的位置关系.⊙和⊙的半径分别为和,若,则这两圆的位置关系是 .. 外离. 外切. 相交. 内切.已知⊙、⊙的半径分别为和,若,则这两个圆的位置关系是 ..内切. 外切. 相交. 外离.已知⊙、⊙的半径分别为和,若,则这两个圆的位置关系是 ..外切.相交. 内切. 内含.已知⊙、⊙的半径分别为和,若,则这两个圆的位置关系是 ..外离. 外切.相交.内切.已知⊙、⊙的半径分别为和,两圆的一条外公切线长3,则两圆的位置关系是..外切. 内切.内含. 相交.已知⊙、⊙的半径分别为和,若,则这两个圆的位置关系是..外切.相交. 内切. 内含知识点:公切线问题.如果两圆外离,则公切线的条数为.. 条条条条.如果两圆外切,它们的公切线的条数为.. 条. 条条条.如果两圆相交,那么它们的公切线的条数为.. 条. 条条条.如果两圆内切,它们的公切线的条数为 .. 条. 条条条. 已知⊙、⊙的半径分别为和,若,则这两个圆的公切线有条.条. 条. 条. 条.已知⊙、⊙的半径分别为和,若,则这两个圆的公切线有条.条. 条. 条. 条知识点:正多边形和圆.如果⊙的周长为π,那么它的半径为 .. 10π.正三角形外接圆的半径为,那么它内切圆的半径为 .. .3 .2.已知,正方形的边长为,那么这个正方形内切圆的半径为 . . . .2 .3 .扇形的面积为32π,半径为,那么这个扇形的圆心角为 . ° ° ° . °.已知,正六边形的半径为,那么这个正六边形的边长为 .212 .R 3.圆的周长为,那么这个圆的面积 ..2C π .π2C .π22C .π42C.正三角形内切圆及外接圆的半径之比为 . :33 :2. 圆的周长为,那么这个圆的半径 .C π . C π .π2C . πC.已知,正方形的边长为,那么这个正方形外接圆的半径为 .23.已知,正三角形的半径为,那么这个正三角形的边长为 . . .3 2 3知识点:函数图像问题.已知:关于的一元二次方程32=++c bx ax 的一个根为21=x ,且二次函数c bx ax y ++=2的对称轴是直线,则抛物线的顶点坐标是 .. (,) . (,) . (,) . (,).若抛物线的解析式为(),则它的顶点坐标是 . .() .() .() .() .一次函数的图象在 ..第一、二、三象限 . 第一、三、四象限 . 第一、二、四象限 . 第二、三、四象限.函数的图象不经过 ..第一象限 . 第二象限 . 第三象限 . 第四象限.反比例函数x2的图象在 . .第一、二象限 . 第三、四象限 . 第一、三象限 . 第二、四象限 .反比例函数x10的图象不经过 . 第一、二象限 . 第三、四象限 . 第一、三象限 . 第二、四象限 .若抛物线的解析式为(),则它的顶点坐标是 . .() .() .() .().一次函数的图象在 ..第一、二、三象限 . 第一、三、四象限 . 第一、二、四象限 . 第二、三、四象限.一次函数的图象经过 ..第一、二、三象限 .第二、三、四象限 .第一、三、四象限 .第一、二、四象限. 已知抛物线(>且、、为常数)的对称轴为,且函数图象上有三点()、(21)、(),则、、的大小关系是 .<< . << . << . <<知识点:分式的化简及求值.计算:)4)(4(yx xyy x y x xy y x +-+-+-的正确结果为 . . 22x y - . 22y x - . 224y x - . 224y x -.计算:(121)11222+-+-÷--a a a a a a 的正确结果为 . . a a +2. a a -2. a a +2. a a -2.计算:的正确结果为 . .x1x 1 ..计算:)111()111(2-+÷-+x x 的正确结果为 . .x x 1+ .11-x.计算的正确结果是 ..1-x x 1-x x .1+x x 1+x x .计算)11()(yx x y y y x x -÷-+-的正确结果是 . . . ..计算:22222222222)(y xy x xy y x y x y xy x y x +++-+--⋅-的正确结果为 . ().计算:的正确结果为 . .11+x .11-x .计算的正确结果是 . . .知识点:二次根式的化简及求值. 已知>,化简二次根式的正确结果为 . .y .y - yy -.化简二次根式的结果是 . .1--a1--a .1+a .1--a.若<,化简二次根式的结果是 . .abab .ab - ab -.若<,化简二次根式的结果是 . .aa . a - .a --. 化简二次根式的结果是 . . . . ..若<,化简二次根式的结果是 . .aa . a - .a --.已知<,则y x 2化简后的结果是 ..y x y x .y x - .y x -.若<,化简二次根式的结果是 ..aa . a - .a --.若>,化简二次根式的结果是 ..ab a .ab a -- .ab a - .ab a - .化简二次根式的结果是 . .1--a1--a .1+a .1--a.若<,化简二次根式的结果是 .b b . b - . b -知识点:方程的根.当 时,分式方程x x m x x --=+--2312422会产生增根. .分式方程x x x x --=+--23121422的解为 . 或 .方程无实数根 .用换元法解方程05)1(2122=--++x x xx ,设,则原方程化为关于的方程 . 2222.已知方程()有一个根是,则的值为 . . 或 或 .关于的方程有增根,则实数为 . ±.二次项系数为的一元二次方程的两个根分别为23、23,则这个方程是 .23 23 2323.已知关于的一元二次方程()有两个不相等的实数根,则的取值范围是 . >23 >23且≠ <23 >23且≠ 知识点:求点的坐标.已知点的坐标为(),‖轴,且,则点的坐标是 ..() .()或() .() .()或().如果点到轴的距离为,到轴的距离为,且点在第四象限内,则点的坐标为 . .() .() ) .().过点()作轴的平行线,过点()作轴的平行线, 、相交于点,则点的坐标是 . .() .() .() .()知识点:基本函数图像及性质.若点()、(41)、(21)在反比例函数xk(<)的图象上,则下列各式中不正确的是 . << < < ••<.在反比例函数的图象上有两点()、(),若<< <,则的取值范围是 . > < < >.已知:如图,过原点的直线交反比例函数x2的图象于、两点⊥轴⊥轴,△的面积为,则 .<< > .已知点()、()在反比例函数x2的图象上, 下列的说法中: ①图象在第二、四象限;②随的增大而增大;③当<<时, <;④点() 、()也一定在此反比例函数的图象上,其中正确的有 个.个 个 个 个.若反比例函数的图象及直线有两个不同的交点、,且∠<º,则的取值范围必是 . . > . < . << . < .若点(m ,m1)是反比例函数的图象上一点,则此函数图象及直线(<)的交点的个数为 ..已知直线b kx y +=及双曲线x ky =交于(,)(,)两点,则·的值 ..及有关,及无关 .及无关,及有关 .及、都有关 .及、都无关知识点:正多边形问题.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为 . . 正三边形 .正四边形 .正五边形 .正六边形.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是 ..选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是. .正四边形、正六边形.正六边形、正十二边形.正四边形、正八边形.正八边形、正十二边形.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是..正三边形.正四边形 . 正五边形.正六边形.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有种不同的设计方案.种种种种.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是..正三边形、正四边形.正六边形、正八边形.正三边形、正六边形.正四边形、正八边形.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能及正六边形组合镶嵌的是(所有选用的正多边形材料边长都相同)..正三边形.正四边形.正八边形.正十二边形.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是..正三边形.正四边形.正六边形.正十二边形.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是..正四边形.正六边形.正八边形.正十二边形知识点:科学记数法.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤).这个柑桔园共有柑桔园株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为公斤.××××.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位:个).武汉市约有万个家庭,那么根据环保小组提供的数据估计全市一周内共丢弃塑料袋的数量约为.××××知识点:数据信息题.对某班名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为 .. . . . .某校为了了解学生的身体素质情况,对初三()班的名学生进行了立定跳远、铅球、米三个项目的测试,每个项目满分为分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成组画出的频率分布直方图,已知从左到右前个小组频率分别为,,,.下列说法: ①学生的成绩≥分的共有人; ②学生成绩的众数在第四小组(~)内; ③学生成绩的中位数在第四小组(~)范围内. 其中正确的说法是 ..①② .②③ .①③ .①②③ .某学校按年龄组报名参加乒乓球赛,规定“岁年龄组”只允许满岁但未满岁的学生报名,学生报名情况如直方图所示.下列结论,其中正确的是 ..报名总人数是人; .报名人数最多的是“岁年龄组”;.各年龄组中,女生报名人数最少的是“岁年龄组”;.报名学生中,小于岁的女生及不小于岁的男生人数相等..某校初三年级举行科技知识竞赛名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是::::,根据图中所给出的信息,下列结论,其中正确的有 .①本次测试不及格的学生有人; ②—这一组的频率为;③若得分在分以上(含分)可获一等奖, 则获一等奖的学生有人.①②③ ①② ②③ ①③.某校学生参加环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是::::,第五组的频数为,则成绩在分以上(含分)的同学的人数 ..对某班名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为 ..某班学生一次数学测验成绩(成绩均为整数)进行统计分析,各分数段人数如图所示,下列结论,其中正确的有( )①该班共有人; ②—这一组的频率为; ③本次测验分数的中位数在—这一组; ④学生本次测验成绩优秀(分以上)的学生占全班人数的.①②③④ .①②④ .②③④ .①③④ .为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三()班进行了立定跳远测试,并将成绩整理后, 绘制了频率分布直方图(测试成绩保留一位小数),如图所示,已知从左到右个组的频率分别是,,,,第五 小组的频数为 , 若规定测试成绩在米以上(含米) 为合格, 则下列结论:其中正确的有 个 . ①初三()班共有名学生; ②第五小组的频率为;③该班立定跳远成绩的合格率是. .①②③ .②③ .①③ .①②知识点: 增长率问题.今年我市初中毕业生人数约为万人,比去年增加了,预计明年初中毕业生人数将比今年减少.下列说法:①去年我市初中毕业生人数约为%918.12+万人;②按预计,明年我市初中毕业生人数将及去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的是 .. ①② . ①③ . ②③ . ①.根据湖北省对外贸易局公布的数据:年我省全年对外贸易总额为亿美元,较年对外贸易总额增加了,则年对外贸易总额为 亿美元. .%)101(3.16+ .%)101(3.16- . ..某市前年初中毕业生升入各类高中的人数为人,去年升学率增加了个百分点,如果今年继续按此比例增加,那么今年初中毕业生,升入各类高中学生数应为 ..我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在年涨价后年降价后至元,则这种药品在年涨价前的价格为 元. 元 元 元 元.某种品牌的电视机若按标价降价出售,可获利元;若按标价降价出售,则亏本元,则这种品牌的电视机的进价是 元.( ) 元 元 元 元.从年月日起,全国储蓄存款开始征收利息税的税率为,某人在年月日存入人民币元,年利率为,一年到期后应缴纳利息税是 元..某商品的价格为元,降价后,又降价,销售量猛增,商场决定再提价出售,则最后这商品的售价是 元.元 元 元 元绩.某商品的进价为元,商场现拟定下列四种调价方案,其中<<<,则调价后该商品价格最高的方案是..先涨价,再降价.先涨价,再降价.先涨价,再降价.先涨价mn,再降价mn.一件商品,若按标价九五折出售可获利元,若按标价八五折出售则亏损元,则该商品的进价为.元元元元.自年月日起,国家对个人在银行的存款利息征收利息税,税率为(即存款到期后利息的),储户取款时由银行代扣代收.某人于年月日存入期限为年的人民币元,年利率为,到期时银行向储户支付现金元.元元元知识点:圆中的角.已知:如图,⊙、⊙外切于点,为外公切线的延长线交⊙于点,若,为.°°°°.已知:如图、为⊙的两条切线、为切点⊥于点交⊙于点,若∠°,°°°°.已知:如图,为⊙的直径、为⊙上的两点,,∠°,过点作⊙的切线交的延长线. °°°°.已知、是⊙的两条割线,其中过圆心,已知弧的度数是°,且,°°°.已知:如图,△中,∠°,以上一点为圆心为半径作⊙及相切于点,交于点,若∠°,则∠ .°°°°.已知:如图,在⊙的内接四边形中,是直径,于点,则∠的度数为 .ºººº.已知:如图,两同心圆的圆心为,大圆的弦、切小圆于、两点,弧的度数为°,则弧的度数为 .°°°. 已知:如图,⊙及⊙外切于点,⊙的弦切⊙于点,若∠º,则∠.ºººº•EODB C••O1O2A BCP••O2O1BCAD知识点:三角函数及解直角三角形.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为º,楼底的俯角为º,两栋楼之间的水平距离为米,请你算出教学楼的高约为 米.(结果保留两位小数,2≈ ,3≈).在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为º,楼底的俯角为º,两栋楼之间的距离为米,请你算出对面综合楼的高约为 米.(2≈ ,3≈).已知:如图,为⊙外一点切⊙于点,直线交⊙于、, ⊥于,若,设∠α,∠β,则αβ . .31 .21. .如图,是一束平行的阳光从教室窗户射入的平面示意图,光线及地面所成角∠°,在教室地面的影子3米.若窗户的下檐到教室地面的距离米,则窗户的上檐到教室地面的距离为 米. .3米 . 米 . 米 .233米 .已知△中平分∠,⊥于点,且:,,76,,则△的面积为 . .33 3知识点:圆中的线段.已知:如图,⊙及⊙外切于点,一条外公切线,、分别为切点,连结、.设⊙的半径为,⊙的半径为,若∠2,则rR的值为 . .2 .3 . ..已知:如图,⊙、⊙内切于点, ⊙的弦过点且交⊙于、两点,若::::,则⊙及⊙比为 .: : : :.已知:如图,⊙及⊙外切于点,⊙的半径为,⊙的半径为,且,为⊙一点, 则 .A BE DAC•┑αβO ADBC P· · O 1O 2BAC BE.已知:如图,为⊙的切线为过点的割线,45,⊙的半径为,则的长为为 . .413. . . .已知:如图, Δ,∠°,,,⊙内切于Δ,⊙切,且及、的延长线都相切,⊙的半径, ⊙的半径为,则21R R . .21 .32 .43 .54.已知⊙及边长分别为、的矩形三边相切,⊙及⊙外切,及边、相切,则⊙的半径为 ..已知:如图,为⊙ 的直径,是⊙的切线,,过点的割线交的延长线于点,且,则⊙的半径为.. . .714 .1414.已知:如图, ,过、、三点作⊙,⊙切 于点,交于点.若,,则的长为 . .59 .516 . 如图,⊙、⊙内切于点,连心线和⊙、⊙分别交于、两点,过点的直线及⊙、⊙分别交于、两点,若∠º,,则 ..21 .41知识点:数形结合解及函数有关的实际问题.某学校组织学生团员举行“抗击非典,爱护城市卫生”宣传活动,从学校骑车出发,先上坡到达地,再下坡到达 地,其行程中的速度(百米分)及时间(分)关系图象如图所示.百米分.34110 .27 .43110 .93210.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某•O BPAC• •DPO 1O 2A C •BAO CDE••O 1 O 2BC ••O 2 O 1 ADBC•ODCBAEF)一时刻开始分钟内只进水不出水,在接着的分钟内只出水不进水,又在随后的分钟内既进水又出水,刚好将该容器注满.已知容器中的水量升及时间分之间的函数关系如图所示.则在第分钟时,容器内的水量为 升.. 甲、乙两个个队完成某项工程,首先是甲单独做了天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少 . 天 天 天 天 . 某油库有一储油量为吨的储油罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)及时间(分)的函数关系如图所示.现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是 分钟.分钟 分钟 分钟 分钟. 校办工厂某产品的生产流水线每小时可生产件产品,生产前没有积压.生产小时后另安排工人装箱(生产未停止),若每小时装产品件,未装箱的产品数量是时间的函数,则这个函数的大致图像只能是 .. 如图,某航空公司托运行李的费用(元)及托运行李的重量(公斤)的关系为一次函数,由图中可知,行李不超过 公斤时,可以免费托运. 小明利用星期六、日双休骑自行车到城外小姨家去玩.星期六从家中出发,先上坡,后走平路,再走下坡路到小姨家.行程情况如图所示.星期日小明又沿原路返回自己家.若两天中,小明上坡、平路、下坡行驶的速度相对不变,小明返回家的时间是 分钟. A. 分钟31分钟 32分钟 31分钟 . 有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始分钟内只进不出水,在随后的分钟内既进水又出水,容器中的水量(升)及时间(分)之间的函数关系图像如图,若分钟后只出水不进水,则需 分钟可将容器内的水放完..分钟 分钟分) )))。