人教版高中数学必修一知识点和重难点
高中数学人教A版必修第一册知识点总结

高中数学人教A版必修第一册知识点总结本册教材是高中数学人教版A版(2024)的必修第一册,总共包括了四个单元:集合与常用逻辑、函数与方程、数列与数学归纳法、几何与向量。
接下来将对这四个单元的知识点进行总结。
一.集合与常用逻辑1.集合与元素-集合的表示方法:列举法、描述法、条件法-集合之间的关系:相等、含于、相交、并集、交集、互补集2.集合的运算-并集、交集、差集、补集-嵌套集合的化简-运算律:交换律、结合律、分配律3.常用逻辑关系-全称量词、存在量词-逻辑运算:与、或、非-条件命题、充分条件、必要条件4.命题及命题的逻辑运算-命题的分类:命题主体、命题联结词、命题陈述、命题基础-命题的逻辑运算:否定、合取、析取、蕴含、等价二.函数与方程1.函数的概念-自变量、因变量、函数值-射影函数、指示函数2.函数的表示方法-函数的解析式-函数的图像3.函数的性质-定义域、值域、对应法则、单调性、奇偶性、周期性-奇函数、偶函数-反函数4.一次函数-一次函数的解析式及图像-平移变换、伸缩变换5.二次函数-二次函数的解析式及图像-平移变换、伸缩变换-最值、对称轴、零点及判别式三.数列与数学归纳法1.数列的概念-有限数列、无限数列、数列的一般表示2.等差数列-等差数列的概念及公式-等差数列前n项和公式-通项公式的推导3.等比数列-等比数列的概念及公比-等比数列前n项和公式-通项公式及其推导4.递推数列-递推数列的概念及表示-递推公式5.数学归纳法-数学归纳法三个步骤:证明基础、证明步骤、加强归纳前提四.几何与向量1.向量的概念-向量的定义、表示方法、相等与运算-向量的数量表示-零向量、单位向量2.向量的线性运算-加法、减法、数乘-加减法运算律、数乘运算律3.向量的坐标表示-坐标运算、线性变换4.向量的数量积-向量的点乘、模长及其性质-向量的夹角及性质5.平面向量的应用-共线向量、垂直向量、平行向量-向量在直角坐标系中的投影-多边形面积与向量运算-向量与几何问题的应用以上是《高中数学人教A版(2024)必修第一册》的知识点总结。
高中数学必修一教学目标与教学重难点(全)

第1章集合与函数§集合的含义与表示一. 教学目标1.学问与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集与其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培育学生抽象概括的实力.2.过程与方法(1)让学生经验从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学学问.3.情感.看法与价值观使学生感受到学习集合的必要性,增加学习的主动性.二. 教学重点、难点重点:集合的含义与表示方法.难点:表示法的恰当选择.§集合间的基本关系一. 教学目标1.学问与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
(3)能运用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过视察身边的实例,发觉集合间的基本关系,体验其现实意义.3.情感.看法与价值观(1)树立数形结合的思想.(2)体会类比对发觉新结论的作用.二. 教学重点、难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区分.§集合的基本运算一. 教学目标1.学问与技能(1)理解两个集合的并集与交集的含义,会求两个简洁集合的交集与并集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能运用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.2.过程与方法学生通过视察和类比,借助Venn图理解集合的基本运算.3.情感、看法与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和精确.二. 教学重点、难点重点:交集与并集,全集与补集的概念.难点:理解交集与并集的概念.符号之间的区分与联系.§函数的概念一. 教学目标1.学问与技能函数是描述客观世界改变规律的重要数学模型.中学阶段不仅把函数看成变量之间的依靠关系,同时还用集合与对应的语言刻画函数,中学阶段更注意函数模型化的思想与意识.2.过程与方法(1)通过实例,进一步体会函数是描述变量之间的依靠关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简洁函数的定义域和值域;(4)能够正确运用“区间”的符号表示某些函数的定义域;3.情感、看法与价值观使学生感受到学习函数的必要性的重要性,激发学习的主动性。
必修1高一数学人教版最全知识点(必须珍藏)

高中数学必修1知识点总结目录高中数学必修1知识点总结............................. 错误!未定义书签。
第一章集合与函数概念............................... 错误!未定义书签。
〖〗集合 ............................................ 错误!未定义书签。
【】集合的含义与表示................................. 错误!未定义书签。
【】集合间的基本关系................................. 错误!未定义书签。
【】集合的基本运算................................... 错误!未定义书签。
〖〗函数及其表示 .................................... 错误!未定义书签。
【】函数的概念 ...................................... 错误!未定义书签。
【】函数的表示法 .................................... 错误!未定义书签。
〖〗函数的基本性质................................... 错误!未定义书签。
【】单调性与最大(小)值............................. 错误!未定义书签。
【】奇偶性 .......................................... 错误!未定义书签。
【】函数周期性和对称性............................... 错误!未定义书签。
〖补充知识〗函数的图象............................... 错误!未定义书签。
第二章基本初等函数(Ⅰ) ............................. 错误!未定义书签。
新高一数学必修一知识点

新高一数学必修一知识点一、知识概述《集合》①基本定义:集合就像是一个装东西的袋子,这个袋子里装的东西可以是各种各样的,比如一些数字、一些人、一些图形之类的。
这些东西都具有某种共同的属性,我们就把这些东西放在一块,起个名字就叫集合。
通常用大写字母表示集合,比如A、B等。
集合里的每个东西就叫元素,用小写字母表示,像a、b等。
②重要程度:在数学里超级重要。
就像盖房子要先打地基一样,集合是很多高级数学知识的基础。
很多其他的概念都是在集合的基础上衍生出来的。
③前置知识:没什么特别强的前置知识,不过一些基本的分类概念多少要有一点。
比如能区分不同的数字类型。
④应用价值:在实际生活中,假设你整理自己的藏书,可以按照不同的类别,比如科幻类、历史类等建立集合。
在计算机数据处理的时候也经常用到集合概念,把相似数据归到一个集合里。
二、知识体系①知识图谱:集合是高中数学里非常基础的部分,为函数、数列等知识做铺垫。
②关联知识:和函数相关,因为函数的定义域和值域都可以看作集合;数列也是一种特殊的数集。
③重难点分析:- 掌握难度:对于刚上高一的同学来说,理解集合的概念不难,但是当涉及集合间的关系、运算时就容易搞混。
- 关键点:明确集合中元素的特性(确定性、互异性、无序性)。
④考点分析:- 在考试中相当重要。
- 考查方式:有直接考查集合的表示法,比如列举法、描述法;还有考查集合间关系,如子集、真子集;集合的运算像交集、并集、补集等。
三、详细讲解【理论概念类】①概念辨析:- 确定性:就是说一个东西要么属于这个集合,要么不属于,很确定的。
比如“所有的好人”就不能构成一个集合,因为“好人”的标准不明确。
- 互异性:一个集合里的元素不能重复。
比如说集合{1, 2, 2}这样是不行的,正确应该是{1, 2}。
- 无序性:集合里元素的顺序不重要。
{1, 2, 3}和{3, 1, 2}是同一个集合。
②特征分析:- 封闭性:集合一旦确定,元素是固定的,不会轻易改变。
高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。
以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。
- 代数式:基本概念、多项式、公式等。
- 幂与乘方:指数、乘方、幂等运算。
- 整式的加减法:同类项、整式的加减法规则。
- 分式:基本概念、分式的性质与化简等。
2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。
- 一元一次不等式:基本概念、解不等式的方法、应用问题等。
3. 函数及其图像
- 函数与自变量、函数与因变量的关系。
- 函数的表示与性质:映射、函数图像、奇偶性等。
- 一次函数:定义、性质、图像、方程等。
- 反函数与复合函数:定义、性质、求反函数、求复合函数等。
4. 等差数列
- 等差数列的定义与性质。
- 等差数列的前n项和与通项公式。
- 应用问题:等差数列应用于数学与生活中的实际问题。
5. 平面向量
- 向量的基本概念与表示法。
- 向量的运算:加法、数乘等。
- 向量共线与共面的判定。
- 向量的数量积与模的概念与性质。
6. 不等式与线性规划
- 不等式的基本性质与解法。
- 一元一次不等式组:基本概念、解法、应用问题等。
- 线性规划的基本概念与常见问题。
以上是高中数学(新人教版)必修一的主要知识点的简要归纳。
详细内容可以参考相关教材或课堂讲义。
希望这份归纳对你有帮助!。
高中数学必修一知识点整理【史上最全】---人教版

高中数学必修一知识点整理【史上最全】
---人教版
1. 数的性质与运算
- 自然数、整数、有理数、实数、复数的定义和性质
- 加法、减法、乘法、除法的运算法则及性质
- 乘方、开方、指数运算的基本概念和性质
2. 一元一次方程与一元一次不等式
- 一元一次方程的定义、解的概念及解法
- 一元一次不等式的定义、解的概念及解法
- 一元一次方程与一元一次不等式的应用
3. 二次根式与二次方程
- 二次根式的概念、性质及化简
- 二次方程的定义、解的概念及解法
- 二次方程与二次根式的应用
4. 几何图形的认识与性质
- 点、线、面的基本概念及性质
- 一些常见几何图形的性质,如线段、角、三角形、四边形等5. 平面向量
- 向量的定义、线性运算及性质
- 平面向量坐标与位移、相等、共线的判定
- 平面向量的加减乘法及其应用
6. 相交与平行
- 相交直线的判定
- 平行线的判定和性质
- 平行四边形的性质及判定
7. 图形的相似性和尺度
- 图形的相似性的定义和性质
- 相似三角形的判定及性质
- 尺度的概念及应用
8. 三角函数与周期性
- 三角函数的定义及常用公式
- 三角函数的图像和性质
- 三角函数的周期性和简单应用
9. 数据处理与统计
- 统计调查的基本概念和方法
- 平均数、中位数、众数的计算及应用
- 统计图的绘制和数据的分析
以上是高中数学必修一的知识点整理,希望对您有所帮助。
*以上信息为简要总结,具体内容请参考教材或课本。
高中数学必修1知识难点总结

高中数学必修1知识难点总结高中数学必修一作为高中学生必须掌握的重要学科之一,其内容广泛,难度较大。
其中涉及到了很多重要的知识点,以下是笔者针对这些知识点的难点进行的总结。
1.方程与不等式:方程和不等式是高中数学必修1中难度较大的部分,它们是数学分析和解决实际问题的重要工具。
而其中又以一次方程和一次不等式最为基础,理解和掌握其解法是学习这一部分知识的关键。
此外,二次方程和二次不等式也是难点,其解的方法不仅多样,且常涉及高中数学中其他知识点的关联,因此也需要学生投入大量时间和精力去掌握。
2.函数:函数是高中数学必修1中最主要的部分之一,是整个数学课程的重中之重。
函数可以用来总结和反应实际问题中的某些规律,是数学与实际生活相结合的一个重要工具。
而其中又以幂函数、指数函数、对数函数、三角函数等更为常见且重要的知识点最为难以掌握,这些函数不仅是高中数学的重要内容,同时也是高考中经常涉及的复杂题型,因此学生需要针对这些知识点进行重点练习和深入理解。
3.几何:高中数学必修1涉及到的几何部分有很多内容,如直线与角、三角形、四边形和圆等,其中以圆和三角形为难点。
对于圆来说,其性质杂且记忆量大,而对于三角形来说,如线段中线定理、角平分线定理、余弦定理、正弦定理等都是比较抽象的概念,需要学生多加练习,才能掌握。
4.向量:向量是高中数学必修1的新知识,也是比较难理解的一部分。
其涉及到了向量的定义,向量的数量运算、向量的线性运算及向量的应用等多个方面。
需要学生具备很强的空间概念和抽象思维能力,才能够掌握和应用这部分知识。
5.三角函数的图象与性质:三角函数作为高中数学必修1中的重要部分之一,其图象和性质是学习这个领域必不可少的知识点。
但是这部分内容既抽象又复杂,需要学生针对性进行练习和理解,才能够掌握其相关的概念和规律。
6.数列与数学归纳法:数列是高中数学必修1中的一个非常重要的概念,在高考数学中经常涉及。
而数学归纳法则是证明数学命题的常见方法,需要学生掌握其基本思想和应用方法,才能够在数列相关的题型中取得好的成绩。
高中数学:必修1-6重难点梳理

高中数学:必修1-6重难点梳理必修1第一章:集合和函数的基本概念错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。
高三生在一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数指数、对数、幂函数三大函数的运算性质及图像。
函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。
关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。
对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。
另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。
第三章:函数的应用主要就是函数与方程的结合。
其实就是方程的实根,即函数的零点,也就是函数图像与X轴的交点。
这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。
关于证明零点的方法,这是这一章的难点,几种证明方法都要记得,多练习强化。
二次函数的零点的Δ判别法,这个倒不算难。
必修2第一章:空间几何三视图和直观图的绘制不算难。
但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物。
这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推。
有必要的还要在做题时结合草图,不能单凭想象。
后面的锥体柱体台体的表面积和体积,把公式记牢问题就不大。
做题表求表面积时注意好到底有几个面,到底有没有上下底这类问题就可以。
第二章:点、直线、平面之间的位置关系这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生要多看图,自己画草图的时候要严格注意好实线虚线,这是个规范性问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学必修一————各章节知识点与重难点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性(1)元素的确定性;(2)元素的互异性;(3)元素的无序性2、“属于”的概念我们通常用大写的拉丁字母A,B,C, ⋯⋯表示集合,用小写拉丁字母a,b,c, ⋯⋯表示元素如:如果a是集合 A 的元素,就说a属于集合 A 记作a∈A,如果a不属于集合 A 记作 a A3、常用数集及其记法非负整数集(即自然数集)记作:N;正整数集记作:N* 或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2 的解集是{x∈R| x-3>2}或{x| x-3>2}(3)图示法(Venn 图)1.1.2 集合间的基本关系【知识要点】1、“包含”关系——子集一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合 A 为集合B的子集,记作 A B2、“相等”关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A 的元素,我们就说集合 A 等于集合B,即:A=B A B且B A3、真子集如果 A B,且 A B那就说集合A是集合B的真子集,记作 A B(或 B A)4、空集不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集.1.1.3 集合的基本运算【知识要点】1、交集的定义一般地,由所有属于 A 且属于B的元素所组成的集合,叫做A,B 的交集.记作A∩B(读作“A 交B”),即A∩B={x| x∈A,且x∈B}.2、并集的定义一般地,由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做A,B的并集。
记作:A ∪B(读作“A 并B”),即A∪ B={x | x∈A,或x∈B}.3、交集与并集的性质A∩A = A ,A∩φ= φ, A∩B = B∩A,A∪A = A ,A∪φ= A , A∪B = B∪A.4、全集与补集(1)全集如果集合U 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U 来表示。
(2)补集设U 是一个集合, A 是U 的一个子集(即 A U ),由U 中所有不属于 A 的元素组成的集合,叫做U 中子集 A 的补集(或余集)。
记作:C U A ,即C S A ={x | x U 且x A}(3)性质C U(C U A)=A,(C U A)∩A= Φ,(C U A)∪A=U;(C U A)∩(C U B)=C U(A∪B),(C U A)∪(C U B)=C U(A∩B).1.2 函数及其表示1.2.1 函数的概念【知识要点】1、函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合 A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.【注意】(1)如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;(2)函数的定义域、值域要写成集合或区间的形式.【定义域补充】求函数的定义域时列不等式组的主要依据是(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底数必须大于零且不等于 1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域.)2、构成函数的三要素定义域、对应关系和值域【注意】(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
3、相同函数的判断方法(1)定义域一致;(2)表达式相同(两点必须同时具备)【值域补充】(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
4、区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.1.2.2 函数的表示法【知识要点】1、常用的函数表示法及各自的优点(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据:作垂直于x 轴的直线与曲线最多有一个交点。
(2)函数的表示法解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.【注意】解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值2、分段函数在定义域的不同部分上有不同的解析表达式的函数。
在不同的围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.注意:(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3、复合函数如果y=f(u),(u ∈M),u=g(x),(x ∈A),则y=f[g(x)]=F(x),(x∈A)称为 f 是g 的复合函数.4、函数图象知识归纳(1)定义在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x 为横坐标,函数值y 为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C 上每一点的坐标(x,y)均满足函数关系y=f(x) ,反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行于Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法根据函数解析式和定义域,求出x,y 的一些对应值并列表,以(x,y)为坐标在坐标系描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法常用变换方法有三种,即平移变换、对称变换和伸缩变换(Ⅰ)对称变换①将y= f(x)在x轴下方的图象向上翻得到y= ∣f(x)∣的图象如:书上P21例5x1②y= f(x)和y= f(-x) 的图象关于y 轴对称。
如y a x与y a x 1a③y= f(x)和y= -f(x)的图象关于x轴对称。
如y log a x与y log a x log1 xa(Ⅱ)平移变换由f(x)得到f(x a) 左加右减;由f(x)得到f(x) a 上加下减(3)作用A、直观的看出函数的性质;B、利用数形结合的方法分析解题的思路;C、提高解题的速度;发现解题中的错误。
5、映射定义:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合 A 中的任意一个元素x,在集合B中都有唯一确定的元素y 与之对应,那么就称对应f:A B为从集合 A 到集合B的一个映射。
记作“f: A B”给定一个集合 A 到B的映射,如果a∈A,b∈B.且元素a和元素 b 对应,那么,我们把元素b 叫做元素a的象,元素a叫做元素 b 的原象【说明】函数是一种特殊的映射,映射是一种特殊的对应(1) 集合A、B及对应法则 f 是确定的; (2)对应法则有“方向性”,即强调从集合A到集合B 的对应,它与从B到A的对应关系一般是不同的;(3)对于映射f:A→B 来说,则应满足:(Ⅰ)集合 A 中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合 A 中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合 A 中都有原象。
6、函数的解析式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:待定系数法、换元法、消参法等A、如果已知函数解析式的构造时,可用待定系数法;B、已知复合函数f[g(x)] 的表达式时,可用换元法,这时要注意元的取值围;当已知表达式较简单时,也可用凑配法;C、若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)【重点】函数的三种表示法,分段函数的概念,映射的概念【难点】根据不同的需要选择恰当的方法表示函数,分段函数的表示及其图象,映射的概念1.3 函数的基本性质1.3.1 函数单调性与最大(小)值【知识要点】1、函数的单调性定义设函数y=f(x)的定义域为I,如果对于定义域I 的某个区间 D 的任意两个自变量x1,x2,当x1<x2 时,都有f(x1)<f(x 2),那么就说f(x)在区间D上是增函数。
区间 D 称为y=f(x)的单调增区间;如果对于区间 D 上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x) 在这个区间上是减函数.区间D称为y=f(x)的单调减区间.【注意】 (1)函数的单调性是在定义域的某个区间上的性质,是函数的局部性质;(2) 必须是对于区间D 的任意两个自变量x1,x2;当x1<x 2时,总有f(x1)<f(x 2) (或f(x1)>f(x2))。
2、图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的) 单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.3、函数单调区间与单调性的判定方法(A) 定义法①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2);③变形(通常是因式分解和配方) ;④定号(即判断差f(x1)-f(x2)的正负);⑤下结论(指出函数f(x)在给定的区间 D 上的单调性).(B)图象法(从图象上看升降)(C) 复合函数的单调性:复合函数f[g(x)]的单调性与构成它的函数u=g(x) ,y=f(u) 的单调性密切相关,其规律如下:同增异减【注意】函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.4、判断函数的单调性常用的结论①函数y f(x)与y f (x)的单调性相反;②当函数y f (x)恒为正或恒有负时, f (x)与函数y f (x)的单调性相反;1③函数y f(x)与函数y f(x) C(C为常数)的单调性相同;④当 C > 0( C为常数)时,y f (x)与y C gf ( x)的单调性相同;当 C < 0( C为常数)时,y f (x)与y C gf ( x)的单调性相反;⑤函数f(x)、g(x)都是增(减)函数,则 f (x) g( x)仍是增(减)函数;⑥若f(x) 0,g(x) 0且 f ( x)与g( x)都是增(减)函数,则f(x)gg(x)也是增(减)函数;若f(x) 0,g(x) 0且 f (x)与g(x)都是增(减)函数,则f(x)gg(x)也是减(增)函数;f (x)在定义域上是增函数,则n f(x)、kgf(x)(k 0)、f n(x)(n 1) 都是增函1⑦设f(x) 0,若数,而 f (x)是减函数.5、函数的最大(小)值定义(ⅰ)一般地,设函数y=f(x) 的定义域为I,如果存在实数M 满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0) = M那么,称M 是函数y=f(x) 的最大值.(ⅱ)一般地,设函数y=f(x) 的定义域为I,如果存在实数M 满足(1) 对于任意的x∈I,都有f(x)≥M; (2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值.【注意】○1 函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M ;○2 函数最大(小)应该是所有函数值中最大 (小)的,即对于任意的x∈I,都有f(x)≤M( f(x) ≥M).6、利用函数单调性的判断函数的最大(小)值的方法○1 利用二次函数的性质(配方法)求函数的最大(小)值○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);1.3.2 函数的奇偶性【知识要点】1、偶函数定义一般地,对于函数f(x)的定义域的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.2、奇函数定义一般地,对于函数f(x)的定义域的任意一个x,都有f(-x)= —f(x),那么f(x)就叫做奇函数.【注意】①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②函数可能没有奇偶性,也可能既是奇函数又是偶函数。