大学物理第9-10-11章作业

合集下载

习题第9章

习题第9章

第9章 质心运动定理 动量定理
习题
9-1 设质量为m 的质点M 在Oxy 平面内运动,其运动方程为cos x a kt =,sin y b kt =,式中a 、b 及k 都是常数,求作用于质点M 上的力。

答案:力F
的大小:F mk = 力F 的方向:tan y
x F y F x
β== 9-2 设质点M 以初速度0υ从O 点与水平Ox 成α角射出,不计空气阻力,求质
点M 在重力作用下的运动规律。

答案:质点的运动方程:020cos 1sin 2
x t y t gt υαυα=⎧⎪⎨=-⎪⎩ 9-3如图所示,均质杆OA ,长2l ,重为P ,绕O 轴在铅垂面内转动。

杆与水平线成ϕ角时,其角速度和角加速度分别为ω和α,求该瞬时轴O 的约束反力。

答案:
9-4 匀质杆AB 长为l ,质量为m ,匀质圆盘半径5
l r =,质量为2m ,在水平面作纯滚动,当30ϕ=时,杆上B 端沿铅垂方向向下滑的速度为B υ。

试求此瞬时
系统的总动量。

答案:122
x y B B p p m υυ=+=-p i j i j 9-5 物A 质量为5kg ,物B 质量为10kg ,A 、B 与水平面间的摩擦因数为0.25.现A 向右运动而撞击B 。

开始时,B 处于静止状态,撞击后,A 、B 一同向右运动,历时4s 停止。

求撞击前A 的速度,并求撞击时A 、B 相互作用的冲量。

答案:030/m s υ=,,100x e I N s =⋅
2(cos sin )Ox Pl F g ωφαφ=-+2(sin cos )Oy Pl F P g ωφαφ=+
-。

《大学物理》第二版-课后习题标准答案-第九章

《大学物理》第二版-课后习题标准答案-第九章

《大学物理》第二版-课后习题答案-第九章————————————————————————————————作者:————————————————————————————————日期:习题精解9-1.在气垫导轨上质量为m 的物体由两个轻弹簧分别固定在气垫导轨的两端,如图9-1所示,试证明物体m 的左右运动为简谐振动,并求其振动周期。

设弹簧的劲度系数为k 1和k 2. 解:取物体在平衡位置为坐标原点,则物体在任意位置时受的力为 12()F k k x =-+ 根据牛顿第二定律有2122()d xF k k x ma m dt=-+==化简得21220k k d x x dt m++= 令212k k mω+=则2220d x x dt ω+=所以物体做简谐振动,其周期1222mT k k ππω==+9-2 如图9.2所示在电场强度为E 的匀强电场中,放置一电偶极矩P=ql 的电偶极子,+q 和-q 相距l ,且l 不变。

若有一外界扰动使这对电荷偏过一微小角度,扰动消息后,这对电荷会以垂直与电场并通过l 的中心点o 的直线为轴来回摆动。

试证明这种摆动是近似的简谐振动,并求其振动周期。

设电荷的质量皆为m ,重力忽略不计。

解 取逆时针的力矩方向为正方向,当电偶极子在如图9.2所示位置时,电偶极子所受力矩为sin sin sin 22l lM qE qE qEl θθθ=--=- 电偶极子对中心O 点的转动惯量为2221222l l J m m ml ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭由转动定律知2221sin 2d M qEl J ml dtθθβ=-==•化简得222sin 0d qEdt mlθθ+= 当角度很小时有sin 0θ≈,若令22qEmlω=,则上式变为222sin 0d dtθωθ+= 所以电偶极子的微小摆动是简谐振动。

而且其周期为222mlT qEππω== 9-3 汽车的质量一般支承在固定与轴承的若干根弹簧上,成为一倒置的弹簧振子。

上海交大版大学物理第九章参考答案

上海交大版大学物理第九章参考答案

版权归原著所有 本答案仅供参考习题99-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=L 。

容器与大气相通排出一部分气体后,气压下降了。

若温度不变,求排出气体的质量。

解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。

由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=, 这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV L P ⨯= 则排除的气体的质量为:0.783'' 1.31.71.78g L m V g L ρ⨯∆==⨯= 。

根据题意pV RT ν=,可得:mpV RT M=,1V p RT p M m ρ==9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。

如果其中的一边装有某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O HH Om m M M =,代入数据有: 1.6O m kg = 。

9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。

用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。

要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30oC ,则氮气的温度应是多少解:已知氮气和氧气质量相同,水银滴停留在管的正中央, 则体积和压强相同,如图。

由:mol mpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+ 。

9-4.高压氧瓶:71.310p Pa =⨯,30V L =,每天用51 1.010p Pa =⨯,1400V L =,为保证瓶内6' 1.010p Pa ≥⨯,能用几天解:由''pV p V =,可得:761.31030'390' 1.010pV Pa LV L p Pa⨯⨯===⨯, ∴'360V V V L ∆=-=;而:11'p V p V ∆=∆,有:615' 1.010********.010p V Pa LV L p Pa∆⨯⨯∆===⨯, 那么:能用的天数为36009400/Ln L ==天天 。

袁艳红主编大学物理学第九章课后习题答案

袁艳红主编大学物理学第九章课后习题答案

----------专业最好文档,专业为你服务,急你所急,供你所需-------------文档下载最佳的地方第9章 静电场习 题一 选择题9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ](A)4f (B) 8f (C) 38f (D) 16f答案:B解析:经过碰撞后,球A 、B 带电量为2q,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为8f。

9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。

因而正确答案(B )习题9-3图(B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 (C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。

O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式204q E rπε=,移动电荷后,由于OP =OT ,即r 没有变化,q 没有变化,因而电场强度大小不变。

因而正确答案(D )9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ](A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。

东北大学大学物理附加题9章10章作业答案

东北大学大学物理附加题9章10章作业答案

第9章 振动 作 业一、教材:选择填空题 1~5;计算题:13,14,18 二、附加题 (一)、选择题1、一沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π34,则t=0时,质点的位置在:D(A)过A x 21=处,向负方向运动; (B) 过A x 21=处,向正方向运动;(C )过A x 21-=处,向负方向运动; (D)过A x 21-=处,向正方向运动。

2、一质点作简谐振动,振动方程为:x=A cos(ωt +φ )在t=T/2(T 为周期)时刻,质点的速度为:B(A ) sin A ωϕ-. (B ) sin A ωϕ. (C) cos A ωϕ-. (D)cos A ωϕ.3、一质点沿x 轴做简谐运动,振动方程为:21410cos(2)3x t ππ-=⨯+。

从t = 0时刻起,到x =-2c m处,且向x 轴正方向运动的最短时间间隔为:C (A)1s 8. (B) 1s 4. (C) 1s 2. (D) 1s 3. (E) 1s 6. (二)、计算题1、一物体沿x 轴做简谐运动,振幅A = 0.12m ,周期T = 2s.当t = 0时,物体的位移x 0= 0.06m,且向x 轴正向运动.求:(1)此简谐运动的运动方程;(2)t = T /4时物体的位置、速度和加速度;解:(1)0.12cos 3x t ππ⎛⎫=- ⎪⎝⎭m(2)0.12sin 3v t πππ⎛⎫=-- ⎪⎝⎭m /s 20.12cos 3a t πππ⎛⎫=-- ⎪⎝⎭m /s2 t = T/4时0.12cos 0.106x π==≈m0.12sin0.060.196v πππ=-=-≈-m/s20.12cos 0.06 1.026a πππ=-=-≈-m /s 22、一物体沿x 轴做简谐运动,振幅A = 10.0cm,周期T = 2.0s.当t = 0时,物体的位移x 0= -5cm ,且向x 轴负方向运动.求:(1)简谐运动方程;(2)t = 0.5s时,物体的位移;(3)何时物体第一次运动到x = 5cm 处?(4)再经过多少时间物体第二次运动到x = 5cm 处?解:(1)20.1cos 3x t ππ⎛⎫=+⎪⎝⎭m(2)t = 0.5s时,270.1cos 0.1cos 0.087236x πππ⎛⎫=+=≈- ⎪⎝⎭m (3)利用旋转矢量法,第一次运动到x =5cm 处,相位是15233t πππ=+所以11t =s(3)利用旋转矢量法,第二次运动到x =5cm 处,相位是27233t πππ=+所以253t =s 215210.6733t t t s ∆=-=-==3、若简谐振动方程为m ]4/20cos[1.0ππ+=t x ,求:(1)振幅、频率、角频率、周期和初相;(2)t =2s 时的位移、速度和加速度.解:(1)可用比较法求解.据]4/20cos[1.0]cos[ππϕω+=+=t t A x得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 据cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得20.0707, 4.44/,279/x m m s a m s ν==-=-4、如图所示,质量为10g 的子弹以1000m .s -1的速度射入木块并嵌在木块中,并使弹簧压缩从而作简谐振动,若木块质量为4.99kg ,弹簧的劲度系数31810N m -⨯⋅,求振动的振幅。

大学物理第9章习题答案

大学物理第9章习题答案

⼤学物理第9章习题答案第4篇电磁学第9章静电场9.1 基本要求1掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。

掌握电势与电场强度的积分关系。

能计算⼀些简单问题中的电场强度和电势。

了解电场强度与电势的微分关系。

2理解静电场的规律:⾼斯定理和环路定理。

理解⽤⾼斯定理计算电场强度的条件和⽅法。

3了解导体的静电平衡条件,了解介质的极化现象及其微观解释。

了解各向同性介质中D和E之间的关系。

了解介质中的⾼斯定理。

4了解电容和电能密度的概念。

9.2基本概念1电场强度E :试验电荷0q 所受到的电场⼒F 与0q 之⽐,即0q =F E 2电位移D :电位移⽮量是描述电场性质的辅助量。

在各向同性介质中,它与场强成正⽐,即ε=D E 3电场强度通量e Φ:e Sd Φ=E S电位移通量:D Sd Φ=D S4电势能pa E :0pa aE q d ∞=?E l (设0p E ∞=)5电势a V :0pa a aE V d q ∞==? E l (设0V ∞=)电势差ab U :ab a b U V V =- 6场强与电势的关系(1)积分关系 a aV d ∞=7电容C:描述导体或导体组(电容器)容纳电荷能⼒的物理量。

孤⽴导体的电容:Q C V =;电容器的电容:Q C U= 8静电场的能量:静电场中所贮存的能量。

电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3基本规律1库仑定律:12204rq q rπε=F e 2叠加原理(1)电场强度叠加原理:在点电荷系产⽣的电场中任⼀点的场强等于每个点电荷单独存在时在该点产⽣的场强的⽮量和。

(2)电势叠加原理:在点电荷系产⽣的电场中,某点的电势等于每个点电荷单独存在时在该点产⽣的电势的代数和。

3⾼斯定理:真空中静电场内,通过任意闭合曲⾯的电场强度通量等于该曲⾯所包围的电量的代数和的1/ε 0倍。

大学物理课后答案9-10

大学物理课后答案9-10

物理学教程(二)下册答案9—13 马文蔚第九章 静 电 场9-1 电荷面密度均为+ζ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为2εζ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零 (C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ). 9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21e ,中子电量为10-21e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较. 解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r rr re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度. 分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度. 解 根据上述分析2020π1)2/(2π41aqa q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r qεe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=Lr qE 20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εqαE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r L Q r εE l 0220π2 /41/π21lim=+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为ζ,求球心处电场强度的大小.题 9-9 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度. 解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为()i E 2/3220d π41d r x qx +=ε由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E积分得 02/π004d cos sin 2εδθθθεδ⎰==E9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x pεE =可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41xθer εx θer εx p εE ===解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεer εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫⎝⎛⋅-≈⎪⎭⎫⎝⎛-≈-+x r x x r x xr r xθθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得300cos π1xθe r εE =9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()ii E E E x r x r x r x -=⎪⎪⎭⎫⎝⎛-+=+=+-00000π211π2ελελ(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+-显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εSS E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S SS E S E Φd d方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S SS E S E Φd d依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++=r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅sQ E r S E 0i2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ=假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ=考虑到电场强度沿径向朝外,带电球体外的电场强度为 re rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL E r <R 1 , 0=∑q 01=ER 1 <r <R 2 , L λq =∑ rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεζrL εL λr ελE ===9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()22031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()dεQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势 dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明. 解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为Rq εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+ζ和-ζ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εζ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x 0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εζV x<<--=⋅=⎰ d 00l E ()a x a εζV -<=⋅+⋅=⎰⎰- d d 00a-a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E 当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V += 若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V +=若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V d 1d 0ρεS E可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰ba b a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时 02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()r R εR ρr r εR ρr V R r ln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度ζ=2.00×10-5 C·m-2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d xr r r ζεV +=由电势叠加,轴线上任一点P 的电势的 ()x x R εζx r r r εζV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为 i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εζx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==ζR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率 17k00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能. 9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24A K ⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24A K k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题 9-27 图第十章 静电场中的导体与电介质10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地题 10-2 图分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E (D )Rεq V d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷。

大学物理第9章静电场习题参考答案

大学物理第9章静电场习题参考答案

第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有210141AC r q E πε=14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 220241BC r q E πε=14299m V 107.204.0108.1109--⋅⨯=⨯⨯⨯= 方向沿CB 方向∴ C 点的合场强E的大小为:24242221)107.2()108.1(⨯+⨯=+=E E E 14m V 1024.3-⋅⨯=设E 的方向与CB 的夹角为α,则有︒===--7.337.28.11211tg E E tg α 9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相互抵消。

习题9-1图习题9-3图习题9-2图0=∴x E ,圆心O 处场强E 的y 分量为⎪⎪⎭⎫⎝⎛-===⎰⎰2312sin d 412sin d 412026260R R R R lE y πελθθλπεθλπεππ方向沿y 轴正向。

9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。

设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是 ⎰⎰-+-==11)(20d 41d d L d P P xxE E πε 132289110m V 1041.2102811081103109114----⋅⨯=⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+-=L d d πελ方向沿x 轴方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1Lr QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r qεe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==LyE Ej j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=Lr q E 20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41Lr Q εL r L r L εQx r L xQ εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅sQ E r S E 0i2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得 R r <时, 302π34π4r E r ερ=假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ=考虑到电场强度沿径向朝外,带电球体外的电场强度为 r e rRE 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑r ελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεζrLεL λrελE ===9-19 电荷面密度分别为+ζ和-ζ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εζ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x 0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εζV x<<--=⋅=⎰d 0l E()a x a εζV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E()a x a V >-=⋅+⋅=⎰⎰d d 0aaxεσl E l E电势变化曲线如图(b )所示.9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅VV d 1d 0ρεS E可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεRρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()224d 2rRερr εr ρr V Rr-==⎰当r ≥R 时()rR εRρr rεRρr V Rrln2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU LE m即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ0===E qU E E n一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.第10章10-8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布. 分析 若200π4R εQ V =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQ V ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为 r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εq r E =r >R 2 时, ()202π4rεq Q r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R QR qV R R R R rrεε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q rqV R R rrεε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rq Q V r03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布: 在导体球内(r <R 1)20101π4π4R εQ R εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQ rεq V +=在球壳外(r >R 2)为rq Q V 03π4ε+=由题意102001π4π4R εQ R εq V V +==得Q R R V R q 21010π4==ε于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4rR εQ R rV R E -=;rR Q R r rV R V 201012π4)(ε-+=r >R 2 时,220122013π4)(rR Q R R rV R E ε-+=;rR Q R R rV R V 2012013π4)(ε-+=10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2,两金属片之间的距离是0.600 mm .如果电路能检测出的电容变化量是0.250 pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd dS εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cdd d d ε10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2 ×10-9m ,两表面所带面电荷密度为±5.2 ×10 -3 C /m 2 ,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差.解 (1)细胞壁内的电场强度V/m 108.960⨯==rεεζE ;方向指向细胞外.(2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-17 如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd SεQ U r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQ U -=综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变. 解 (1) 空气平板电容器的电容dS εC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδSεεδS εεQ δd S εQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δεδεε-+==d SU U C Q r r 011介质内电场强度()δd εδU SεεQ E r r -+=='011空气中电场强度()δd εδU εSεQ E r r -+==011(3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02U δd SεQ -=02导体中电场强度 02='E 空气中电场强度δd U E -=2无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.第11章11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iBB 0.解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μRI μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μRI μRI μRI μRI μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.11-14 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅IμB 0πr2d l B在导线内r <R , 2222ππRIr r RI I ==∑,因而202πRIr μB =在导线外r >R ,I I =∑,因而rI μB 2π0=磁感强度分布曲线如图所示.11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得 r <R 12211ππ12πr R μr B =⋅21012πR Ir μB =R 1 <r <R 2I μr B 022π=⋅ rI μB 2π02=R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R Rr I μr B 22232203ππ2π 2223223032πRR r R r I μB --=r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πRIr μr B =在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd解 由分析可得单位长度导线内的磁通量4πd 2π0020I μr RIr μΦR==⎰11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU BE H H v11-21 从太阳射来的速度为0.80×108 m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少? 解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v。

相关文档
最新文档