化学与复合材料
什么是复合材料初中化学

什么是复合材料初中化学复合材料是指由两种或两种以上不同的材料组合而成的新型材料,其性能比单一材料更加优异。
以下是有关复合材料的初中化学知识,分为以下几个部分:1. 复合材料的定义复合材料是由两种或更多种不同的材料以一定方式组合而成的一种新型材料。
它们的性质比单一材料更加优异,如强度、硬度、韧性、耐磨性、耐腐蚀性等等。
广泛应用于航空、汽车、建筑、电子等领域。
2. 复合材料的种类常见的复合材料包括:碳纤维复合材料、玻璃纤维复合材料、陶瓷复合材料、金属基复合材料、聚合物基复合材料等。
3. 碳纤维复合材料碳纤维复合材料是由碳纤维和树脂组成的。
碳纤维具有非常优秀的强度和刚度,在航空、汽车、体育器材等领域得到广泛应用。
但碳纤维本身脆性很大,易断裂,所以需要和树脂进行复合,提高其韧性。
4. 玻璃纤维复合材料玻璃纤维复合材料由玻璃纤维和树脂组成,通常呈白色。
玻璃纤维具有极佳的拉伸强度和耐腐蚀性,广泛应用于建筑、汽车、电子等领域。
但玻璃纤维本身脆性很大,需要和树脂进行复合,提高其韧性。
5. 陶瓷复合材料陶瓷复合材料由陶瓷颗粒和金属树脂等组成。
由于陶瓷具有优良的耐磨性、耐热性、抗氧化和硬度等特点,所以广泛应用于高温、高压、高速和腐蚀性强的环境中。
6. 金属基复合材料金属基复合材料通常由金属和非金属材料组成,如铜基复合材料、钛基复合材料等。
金属复合材料具有极高的强度、刚度和抗疲劳性,被广泛应用于汽车、航空、航天等领域。
7. 聚合物基复合材料聚合物基复合材料是由聚合物和玻璃纤维、碳纤维等增强材料组成的。
它具有优异的韧性、强度和耐腐蚀性,广泛应用于汽车、航空、建筑、电子等领域。
以上就是有关复合材料的初中化学知识。
通过学习,我们可以了解到不同种类的复合材料及其优点,这将有助于我们在未来的工作中选择适当的材料来满足需求。
初中化学复合材料和合成材料

初中化学复合材料和合成材料
《初中化学复合材料和合成材料》
一、什么是复合材料?
复合材料,是由两种或两种以上不同的原材料混合而成的材料,其特性比单一材料更加优越。
它可以有效地提升材料的特性,如强度、耐热性等,从而可以应用到大多数的工业制品中,有助于提高材料的使用性能、改善材料的外观以及增加其可靠性。
二、复合材料的分类
复合材料是根据其构成材料的不同来分类的,主要有陶瓷复合材料、金属复合材料和高分子复合材料。
1. 陶瓷复合材料
陶瓷复合材料是指以陶瓷为基体,加入其他的添加剂或有机材料而制成的复合材料。
它具有良好的耐热性、耐腐蚀性、抗腐蚀性等特点,广泛应用于航空航天、电子、电器、环保、能源、冶金、机械制造等行业。
2. 金属复合材料
金属复合材料是指以金属为基体,加入其他材料而制成的复合材料。
它具有良好的强度、韧性、导电性和耐热性等特点,通常用于航空航天、汽车制造、电子、电力、计算机、农业机械、医疗器械等行业。
3. 高分子复合材料
高分子复合材料是指以高分子材料为基体,加入其他材料而制成
的复合材料。
它具有良好的机械强度、韧性、柔韧性、耐腐蚀、耐热等特点,通常用于航空航天、电子、室内装饰、汽车制造、管道、电器等行业。
三、合成材料
合成材料是指由两种或者以上的原材料经过特殊工艺处理,利用其物理或者化学性质的结合作用,形成新的材料。
它具有超强的力学性能、高的抗腐蚀性能、耐磨性能以及优异的使用寿命,广泛用于航空航天、军事、石油化工、建筑工程、汽车制造和食品包装等行业。
高中化学必修1 4.3 复合材料

B.仅②③
C.除③外
D.①②③④
【解析】选D。复合材料既能保持原来材料的长处,又能弥补它们的不
足,具有强度高、质量轻、耐高温、耐腐蚀等特性。
2.某复合材料是以碳纤维为增强体、金属钛为基体复合而成的。估计
这种材料( )
①耐高温
②不耐热
③导电、导热
④不导电、不导热
⑤可用于飞机机翼
⑥可用于导弹的壳体
A.①③⑤⑥
4.复合材料的类型。 树脂基 金属基 陶瓷基
颗粒增强 夹层增强 纤维增强
5.生产、生活中常见的复合材料:
复合材料 组 基体 成 增强体
玻璃钢 _合__成__树__脂__ _玻__璃__纤__维__
碳纤维增强复合材料 _合__成__树__脂__ _碳__纤__维__
特性
密度小,质量轻,耐水,耐磨,耐 腐蚀性强,良好的电绝缘性和 机械加工性能
韧性好、强度高、质量 轻
6.航空、航天领域中的复合材料:
材料 名称
碳纤维增强金属基复合材料 隔热陶瓷瓦(纤维增强陶瓷)
基体 增强体
_金__属__(Al、Mg、Ti等) _纤__维__(碳纤维等)
_陶__瓷__(Al2O3陶瓷、Si3N4陶瓷、 SiO2陶瓷等) _纤__维__(碳纤维、碳化硅纤维等)
2.对下列材料的特征及用途的说法不正确的是( ) A.玻璃纤维柔软如丝,可像棉纱一样纺织,但拉伸强度低 B.光导纤维传导光的能力很强,是非常好的通讯材料 C.氮化硅陶瓷耐高温且不易传热,可用于制造柴油机 D.玻璃钢强度高,密度小,耐腐蚀,可用于制作废水处理系统的管道 【解析】选A。玻璃纤维虽然极细如丝,但其拉伸强度大,其拉伸强度 接近于钢,所以A项错误。
B.②③⑤⑥
鲁科版高中化学必修一4.3复合材料

第3节 复合材料(1)传统无机非金属材料是玻璃、水泥、陶瓷,特点是性质稳定、熔点高,易破碎。
(2)常见的金属材料有生铁、钢、不锈钢、铜、铝合金等。
(3)常见的有机合成材料有塑料,合成纤维,合成橡胶。
(4)新型无机非金属材料有光导纤维,高温结构陶瓷,生物陶瓷,压电陶瓷等。
(5)将金属制成合金,可保持单一金属的长处,性能优于纯金属。
生铁、钢、不锈钢都属于铁的合金。
一、认识复合材料 1.概念将两种或两种以上性质不同的材料经特殊加工而制成的材料。
2.组成复合材料⎩⎪⎨⎪⎧基体:起黏结作用增强体:起骨架作用3.优点复合材料既保持了原有材料的特点,又使各组分之间协同作用,形成了优于原材料的特性。
二、形形色色的复合材料 1.生产、生活中常用的复合材料(1)玻璃钢是一种以玻璃纤维做增强体、合成树脂做基体的复合材料。
优点:强度高、密度小,且有较好的耐化学腐蚀性、电绝缘性和机械加工性能。
(2)碳纤维增强复合材料是在合成树脂的基体中加入了碳纤维做增强体。
优点:具有韧性好、强度高而质轻的特点。
2.航空、航天领域中的复合材料(1)飞机、火箭、导弹等用的复合材料,大多是以纤维为增强体、金属为基体的复合材料。
优点:耐高温、强度高、导电性好、导热性好、不吸湿和不易老化等。
(2)航天飞机机身上使用的隔热陶瓷瓦是由纤维和陶瓷复合而成的材料制成的。
1.下列说法错误的是( )A .玻璃钢是以玻璃纤维做增强体、合成树脂做基体的复合材料B .飞机机身的复合材料大多是以金属为增强体、纤维为基体的复合材料C .制造网球拍所用的复合材料是在合成树脂的基体中加入了碳纤维做增强体D .航天飞机机身上使用的隔热陶瓷瓦是由纤维和陶瓷复合而成的材料制成的解析:飞机机身的复合材料大多是以纤维为增强体、金属为基体的复合材料,B 项错误。
答案:B2.请用短线把下列物质及其用途、主要性能相互连在一起:答案:A —a —② B —c —④ C —d —① D —b —③ E —e —⑤复合材料1.分类(1)按基体分类⎩⎪⎨⎪⎧树脂基复合材料金属基复合材料陶瓷基复合材料(2)按增强体形状分类⎩⎪⎨⎪⎧颗粒增强复合材料夹层增强复合材料纤维增强复合材料2.各种复合材料的比较材料名称基体增强体主要性能主要用途玻璃钢合成树脂玻璃纤维强度高,密度小,耐化学腐蚀,绝缘性和机械加工性能好娱乐设施、运输罐、电话亭、餐桌椅等碳纤维增强复合材料合成树脂碳纤维韧性好,强度高,质轻高尔夫球杆、球拍、钓鱼竿、赛车等航空复合材料金属最广泛的是碳纤维,还有硼纤维、碳化硅纤维和氧化铝纤维等耐高温,强度高,导电性好,不吸湿和不易老化飞机、火箭的机翼和机身,导弹的壳体、尾翼航天复合材料陶瓷多为碳纤维、碳化硅纤维或氧化硅纤维耐高温,韧性强航天飞机机身[例]某复合材料是以人工碳纤维为增强体、金属钛为基体复合而成的。
高一化学复合材料知识点

高一化学复合材料知识点复合材料是一种由两种或两种以上的不同物质组成的材料,其中它们各自保持其特点,并且相互作用之后呈现出更好的综合性能。
在现代工业中,复合材料广泛应用于航空航天、汽车制造、建筑材料等领域。
本文将介绍一些高一化学学习课程中涉及的关于复合材料的基本知识。
一、复合材料的分类复合材料根据其组成和结构的不同可以分为以下几种类型:1. 纤维增强复合材料:以纤维为增强体,树脂等为基体,通过层叠或编织形成的材料。
纤维增强复合材料具有高强度、高模量、轻质等优点,因此在航空航天等领域得到广泛应用。
2. 颗粒增强复合材料:以颗粒为增强体,树脂等为基体,混合后形成的材料。
颗粒增强复合材料具有良好的耐磨性、耐蚀性等特点,常用于建筑材料中。
3. 片层材料:由多个层状片材通过胶合等方式连接而成的材料。
片层材料常用于电子元器件中,可以提供较好的绝缘性能和导热性能。
二、复合材料的制备方法复合材料的制备方法多种多样,常见的有以下几种:1. 手工层压:将纤维和树脂依次叠放在模具中,利用手工操作使其完全贴合,并经过高温高压处理,最终形成复合材料。
2. 注塑成型:将树脂熔融后注入模具中,并加压使其充分填充纤维空隙,待冷却固化后取出模具即可得到复合材料。
3. 熔融法:将纤维和树脂混合后加热熔融,然后通过喷射或挤出成型的方法得到复合材料。
三、复合材料的应用领域复合材料具有轻质、高强度、耐腐蚀等优点,在许多领域中得到了广泛应用。
1. 航空航天领域:航空器的结构件和发动机零部件中经常使用复合材料,可以减轻重量,提高飞行速度和燃油利用率。
2. 汽车制造:复合材料在汽车制造中的应用越来越广泛,例如车身和发动机盖等部位常使用复合材料,可以降低车辆重量,提高燃油经济性。
3. 建筑材料:复合材料可以制成各种形状的板材,用于墙体、屋面等建筑结构中,具有良好的隔热、隔音和耐候性能。
4. 体育用品:高档的运动装备和器械,如高尔夫球杆、网球拍等常使用复合材料制作,以提高其性能和使用寿命。
高中化学复合材料教案

高中化学复合材料教案
目标:学生能够了解复合材料的定义、特点、分类和应用,并能够分析其优劣势。
素材准备:
1. 复合材料的定义、特点、分类和应用的相关资料;
2. 实例图片或视频,展示不同种类的复合材料;
3. 小组讨论题目和案例分析材料。
教学过程:
一、导入(5分钟)
通过观看一段视频或展示一些实例图片,引入复合材料的概念,引发学生对该主题的兴趣。
二、讲解复合材料的定义和特点(15分钟)
1. 阐述复合材料的定义和特点:由两种或两种以上的材料组成,具有优异性能和特定功能;
2. 介绍复合材料的优点,如轻质高强、耐磨耐腐蚀、设计性能可调;
3. 引导学生思考:为什么要使用复合材料?
三、介绍复合材料的分类(15分钟)
1. 根据成分的不同,将复合材料分为有机复合材料、无机复合材料、金属-非金属复合材
料等;
2. 详细讲解各类复合材料的特点和应用范围。
四、讨论复合材料的应用领域(15分钟)
1. 小组讨论:学生分组讨论复合材料在航空航天、汽车制造、建筑材料等领域的具体应用;
2. 展示各组讨论结果,让学生分享自己的思考和见解。
五、总结讨论(10分钟)
回顾今天所学内容,总结复合材料的优势和应用领域,让学生能够全面了解复合材料的重
要性和实际应用。
六、作业布置(5分钟)
布置作业:要求学生选择一个实际的产品或领域,分析其中所使用的复合材料的类型、性
能和优势,并撰写相关报告。
备注:教案中的时间分配仅供参考,实际教学中可根据学生反应及课堂情况适当调整。
化学知识点初中复合材料

初中化学知识点:复合材料1.什么是复合材料?复合材料是由两种或更多种不同物质组合而成的材料。
它们的组合使得复合材料具有比单一物质更好的性能和特性。
2.复合材料的组成复合材料通常由两个主要组成部分构成:基体和增强材料。
基体是主要成分,起到固化增强材料的作用。
增强材料则提供了复合材料的特殊性能。
3.基体的种类基体可以是金属、陶瓷、聚合物等。
不同的基体材料具有不同的特性。
金属基体材料通常具有高强度和刚性,适用于需要承受高压和高温的应用。
陶瓷基体材料具有良好的耐磨性和耐腐蚀性,适用于高温和化学环境下的应用。
聚合物基体材料具有轻质和良好的绝缘性能,适用于需要轻质和绝缘的应用。
4.增强材料的种类增强材料可以是纤维、颗粒、颗粒等。
纤维增强材料是最常见的类型,如碳纤维、玻璃纤维等。
纤维增强材料具有高强度和刚性,能够增加复合材料的强度和耐用性。
颗粒增强材料可以改善复合材料的耐磨性和耐腐蚀性能。
5.复合材料的制备方法制备复合材料的方法有很多种,其中最常见的是层压法和浸渍法。
层压法是将基体和增强材料层层叠加,并通过压力和温度使其固化在一起。
浸渍法是将基体浸入增强材料的浆料中,使其吸附增强材料,并通过固化使其固定在基体上。
6.复合材料的应用复合材料具有广泛的应用领域。
在航空航天领域,复合材料被广泛应用于飞机和宇航器的结构件,以提高其强度和轻量化。
在汽车制造领域,复合材料可以用于制造车身和零部件,以提高汽车的燃油效率和碰撞安全性。
此外,复合材料还可以应用于建筑、体育用品、电子设备等领域。
7.复合材料的优点和挑战复合材料相比传统材料具有许多优点,如高强度、轻质、耐腐蚀等。
然而,复合材料的制备过程较为复杂,成本较高,并且在环境和可持续性方面面临挑战。
因此,如何平衡复合材料的性能和成本,以及如何解决其可持续性问题,是复合材料研究的重要课题。
总结:复合材料是由两种或更多种不同物质组合而成的材料。
它们的组合使得复合材料具有比单一物质更好的性能和特性。
高中化学复合材料试讲教案

高中化学复合材料试讲教案在当今的科学教育领域,将理论与实践相结合已成为教学的重要趋势。
特别是对于高中化学这一科目,通过实验和实际操作来加深学生对知识的理解至关重要。
本次我们将重点探讨一个高中化学的试讲教案——复合材料的制备与应用,旨在激发学生们的创新精神和实践能力。
首先,我们需要明确什么是复合材料。
简单来说,复合材料是由两种或两种以上不同材料组合而成的新型材料,这些材料相互结合,能够产生比单一材料更优越的性能。
例如,常见的钢筋混凝土就是一种复合材料,它结合了钢筋的抗拉强度和混凝土的抗压能力,广泛应用于建筑行业。
为了让学生们更好地理解复合材料的概念及其特性,我们可以设计一个简单的实验:制作并测试一种简单的复合材料。
在这个实验中,我们以生活中常见的材料为原材料,如塑料、纤维等,通过简单的混合和加工过程,让学生亲手制备出一种具有特殊性能的复合材料。
接下来是教案的核心部分——试讲环节。
在这一环节中,教师需要引导学生思考以下几个问题:1. 为什么我们要使用复合材料而不是单一的材料?2. 不同的材料组合在一起会有哪些不同的性能表现?3. 我们如何根据需求选择合适的材料进行复合?针对这些问题,教师可以准备一些案例进行分析,例如航空航天工业中使用的碳纤维复合材料,以及日常生活中使用的各类复合塑料制品。
通过具体案例的分析,学生不仅能够了解复合材料的广泛应用,还能学会如何根据实际需求选择合适的材料。
此外,教师还应该强调实验操作的安全性。
在制备复合材料的过程中,可能会涉及到一些化学物质或加热、加压等步骤,因此,安全教育是必不可少的一环。
教师需要确保学生了解所有实验器材的使用方法和安全注意事项,确保实验的顺利进行。
最后,教师应该鼓励学生进行创新思考。
在了解复合材料的基本概念和制备方法后,学生可以尝试设计自己的复合材料,并思考如何改进其性能,甚至考虑其在现实生活中的应用前景。
总结来说,这份高中化学复合材料试讲教案范本旨在通过实践活动帮助学生深入理解复合材料的概念、性能和应用,同时培养他们的实验操作能力和创新思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合材料由两部分组成:基体相(连续相)
和增强相(分散相)。
基体相是连续相材料,把改善性能的增 强相材料粘结在一起,起粘结剂的作用。 增强相大部分是高强物质,起提高强度 或韧性的作用。
复合材料按增强相形状
可分为三类:
1 纤维增强复合材料 2 层合增强复合材料 3 颗粒增强复合材料
按基体相材料类型可分为三类: 1 树脂基复合材料
1990年7月,第一届国际纳米科学技术 (Nano Science and Technology,简称NST)会议 在美国巴尔的摩召开,标志着纳米科学技术 的正式诞生。 最初纳米材料(Nano material)是指粒径为 1100nm的超细颗粒和由超细颗粒构成的薄膜 和固体。现在,广义地纳米材料是指在三维空 间中至少有一维处于纳米尺度范围或由它们作 为基本单元构成的材料。
(3) 硼纤维增强复合材料 硼纤维是一种强度、刚度均比碳纤维高的 纤维。硼纤维增强复合材料是硼纤维增强材料 与树脂基体组成的复合材料。用作高温材料, 但因为价格昂贵,应用受到限制。主要用于航 空工业。
2 . 层合增强复合材料
(1) 双层金属复合材料
双层金属复合材料是将特性不同的两种金 属,用胶合或者熔合铸造、热压、焊接、喷涂
2 金属基复合材料
3 陶瓷基复合材料
5.4.2 复合材料的技术性能
1. 比强度和比模量高
比强度(抗拉强度与密度之比)和比模量 (弹性模量与密度之比)高,说明材料轻而且刚 性大。
2. 良好的抗疲劳性能
疲劳是材料在循环应力作用下的性质。复 合材料能有效地阻止疲劳裂纹的扩展。
3. 减振性能好
在工作过程中振动问题十分突出,复合材 料为多相系统,大量的界面对振动有反射吸收
纳米材料既不同于宏观物体,又不同于微 观粒子,正好处于中间地带。具有纳米尺度的 物质由于其结构的特殊 性,使纳米材料具有许 多特殊的性能。
碳纳米管
1. 纳米材料的性能
(1) 小尺寸效应:当颗粒尺寸减小到纳米量 级时,一定条件下导致材料宏观物理、化学性 质发生变化。 由于比表面积大大增加,使纳米材料具有 极强的吸附能力。如光吸收显著增强;纳米陶 瓷可以被弯曲,其塑性变形可达100%;纳米微 粒的熔点低于块状金属,如块状金熔点为1337K, 而2nm的金微粒的熔点只有600K。
等方法复合在一起以满足某种性能要求的材料。
(2) 夹层复合材料 夹层复合材料是性质完全不同的表面材料 与芯材复合而成的一种材料。
3.颗粒增强复合材料
颗粒复合材料是一种或多种材料的颗粒均 匀分散在基体材料内所组成的材料。
尼龙6/粘土纳米复合材料
5.4.4 纳米材料
根据人类的需要,逐个操纵原子来制造 产品,这是人类关于纳米技术最早的梦想。 1981年,扫描隧道显微镜 (Scanning Tunneling Microscope) 的发明,向人类揭示了一个可见 的原子世界,极大的促进和推动 了纳米技术的快速发展。
作用。且自振动频率高,不易产生共振。
4. 高温性能好
复合材料在高温下强度和模量基本不变。
5.4.3 重要的复合材料
1 . 纤维增强复合材料
(1) 玻璃纤维增强复合材料
以树脂为基体,玻璃纤维为增强材料制成 的复合材料。 玻璃纤维是由熔 融的玻璃经快速拉伸, 冷却所形成的纤维。 玻璃纤维增强工程塑 料即玻璃钢。
2 纳米材料的制备
纳米微粒的制备方法有很多种,按反 应性质可分为物理法、化学法; 按制备系统和 状态又可分为气相 法、液相法和固相 法三大类。
气相法是直接利用气体或通过各种手 段将物质变成气体,使之在气体状态下发 生物理变化或化学变化,最后在冷却过程 中凝聚长大形成纳米微粒的方法。 气相法包括蒸发法、化学气相反应法、 化学气相凝聚(沉淀)法和溅射法等。
(4)宏观量子隧道效应:微观粒子具有 贯穿势垒的能力称为隧道效应。纳米粒子 的磁化强度,量子相干器件中的磁通量等 也具有隧道效应,它们可以穿越宏观系统 的势垒而产生变化,被称为纳米粒子的宏 观量子隧道效应。扫描隧道显微镜的基本 原理就是基于量子隧道效应. 宏观量子隧道效应限定了磁带、磁盘 进行信息存储的时间极限。
化学气相反应法中的等离子体化学气 相合成是目前最先进的一种方法,其制备 过程为: 产生等离子体→原料蒸发→化学反 应→冷却凝聚→颗粒捕集→尾气处理 我国近来利用该法成功地合成出纳 米Si3N4粉体,平均粒度为20nm,纯度达 97%。
化学气相沉淀法:在制备SiC-C纳米复 合材料时,采用SiCl4-C3H8-H2系统,在Si/C比 为0~2.8的条件下,最佳温度为1600K时,可 获得SiC-C纳米级粉体.
(2)表面效应:指纳米粒子表面原子数 与总原子数之比,随粒径的变小而急剧增 大后所引起性质上的变化。 例如,5nm的粒子,表面原子占50%; 而2nm的粒子,表面原子占80%。 表面原子增加,使表面能增高,大大 增强了纳米粒子的化学活性,使其在催化、 吸附等方面具有常规材料无法比拟的优越 性。
(3)量子尺寸效应:随着粒子由宏观尺寸 进入纳米范围,准连续能带将分裂为分立的 能级,能级间的距离随粒子尺寸减小而增大, 这种能级能隙变宽的现象称为量子尺寸效应。 这种量子尺寸效应导致纳米粒子具有与 宏观物质截然不同的反常特性。 例如,粒径为20nm的银微粒在温度为1K 时出现由导体变为绝缘体的现象。
5.4
化学与复合材料
5.4.1 复合材料概论 5.4.2 复合材料的技术性能 5.4.3 重要的复合材料 5.4.4 纳米材料
5.4.1 复合材料概论
复合材料(composite material)是有机高分 子、无机非金属或金属等几种不同材料,通过 复合工艺组合而成的新型材料。或者说是由两 种或两种以上化学性质或组织结构不同的材料 组合而成的多相固体材料。
由于玻璃钢比重小、强度高、耐腐蚀、
耐燃且成型性能好,现已广泛用于汽车车身、
氧气瓶、轻型船体及石油化工的管道、阀门等。
缺点是维增强复合材料
碳纤维增强材料与树脂基体组成的材料称 为碳纤维增强复合材料。 这类材料保持了玻璃钢的许多优点,而且 性能优于玻璃钢。因此 可作宇宙飞行器的外层 材料,人造卫星和火箭 的机架、壳体等。