轴的设计和计算
轴的设计、计算、校核

轴得设计、计算、校核以转轴为例,轴得强度计算得步骤为:一、轴得强度计算1、按扭转强度条件初步估算轴得直径机器得运动简图确定后,各轴传递得P与n为已知,在轴得结构具体化之前,只能计算出轴所传递得扭矩,而所受得弯矩就是未知得。
这时只能按扭矩初步估算轴得直径,作为轴受转矩作用段最细处得直径dmin,一般就是轴端直径。
根据扭转强度条件确定得最小直径为:(mm)式中:P为轴所传递得功率(KW)n为轴得转速(r/min)Ao为计算系数,查表3若计算得轴段有键槽,则会削弱轴得强度,此时应将计算所得得直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。
以dmin为基础,考虑轴上零件得装拆、定位、轴得加工、整体布局、作出轴得结构设计。
在轴得结构具体化之后进行以下计算。
2、按弯扭合成强度计算轴得直径l)绘出轴得结构图2)绘出轴得空间受力图3)绘出轴得水平面得弯矩图4)绘出轴得垂直面得弯矩图5)绘出轴得合成弯矩图6)绘出轴得扭矩图7)绘出轴得计算弯矩图8)按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩得折合系数,按扭切应力得循环特性取值:a)扭切应力理论上为静应力时,取α=0、3。
b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0、59。
c)对于经常正、反转得轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生得弯曲应力属于对称循环应力)。
9)校核危险断面得当量弯曲应力(计算应力):式中:W为抗扭截面摸量(mm3),查表4。
为对称循环变应力时轴得许用弯曲应力,查表1。
如计算应力超出许用值,应增大轴危险断面得直径。
如计算应力比许用值小很多,一般不改小轴得直径。
因为轴得直径还受结构因素得影响。
一般得转轴,强度计算到此为止。
对于重要得转轴还应按疲劳强度进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重得轴,还应按峰尖载荷校核其静强度,以免产生过量得塑性变形。
机械课程设计轴计算

五 轴的设计计算一、高速轴的设计1、求作用在齿轮上的力高速级齿轮的分度圆直径为d 151.761d mm =112287542339851.761te T F N d ⨯=== tan tan 2033981275cos cos1421'41"n re te F F N αβ=⋅=⨯=tan 3398tan13.7846ae te F F N β==⨯=。
2、选取材料可选轴的材料为45钢,调质处理。
3、计算轴的最小直径,查表可取0112A =331min 015.2811223.44576P d A mm n ==⨯=应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使d Ⅰ-Ⅱ 与带轮相配合,且对于直径100d mm ≤的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。
故取25d mm =Ⅰ-Ⅱ 。
4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)根据前面设计知大带轮的毂长为93mm,故取90L mm I-II =,为满足大带轮的定位要求,则其右侧有一轴肩,故取32d mm II-III =,根据装配关系,定35L mm II-III =(2)初选流动轴承7307AC ,则其尺寸为358021d D B mm mm mm ⨯⨯=⨯⨯,故35d mm d III-∨I ∨III-IX ==,III -I∨段挡油环取其长为19.5mm,则40.5L mm III-I∨=。
(3)III -I∨段右边有一定位轴肩,故取42d mm III-II =,根据装配关系可定100L mm III-II =,为了使齿轮轴上的齿面便于加工,取5,44L L mm d mm II-∨I ∨II-∨III II-∨III ===。
(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则42L mm ∨III-IX =(5)计算可得123104.5,151,50.5L mm L mm L mm ===、(6)大带轮与轴的周向定位采用普通平键C 型连接,其尺寸为10880b h L mm mm mm⨯⨯=⨯⨯,大带轮与轴的配合为76H r ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6. 求两轴承所受的径向载荷1r F 和2r F带传动有压轴力P F (过轴线,水平方向),1614P F N =。
轴的设计计算

轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52160~135148~125135~118118~107107~982、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
轴的设计及计算

第7章 轴的设计及计算7.1低速轴的设计7.1.1求作用在齿轮上的力因已知低速级大齿轮的分度圆直径为mm mz d 438146344=⨯==而 N d T F t 6.774143816954002243=⨯== N F F t r 7.2817tan ==α圆周力t F ,径向力r F 的方向参考图7-2.7.1.2轴的材料的选择由于低速轴转速不高,但受力较大,故选取轴的材料为45优质碳素结构钢,调质处理。
7.1.3轴的最小直径根据文献【1】中12-2式可初步估算轴的最小直径,333min n P A d = 式中:A —最小直径系数,根据文献【1】中表12-3按45钢查得112=A 3P —低速轴的功率(KW ),由表5.1可知:KW P 984.63=3n —低速轴的转速(r/min ),由表5.1可知:min /34.393r n = 因此: mm n P A d 9.6234.39984.61123333min =⨯== 输出轴的最小直径应该安装联轴器处,为了使轴直径Ⅱ-Ⅰd 与联轴器的孔径相适应,故需同时选取联轴器的型号。
根据文献【1】中11-1式查得,m N KT T c ∙=⨯==1.25434.16955.13式中:c T —联轴器的计算转矩(m N ∙)K —工作情况系数,根据文献【1】中表11-1按转矩变化小查得,5.1=K3T —低速轴的转矩(m N ∙),由表5.1可知:)(4.16953m N T ∙= 按照计算转矩c T 应小于联轴器公称转矩的条件,查标准GB/T 5014-2003或根据文献【2】中表16-4查得,选用HL6型弹性柱销联轴器,其公称转矩为3150)(m N ∙。
半联轴器的孔径mm d 631=,故取mm d 63Ⅱ-Ⅰ=,半联轴器长度为172mm,半联轴器与轴配合的毂孔长度为mm L 1321=。
7.1.4轴的结构设计拟定轴上零件的装配方案。
选用装配方案如图7-1所示。
第三节轴的强度计计算、设计

第三节 轴轴的强度计计算、设计计步骤与与设计实例例一.按抗扭强强度计算小直对于传动轴直径,然后进轴,因只受转进行轴的结构矩,可只按转构设计,并用转矩计算轴的弯扭合成强度的直径;对于度校核。
于转轴,先用用此法估算轴的最 对偿弯实心圆轴扭 对于转轴,也弯矩对轴的强扭转的强度条 τ也可用上式初步强度的影响。
条件为0.2T T W ==步估算轴的直由上式可写二.定,M 截面 式中 T P—— n—— [ τ] d——W T ——d ≥C——由轴的通过9-2式按弯扭组合轴的结构设就可以画出对于一般钢e M W σ=e M =式中,e σ为V 分别为水平面的抗弯截面T——轴传递—轴传递的功—轴的转速(r ——许用扭—轴的最小直—轴的抗弯截=的材料和受载式求出的轴的合强度计算设计完成后,轴出轴的受力简钢制的轴,可e=为当量应力(平面和垂直面面系数(mm 递的工作转矩功率(kW);r/min);扭转切应力;直径,估算时如截面模量。
=载情况所决定表9-4 几的直径d,应按算 轴上零件的位简图,然后就可按第三强度M =MPa);e M 为的弯矩(N·3),W=0.1T 3[]dτ≤ 直径,但必须出计算轴的直,也是轴承受如果该处有一 定的系数,其几种轴用材料按表圆整成标位置也确定下可以进行弯扭理论进行强度1[σ−≤为当量弯矩(mm);T 为;为根3d α据 须把轴的许用直径公式:用扭转切应力 (9-1) 力适当降低,以补受的扭矩,(一个键槽,应(N·mm);将所算的最小小直径增加5%; (9-2) 其值见表9-4.料的[及C ]τ值标准直径,作下来,外加载扭合成强度计度计算。
强度]b b(N·mm);M 为轴传递的转矩据转矩性质而作为转轴的最载荷和支反力计算,其具体度条件为为合成弯矩(矩(N·mm)而定的折合因最小直径。
力作用点也相体步骤如下:应确(N·mm);;W 为轴的危因数。
轴的设计计算

轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值[]2、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
计算时,先根据结构设计所确定的轴的几何结构和轴上零件的位置,画出轴的受力简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建立轴的弯扭合成强度约束条件:考虑到弯矩所产生的弯曲应力和转矩所产生的扭剪应力的性质不同,对上式中的转矩乘以折合系数,则强度约束条件一般公式为:式中:称为当量弯矩;为根据转矩性质而定的折合系数。
30轴径轴的设计计算及校核实例

30轴径轴的设计计算及校核实例
设计计算和校核是轴的重要环节,下面是一个关于30轴径轴的设计计算和校核的实例:
设计参数:
轴径:30mm
材料:钢
强度系数:1.5
设计转速:3000rpm
轴上的负载:500N
计算过程:
计算轴的弯曲应力:
弯曲应力可以使用
其中,
是弯矩,
是轴截面的挠度系数。
计算弯矩:
弯矩可以使用
其中,
是施加在轴上的负载,
是轴上负载的作用点到支撑点的距离。
计算挠度系数:
挠度系数可以使用
计算弯曲应力:
将步骤2和步骤3的结果代入步骤1的公式中,计算弯曲应力。
校核弯曲应力:
将计算得到的弯曲应力与材料的强度进行比较,以确保弯曲应力不超过材料的强度。
计算公式如下:
其中,
是弯曲应力,
是材料的屈服强度。
轴的设计计算(主动轴)

d1 =25 (mm ) , d 2 = d1 +2h=25+2×1.5=28 (mm )
考虑到该轴段上的密封件尺寸,取 d 2 =28 (mm )
轴承初选 6306 深沟球轴承。轴承宽度 B=19 (mm )
d 3 =30mm
d 4 =32mm
d 7 =30mm
d 6 =37mm
d 5 = d 4 +2h=32+2×(0.07~0.1)×37
联轴器处
4T = 22.64 <[ σ p ]=(100~120)MPa dhl
L=40mm
l=40- =36 h=7 l=40-4=36 h=7mm
σp =
4 × 43500 = 27.62 <[ σ p ]=(100~120)MPa 25 × 7 × 36
故所选键连接合适
3
则 从动轴 d ≥ c
P =(118~107) n
3
2.23 =19.55~17.73 490
考虑键槽 d×1.05≥18.62~20.53
该轴外端安装有联轴器,选用弹性套柱销联轴器
T
C
=KT=1.5×9550 2.23 =261.84
122
孔径为 25 (mm )
3 轴的结构设计 根据轴上零件的定位、装拆方便的需要,同时考虑到强度的原则,主动轴和从 动轴均设计为阶梯轴。 (1) 轴径确定
R VA = RVB =0.5 Ft =836.5N
M HC = 49.5 × 304.5 = 15073 ( N ⋅ mm)
M VC =49.5×836.5=41407 ( N ⋅ mm) 转矩 T=43500 ( N ⋅ m)
M C = M HC + M VC = 15073 2 + 41407 2 =44065 ( N ⋅ mm)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴一般做成阶梯轴,原因是:
固定;
⑴为了便于轴上零件轴向定位和 ⑵为了便于轴上零件的拆装; ⑶使各轴段达到或接近等强度; ⑷为了实现尺寸分段,以满足不同配合特性、精度和光洁度 的要求。
轴的失效形式是: ① 因疲劳强度不足而产生疲劳断裂; ② 因静强度不足而生产塑性变形或脆性断裂 ;③ 因刚度 不足而产生过大弯曲及扭转变形;④高速时发生共振破坏
性、耐磨性好,对应力集中敏感性低、价格廉等优点,
多用于制作外形复杂的曲轴、凸轮轴等。
轴的常用材料及其主要机械性能见表14-1。
§14-3 轴的结构设计
轴的结构设计 就是使轴的各部分具有合理的形状和尺寸 。
影响轴的结构形状的因素有:轴上零件的类型、数量和
尺寸及其安装位置、定位方法;载荷的大小、方向和性 质及分布情况;轴的制造工艺性等。 在进行结构设计时,必须满足如下要求: 轴应便于加工,轴上零件要易于装拆(制造安装要求);
的最大转短为T1;而在图14-15b的布置中,轴的最
大转矩为T1+T2。
改善轴的受力状况的另一重要 方面就是减小应力集中。合金 钢对应力集中比较敏感,尤需 加以注意。
零件截面发生突然变化的地方, 都会产生应力集中现象。
ቤተ መጻሕፍቲ ባይዱ
对阶梯轴来说,在截面尺寸变化处应采用圆角过渡,圆角 半径不宜过小,并尽量避免在轴上开横孔、切口或凹槽。 必须开横孔时,孔边要倒圆。在重要的结构中,可采用卸 载槽B(图14-16a)、过渡肩环(图b)或凹切圆角(图c) 增大轴肩圆角半径,以减小局部应力。在轮毂上做出卸载 槽B(图d),也能减小过盈配合处的局部应力。
轴向力较小时,零件在轴
上的固定可采用弹性挡圈 或紧定螺钉。
轴上零件的周向固定,大多采用键、花键或过盈配合等
联接形式。采用键联接时,为加工方便,各轴段的键槽 应设计在同一加工直线上,并应尽可能采用同一规格的 键槽截面尺寸(图14-13)。
图14-13
键槽在同一加工直线上
四、改善轴的受力状况,减小应力集中
与零件毂孔过盈配合的轴段,配合边缘处也存在着应力
集中。为了减小因配合带来的应力集中,可在毂上或轴 上开卸载槽,或是增大配合轴段的直径,如下图所示。
减小过盈配合处应力集中的措施
§14-4 轴的强度计算
轴强度计算的目的 在于验算经结构设计初步得出的轴
能否满足强度要求。 工程上常用的轴强度计算方法有
同,可有不同的结构。如图所示是两种不同装配方案得
出的两种不同的轴结构。 在拟定装配方案时,一般应考 虑几个方案,进行分析比较与选择。
一、制造安装要求
为便于轴上零件的装拆,常将轴做成阶梯形。
对于一般剖分式箱体中的轴,它的直径从轴端逐渐向中 间增大。如图 14-7 所示,可依次将齿轮、套筒、左端滚 动轴承、轴承盖和带轮从轴的左端装拆,另一滚动轴承
心轴 光轴
则正好与光轴相反。因此,光
轴常用作心轴和传动轴,阶梯 轴常用作转轴。
转轴 阶梯轴
轴一般都制成实心的(实心轴)。
只有在因机器结构要求,需要 在轴中安装其它零件或是减轻
轴的质量具特别重大作用时,
才将轴制成空心的(空心轴) 。
空心轴
曲轴 用以将旋转运动与往复 直线运动相互转变。
软轴 是由几层紧贴在一起的钢丝层构成的 , 它能把回转运 动灵活地传到任何位置,主要用于两传动轴线不在同一直 线或工作时彼此有相对运动的空间传动,也可用于受连续 振动的场合,具有缓和冲击的作用。
特殊要求的轴 。如高速重载轴;受力大而又要求尺寸小、
重量轻的轴;处于高温、低温或腐蚀性介质中的轴等。
值得注意的是 :在一般工作温度下,碳钢和合金钢的弹 性模量相差不大,因此, 欲选用高强度合金钢来提高轴 的刚度并无实效 。另外, 合金钢对应力集中敏感性高 , 所以 设计合金刚轴时,必须要有合理的结构形状,尽量 减少应力集中源,并要求轴表面的粗糙度较低, 否则, 采用合金钢并无实际意义。 轴的材料除了碳素钢和合金钢外,还有球墨铸铁和高强 度铸铁等。 铸铁材料具有易于作成复杂的外形,且吸振
§14-2 轴的材料
轴的常用材料主要是碳素钢和合金钢。
轴的毛坯一般多为轧制圆钢和锻件。
碳素钢具有足够的强度,比合金钢价廉,对应力集中的敏 感性较低,并且可通过正火或调质处理获得较好的综合机 合金钢具有较高的机械性能,但价格较贵,常用于制造有
械性能,故应用广泛 ,其中以 45 号钢经调质处理最为常用。
直径D估算,d=(0.8~1.2)D;各级低速轴的轴径可
按同级齿轮中心距a估算,d=(0.3~0.4)a。
二、按弯扭合成强度计算
通过结构设计,轴的主要结构尺寸、轴上零件的位置、外 载荷及支反力的作用位置等均已确定(参见图14-17) ,这 时可按下述步骤(参见图14-18)进行弯扭合成强度校核计 算。
承处的水平支反力RH 、垂直
支反力RV。 (2) 作出水平面H及垂直面V上 的弯矩图MH 、MV。
根据求出的水平面H及垂直
面V上的的各力,即可分别
作出水平面上的弯矩图MH和 垂直面上的弯矩图MV (见图
14-18 b、c)。
(3) 作合成弯矩图M
合成弯矩 M
2 2 MH MV
可近似认为合成弯矩按线性变化(图e)。
对于既受扭矩又受弯矩作用的转轴,也可用此法来估算轴
的强度,但必须把轴的许用扭转剪应力[τ]适当降低(见表142),以考虑弯矩对轴的影响。但更多的时候是用这种方法 来初步估算轴的直径,并由此进行轴的结构设计。
将降低后的许用应力代入上式,并改写为设计公式
9.55 10 6 d 3 0.2
无法采用套简或套简太长时,可
采用圆螺母加以固定 ( 图 14-8) 。 图14-9所示是轴端挡圈的一种型 式。
采用套筒、螺母、轴端挡圈
作轴向固定时,应把装零件
的轴段长度做得比零件轮毂 短2~3 mm,以确保套筒、螺 母或轴端挡圈能靠紧零件端 面(图14-7,14-8)。
为了保证轴上零件紧靠定位面(轴肩),轴肩的圆角半径r 必须小于相配零件的倒角C1或圆角半径R,轴肩高h必须大 于C1 或R。
第 14 章
§14-1 §14-2 §14-3 §14-4 §14-5 §14-6
轴
轴的功用和类型 轴的材料 轴的结构设计 轴的强度计算 轴的刚度计算 轴的临界转速的概念
§14-1 轴的功用和类型
轴是组成机器的重要零件之一,用来支承旋转的机械零件。 轴的功用:支承回转零件及传递运动和动力。 轴的分类: 为转轴、心轴和传动轴三类。
从右端装拆。为使轴上零件易于安装,轴端及各轴段的
端部应有倒角。
轴上磨削的轴段,应有砂轮越程槽(图 14-7 中⑥与⑦的
交界处);车制螺纹的轴段,应有退刀槽。
在满足使用要求的情况下,轴的形状和尺寸应力求简单, 以便于加工。
二、轴上零件的定位
轴上零件的轴向定位方式主要是轴肩和套简定位。
阶梯轴上截面变化处 叫做 轴肩 ,起轴向定位作用。在图 14-7中,④、⑤间的轴肩使齿轮在轴上定位;①、②间的 轴肩使带轮定位;⑥、⑦间的轴肩使右端滚动轴承定位。 有些零件依靠套简定位,如图14-7中的左端滚动轴承。
Me e W M 2 (T ) 2 1b (MPa ) W
(6) 校核轴的强度(或计算危险截面轴径)
(14 5)
对于实心圆轴,抗弯截面系数W≈0.1d3 [σ-1b]──轴的许用弯曲应力,MPa,见表14-3 。
在进行轴的强度校核时,通常选取几个较危险的截面分别进行校核。另 外,为使计算简便,当危险截面有键槽时,其抗弯系数W仍按W≈0.1d3 计算,但需将轴径适当减小,单键时,减小3~4%,双键时,减小7%。
(1) 作轴的计算简图
作计算简图时,可用集中力代替分布力。传动零件上的载 荷可以认为集中作用在轮毂(或相应轴段宽度的中点),支
反力的作用点一般可认为集中作用在轴承宽度(或轴颈)的
中点,但由角接触轴承支承的跨距较小的轴,应按压力中 心点计算(见图16-8)。
画出轴的空间受力图(如图
14-18a),并把载荷分解到水 平面H和垂直面V上,求出支
两种 ━━按扭转强度计算和按弯、扭合成强度计算。 一、按扭转强度计算
这种方法 适用于只承受转矩的传动轴的精确计算 ,也可
用于既受弯矩又受扭矩的轴的近似计算。 对于只传递转矩的圆截面轴,其强度条件为
T 9.55 10 6 P (MPa) 3 WT 0.2d n (14 - 1)
合理布置轴上的零件可以改善轴的受力状况。
例如,图14-14所示为起重机卷筒的两种布置方案, 图a的结构中,大齿轮和卷筒联成一体,转矩经大 齿轮直接传给卷筒,故卷筒轴只受弯矩而不传递 扭矩,在起重同样载荷 W时,轴的直径可小于图 b 的结构。
再如,当动力从两轮输出时,为了减小轴上载荷, 应将输入轮布置在中间,如图14-15a所示,这时轴
三、轴上零件的固定
轴上零件的轴向固定,常采用轴肩、套简、螺母或轴端挡
圈(又称压板)等形式。在图14-7中,齿轮能实现轴向双 向固定。齿轮受轴向力时,向右是通过④、⑤间的轴肩, 并由⑥、⑦间的轴肩顶在滚动轴承内圈上;向左则通过套 简顶在滚动轴承内圈上。带轮的轴向固定是靠①、②间的 轴肩以及轴端挡圈。
1)
2)
3) 4)
轴和轴上零件要有准确的工作位置(定位);