常见的数量关系

合集下载

常见的数量关系

常见的数量关系

常见的数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

常用的数量关系

常用的数量关系

常用的数量关系
一些常用的数量关系包括:
1. 相等/等于:用于表达两个数或物体具有相同的数值或属性。

例如:2 + 3 = 5 表示2和3的和等于5。

2. 不等/不等于:用于表达两个数或物体具有不同的数值或属性。

例如:3 ≠ 6 表示3和6不相等。

3. 大于/大于等于:用于比较两个数中较大的数。

例如:9 > 6 表示9大于6。

4. 小于/小于等于:用于比较两个数中较小的数。

例如:4 < 7 表示4小于7。

5. 比例关系:用于表示两个数之间的比例关系。

例如:3:4表示第一个数是第二个数的0.75倍。

6. 正数/负数:用于表示数的正负。

例如:4是一个正数,而-4是一个负数。

7. 零:用于表示没有数量或数值为零。

例如:0表示没有物体或数量为零。

这些数量关系在数学和日常生活中都经常使用。

整体常见的数量关系

整体常见的数量关系

整体常见的数量关系数量关系可以用来描述物体之间的直接关系,是数学学习中最基础的概念之一,也是数学运算的基础。

数量关系可以被定义为一些物体之间的关系,其中一个物体的数量可以影响另一个物体的数量。

在数学领域,数量关系可以表达为加减乘除法,如加法关系、减法关系、乘法关系、整除关系、乘方关系等。

加法关系是一种最常见的数量关系,是指给定两个数量,加起来后可以得到总量。

其中,一个加数加上另一个加数,结果可以得到和。

例如,一个人有2元钱,另一个人有1元钱,那么他们总共有3元钱。

减法关系是一种常见的数量关系,是指将两个数量相减,从而得到差值。

即从一个减数减去另一个减数,结果可以得到差值。

例如,一个人有5元钱,另一个人有2元钱,那么他们之间的差值是3元钱。

乘法关系是一种数量关系,指将两个数量相乘,从而得到乘积。

即将一个乘数与另一个乘数相乘,结果可以得到乘积。

例如,一个人有3个苹果,另一个人有4个苹果,那么他们总共有12个苹果。

整除关系是一种数量关系,指将一个数量除以另一个数量,从而得到商。

即将一个除数除以另一个除数,结果可以得到商数。

例如,一个人有8个苹果,另一个人有4个苹果,那么他们中每个人拥有2个苹果。

乘方关系是一种数量关系,指将一个数量乘以另一个数量,从而得到幂。

即将一个乘数乘以另一个乘数,结果可以得到幂数。

例如,一个数的三次方,即将这个数与它自身相乘三次,即可得到这个数的三次方。

除了上述的几种最常见的数量关系外,还有其他一些关系,比如比例关系、对数关系、幂函数关系等。

比例关系指两个数量之间的关系,可以用其中一个数量乘以一个固定的数值来表示另一个数量。

例如,一个人有6个苹果,另一个人有3个苹果,那么他们之间的比例关系是2:1。

对数关系是一种数量关系,指两个数量之间的对数关系,即可以使用某种数量的对数来表示另一个数量。

例如,设x的20次方等于1024,则x的对数关系等于1024的以20为底的对数。

幂函数关系是一种数量关系,指一个变量的幂函数关系。

小学数学常见数量关系式

小学数学常见数量关系式

常见的数量关系式1.行程问题路程=速度×时间速度=路程÷时间时间=路程÷速度2.价钱问题总价=单价×数量单价=总价÷数量数量=总价÷单价3.工程问题工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率4.相遇问题相遇路程=相遇时间×速度和相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间补充:追及问题:追及时间=路程÷速度差5.利润与折扣问题利润=售价-成本利润率=利润÷成本×100%利息=本金×利率×存期现价=原价×折扣原价=现价÷折扣折扣=现价÷原价6.合格率类问题合格率=合格数÷总数×100%发芽率=发芽数÷总数×100%出勤率=出勤人数÷总人数×100%合格率=合格数÷总数×100%出粉率=面粉重量÷小麦重量×100%7.鸡兔同笼问题(1)假设全是鸡,求出的是兔:(总腿数-总头数×鸡腿数)÷(4-2)=兔的只数(2)假设全是兔,求出的是鸡:(总头数×兔腿数-总腿数)÷(4-2)=鸡的只数8.流水问题顺水速度=船速+水速;逆水速度=船速—水速路程=顺水速度×顺水航行时间=逆水速度×逆水航行时间船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷29.和差问题(和+差)÷2=大数(和—差)÷2=小数10.和倍问题和÷倍数和=标准数标准数×倍数= 另一个数11.差倍问题差÷倍数差=标准数标准数×倍数= 另一个数12.年龄问题:年龄差÷倍数差=结果13.植树问题(1)不封闭(直线、公路)植树:两端都种树:棵数=段数+1;只种一端:棵数=段数;两端都不种:棵数=段数—1(2)封闭(圆、四边形)植树:棵数=段数(相当于只种一端)。

数量关系公式大全

数量关系公式大全

数量关系公式大全1.百分数公式:-百分数=(所占数量/总数量)×100%2.比例公式:-比例=已知数量/未知数量3.增长率公式:-增长率=增加的数量/原始数量4.直线方程:- y = mx + c,其中m是斜率,c是y轴截距5.平均值公式:-平均值=(所有数据之和)/(数据个数)6.学生t分布公式(用于计算样本平均值的置信度):-t=(平均值-总体平均值)/标准误差7.标准差公式(用于计算数据集的离散程度):- 标准差 = sqrt((每个数据值 - 平均值)^ 2的总和 / 数据个数)8.四分位数公式(用于描述数据集分布):-第一四分位数=(n+1)/4个数据点-第二四分位数(中位数)=(n+1)/2个数据点-第三四分位数=3(n+1)/4个数据点9.正态分布公式:-正态分布=(1/根号(2πσ^2))×e^(-(x-μ)^2/2σ^2)10.欧拉公式(描述复数和三角函数之间的关系):- e^(ix) = cos(x) + i × sin(x)11.斐波那契数列公式(描述费波那契数列中的数量关系):-Fn=Fn-1+Fn-2,其中F0=0,F1=112.二项式系数公式(描述二项式展开中的系数):-nCk=n!/(k!×(n-k)!),其中n为整数,k为介于0和n之间的整数13.反比例公式:-两个量A和B成反比例关系,即A×B=k(k为常数)14.几何级数公式(描述几何级数中的数量关系):-S=a/(1-r),其中a是首项,r是公比15.面积公式:-矩形面积=长×宽-三角形面积=(底边长×高)/2-圆面积=π×半径^2以上是一些常见的数量关系公式,它们在数学和科学中经常被使用。

通过掌握这些公式,我们可以更好地理解和解决各种与数量关系相关的问题。

常见数量关系式

常见数量关系式

六年级数学常见的数量关系及公式须掌握一、常见的数量关系式:1.解方程的数量关系式:一个加数+另一个加数=和一个加数 = 和-另一个加数被减数-减数=差被减数 = 减数+差减数 = 被减数-差一个因数×另一个因数=积一个因数 = 积÷另一个因数被除数÷除数=商除数 = 被除数÷商被除数 = 除数×商2.几种常用的应用题数量关系式:(1)相差关系:大数-小数 = 相差数小数=大数-相差数大数=小数+相差数(2)部总关系:部分数+部分数 = 总数部分数=总数-部分数(3)倍数关系:1倍数×倍数 = 几倍数倍数=几倍数÷1倍数 1倍数=几倍数÷倍数(4)份总关系:①单价×数量 = 总价单价=总价÷数量数量=总价÷单价②速度×时间 = 路程速度=路程÷时间时间=路程÷速度平均速度=总路程÷总时间速度和×相遇时间=相遇路程相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间③工作效率×工作时间 = 工作总量工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率④每份数×份数 = 总数每份数= 总数÷份数份数=总数÷每份数(5)利息=本金×利率×时间(6)图上距离÷实际距离=比例尺图上距离=实际距离×比例尺实际距离=图上距离÷比例尺(7)比较量÷标准量=分率比较量=标准量×分率标准量=比较量÷分率3.常用的运算定律与性质:⑴①加法交换律: a+b = b+a ②加法结合律:(a+b)+c = a+(b+c)⑵减法的性质:① a-b-c = a-(b+c) a-(b+c)= a-b-c② a-b+c = a-(b-c) a-(b-c)= a-b+c⑶①乘法交换律:a×b = b×a ②乘法结合律:(a×b)×c = a×(b×c)③乘法分配律:a×c+b×c = (a+b) ×c (a+b) ×c = a×c+b×c⑷除法的性质:① a÷b÷c = a÷(b×c) a÷(b×c) = a÷b÷c② a÷b×c = a÷(b÷c) a÷(b÷c) = a÷b×c二、形体问题1 .正方形的周长=边长× 4 边长=正方形的周长÷4正方形的面积=边长×边长2 .长方形的周长=(长+宽)×2 长=周长÷2-宽宽=周长÷2-长长方形的面积=长×宽3. 三角形的面积=底×高÷2高=面积×2÷底底=面积×2÷高4. 平行四边形的面积=底×高底=平行四边形的面积÷高5. 梯形的面积=(上底+下底)×高÷2高=面积×2÷(上底+下底)上底=面积×2÷高-下底下底=面积×2÷高-上底6.长方体的棱长总和=(长+宽+高)×4 长=棱长总和÷4 -宽-高正方体的棱长总和=棱长×12 棱长=棱长总和÷12长方体的表面积=(长×宽+长×高+宽×高)×2正方体的表面积=棱长×棱长×6长方体的体积=长×宽×高长=体积÷宽÷高正方体的体积=棱长×棱长×棱长长方体或正方体统一的体积公式=底面积×高底面积=体积÷高7.直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2 c=πd= 2πr圆的面积=圆周率×半径×半径 s=πr28.圆柱的侧面积=底面圆的周长×高 S=ch=πdh= 2πrh圆柱的表面积=侧面积+上下底面面积 S= 2πrh +2πr2圆柱的体积=底面积×高 V=Sh=πr2h圆锥的体积=底面积×高÷3 V=Sh÷3=πr2h÷3三、量的计量(单位换算)1. 长度单位换算1千米=1000米 1米=10分米=100厘米 1分米=10厘米 1厘米=10毫米2. 面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米=10000平方厘米 1平方分米=100平方厘米1平方厘米=100平方毫米3. 重量单位换算1吨=1000千克 1千克=1000克1千克=1公斤4. 体积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升5. 人民币单位换算1元=10角 1角=10分1元=100分6. 时间单位换算1世纪=100年 1年=12月一年四个季度大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时 1时=60分 1分=60秒 1时=3600秒。

常见数量关系

常见数量关系

常见数量关系数量是描述物质和事物之间、或客观事物与主观世界之间最基本的关联。

数量关系体现了事物间的异同,是数学理论和应用的重要基础。

一些数量关系是定量的,如奇偶性、约数、质数、完全数、立方数等,是数学基础理论之一。

定量关系是描述数量关系的基本概念,它表示数量之间具有形成等价集合的定义。

例如,定义一个奇数是一个除了1以外的大于1的正整数,则一个数是奇数的条件就完成了,这就是定量数量关系。

另一些数量关系是定性的,如大小关系、增减关系、增减分类等,它通过描述“大”“小”“增”“减”等关系来解释数量变化。

例如,当一个数比另一个数大时,可以说它的值“增加”;当一个数比另一个数小时,可以说它的值“减少”。

此外,还有一些更复杂的数量关系,如比例和比率关系、计算关系、函数关系、图像关系等,它们可以用来描述不同类型的数量关系。

例如,比例关系可以描述两个数量之间的变化比值;比率关系可以描述物质量或质量单位之间的改变;函数关系可以描述某一特定变量之间的关系;图像关系可以描述一组数据的变化趋势。

所以,数量关系的研究,可以帮助我们更好地理解客观事物的特性及其之间的关系,以及主观世界中的规律和潜在的变化。

它为科学研究提供了可靠的数学基础,为各种科学技术工作提供了有效的支持。

比较属于数量关系的一部分,主要包括排序关系、分类关系、数量比较关系等。

排序是一种有序关系,也是一种简单的数学关系。

例如,按颜色对球排序,将它们排序为红色,白色,橙色,兰色的排序,这就是排序关系。

分类关系指的是将物体分类成几类,这些分类可以根据特征或其他标准来进行。

例如,将物体按形状分类:圆形、三角形、矩形、等边形,这就是分类关系。

数量比较关系是比较两个数量的大小。

例如,比较苹果和橘子的数量,可以得出苹果数量大于橘子,这就是数量比较关系。

从上述,可以看出,数量关系是十分广泛的,它不仅可以应用在数学课堂,也可以用于生活中的比较和判断。

比如可以用数量关系来比较几件礼物的价格、服装的大小、食物的份量、事物的时间等等。

常见的数量关系式

常见的数量关系式

常见的数量关系式
数量关系式:
1,每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2,1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3,速度×时间=路程路程÷速度=时间路程÷时间=速度
4,单价×数量=总价总价÷单价=数量总价÷数量=单价
5,工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6,加数+加数=和一个加数=和-另一个加数
7,被减数-减数=差被减数-差=减数差+减数=被减数
8,因数×因数=积积÷一个因数=另一个因数
9,被除数÷除数=商被除数÷商=除数商
×除数=被除数
时间单位换算:
1世纪=100年1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1时=60分
1分=60秒1时=3600秒
质量单位换算:
1吨=1000 千克1千克=1000克
1千克=1公斤
长度单位换算:
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
相遇问题:
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见的数量关系
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=与一个加数=与+另一个加数
被减数-减数=差减数=被减数-差被减数=减数+差
因数×因数=积一个因数=积÷另一个因数
被除数÷除数=商除数=被除数÷商被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)
6、1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。

1亩=666、666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3
比的前项与后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。

如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y
百分数:表示一个数就是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数与把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做最大公约数。

)
17、互质数: 公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个
数的最小公倍数。

19、通分:把异分母分数的分别化成与原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

(约分用最大公约数)
21、最简分数:分子、分母就是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上就是0、2、4、6、8的数,都能被2整除,即能用2进行
约分。

个位上就是0或者5的数,都能被5整除,即能用5进行约分。

在约分时应注意利用。

22、偶数与奇数:能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1与它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1与它本身还有别的约数,这样的数叫做合数。

1不就是质数,也不就是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。

一年的利息与本金的比值叫做年利率。

一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。

0也就是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。

如3、141414……
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3、141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

如3、141592654……
34、什么叫代数? 代数就就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。

如:3x =ab+c。

相关文档
最新文档