8.2初中数学几何模型大全

合集下载

初中数学几何模型

初中数学几何模型

全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是°、°、°、°及有一个角是°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇度旋度,造等边三角形遇度旋度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋度,造中心对称说明:IS 8模型变形BEFcEB说明:说明:nnnnnnnnnnnnnnnnnnnnnnn nnnnn口叩皿皿皿皿皿中点模型 边构诗中{fflt 逢阳点闵iS 中幽城 几何最值模型 VH *h 轴对称模型 对称最值 线mi 差模型 fflftffw 同侧"异侧两蜒段之利罐短视它 同侧、异删芮线投之羞媪小槐型 四边形周怏垠小根地 三角形眉长 必小檢哩三线穀之和 她知爬制过桥模取旋转最值说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

简拼模型三角形j四边形E 面积等分说明:说明:3045602说明:ACOCOAA 模型一:手拉手模型-旋转型全等<2)等濮的AA Mfr=血°拟述°均为等媵直甬M 册A 结险(DA (UCtAO^l>j 超乙他»③。

E 平分£忖了儿(1)―况> Sfr :LDW 牛底皿力能转至右囲检置A 皓论:> 右图中①bOCWMe\QAC AOSD 』 >⑨延氏M 交购于点G 必肖5氏-LBOA⑵特燥惜况>条件m 3MB ,厶伽■剜,将AXD 龍讳至右團位蛊a gife :右gcp fflAfJCD^iOJ^AC?JCiM£33②延长M 交加于点瓦愁有3EC -LUGA f BD 000B (5)-—--——=—-=tan ZlfX D®ACOCOA 3f^SDLAC.灘接也JC >临加*†g ・a+o>s ⑥矢"訐c&J 冊哒相垂直的四嬷)<3)任翦腰三角晤†辭,。

初中数学几何模型大全+经典题型(含答案)

初中数学几何模型大全+经典题型(含答案)

初中数学几何模型大全+经典题型(含答案) 初中数学几何模型大全及经典题型(含答案)全等变换平移:平行线段平移形成平行四边形。

对称:以角平分线、垂线或半角作轴进行对称,形成对称全等。

旋转:相邻等线段绕公共顶点旋转形成旋转全等。

对称半角模型通过翻折将直角三角形对称成正方形、等腰直角三角形或等边三角形。

旋转全等模型半角:相邻等线段所成角含1/2角及相邻线段。

自旋转:通过旋转构造相邻等线段的旋转全等。

共旋转:通过寻找两对相邻等线段构造旋转全等。

中点旋转:将倍长中点相关线段转换成旋转全等问题。

模型变形当遇到复杂图形找不到旋转全等时,先找两个正多边形或等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

几何最值模型对称最值:通过对称进行等量代换,转换成两点间距离及点到直线距离。

旋转最值:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

剪拼模型通过中点的180度旋转及平移改变图形的形状,例如将三角形剪拼成四边形或将矩形剪拼成正方形。

正方形的边长可以通过射影定理来求解。

假设正方形的边长为x,那么正方形的对角线长为x√2.将正方形分成两个等腰直角三角形,可以得到等腰直角三角形的斜边长为x√2/2.因此,根据射影定理,可以得到等腰直角三角形的高为x/2,进而得到正方形的边长为x=x√2/2.通过平移和旋转,可以将一个正方形变成另一个正方形。

这可以通过旋转相似模型来实现。

例如,两个等腰直角三角形可以通过旋转全等来实现形状的改变,而两个有一个角为300度的直角三角形可以通过旋转相似来实现形状的改变。

更一般地,两个任意相似的三角形可以通过旋转成一定角度来实现旋转相似,其中第三边所成夹角符合旋转“8”字的规律。

在相似证明中,需要注意边和角的对应关系。

相等的线段或比值在证明相似时可以通过等量代换来构造相似三角形。

另外,从三垂线到射影定理的演变,再到内外角平分线定理,需要注意它们之间的相同和不同之处。

初中数学几何模型大全

初中数学几何模型大全

全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型关注初中数学(chuzhong-shuxue)即可免费获取:知识点精讲、解题技巧分享,大小考真题押题详解以及数姐贴心答疑解惑。

说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

八年级下册数学几何模型大全

八年级下册数学几何模型大全

八年级下册数学几何模型大全数学几何模型是一个非常重要的数学学科,是把空间中的图形或者实体同数学联系起来的学科。

几何模型不仅在数学中有很重要的作用,在生活中也有着广泛的应用。

下面我们将介绍一些比较常见的八年级下册数学几何模型。

(一)圆的平面几何模型1.圆的圆心角:圆的圆心角是指围绕圆心的一个角度。

圆心角对应的线段叫做弧,一个圆被分割成的每一个扇形的圆心角度数相等,比如60度、90度、120度等等。

可以将圆分成若干个扇形,每个扇形的圆心角都是一样的。

2.圆的直径、半径和周长:圆的周长是所有弧长的总和,也就是一个圆的周长等于两倍的半径乘以圆周率(π),即2πr。

圆的直径等于圆的半径的两倍,即2r。

(二)平面几何模型1.三角形的内心、外心、重心:一个三角形的三个高线所交的点叫做重心,三角形内切圆圆心叫做内心,三角形外接圆圆心叫做外心。

内心到三角形每一边的距离相等,外心到三角形每一边的距离也相等。

2.菱形的特性:菱形是四个相等的角和四条相等的边组成的图形,相邻的两边是平行的,对角线平分。

用平行四边形的性质可以证明,对角线的交点是菱形的重心、内心和外心。

(三)立体几何模型1.正方体、长方体、平行六面体的特性:正方体、长方体、平行六面体是立方体的三个特殊形式。

正方体各个面的面积和体积是相等的,长方体的体积是它的三条边的积,平行六面体的底面积和高的乘积等于它的体积。

2.圆柱、圆锥和球体的特性:圆柱的体积等于底面积和高的积,圆锥的体积等于底面积和高的积再除以三,球体的体积等于半径的立方乘以圆周率再乘以四分之三。

(四)平面坐标系的几何模型1.坐标系下的图形方程:在平面直角坐标系中,一条函数图像的方程是由一组有序数对 (x, y) 所组成的集合。

在二维空间中,x 坐标代表水平方向上的位置,y 坐标代表垂直方向上的位置。

2.平面上两点的距离公式:平面直角坐标系中,点 A 的坐标是$(x_1,y_1)$,点 B 的坐标是 $(x_2,y_2)$。

八年级下册数学几何模型大全

八年级下册数学几何模型大全

八年级下册数学几何模型大全
1. 三角形
- 定义、性质及分类
- 三角形内角和定理
- 直角三角形及勾股定理
- 等腰三角形及其判定方法
- 等边三角形及其性质
- 外角和定理
- 三角形中位线定理
- 海龙公式及其应用
2. 四边形
- 定义、性质及分类
- 平行四边形及其性质
- 矩形及其性质
- 正方形及其性质
- 菱形及其性质
- 梯形及其性质
- 同底角定理
- 对顶角定理
3. 圆形与圆柱
- 圆的定义及性质
- 圆的构造方法
- 圆心角及其性质
- 圆周角及其性质
- 弧长、扇形面积和弦长公式
- 圆锥、圆台和圆球的定义及性质
- 相关公式的推导和应用
4. 三维几何体
- 立体图形的定义和分类
- 平行六面体的性质及应用
- 正方体的性质及应用
- 定义和性质
- 圆锥、圆台和圆球的定义及性质
- 相关公式的推导和应用
5. 仿射变换与相似变换
- 旋转、平移、翻折等仿射变换及其性质- 相似变换及其性质
- 中心相似变换与比例尺因子
- 相关定理及其证明
- 典型例题的解答
6. 三角函数
- 三角函数的定义
- 常见三角函数及其图像、性质和周期- 三角函数的基本关系
- 三角函数的三角恒等式与逆函数
- 解三角函数方程的方法
- 三角函数在实际应用中的作用和意义。

初二数学30个重点几何模型

初二数学30个重点几何模型

初二数学30个重点几何模型初二数学重点几何模型一、直线与角直线是几何中最基本的概念之一。

直线无法直接测量,但可以通过两个点的连线得到一条直线。

直线没有宽度和长度,只有方向。

在几何中,直线通常用字母表示。

角是由两条直线共享一个公共端点而形成的图形。

角度用度数来衡量,通常用小圆圈表示。

角度可以分为钝角、直角、锐角和平角四种类型。

钝角大于90度,直角等于90度,锐角小于90度,平角等于180度。

二、三角形三角形是由三条线段相连而形成的多边形。

三角形有很多种类,包括等边三角形、等腰三角形和直角三角形等。

等边三角形的三条边长度相等,等腰三角形的两条边长度相等,直角三角形则有一个角度等于90度。

三、四边形四边形是由四条线段相连而形成的多边形。

四边形有很多种类,包括正方形、矩形、平行四边形等。

正方形的四条边长度相等且四个角都是直角,矩形的四个角都是直角,平行四边形的对边平行且长度相等。

四、圆与圆周圆是一个平面上所有点到一个固定点的距离都相等的图形。

圆周是圆的边界,也是圆的周长。

圆周上的任意两点与圆心相连,形成的线段称为弦。

圆周上的任意点与圆心相连,形成的线段称为半径。

圆周上的任意两点与圆心相连,形成的线段称为直径。

五、多边形多边形是由多条线段相连而形成的封闭图形。

多边形的边数可以是任意大于等于3的整数。

多边形根据边的长度或角的大小可以分为等边多边形、等角多边形和正多边形等。

等边多边形的所有边长度相等,等角多边形的所有角度相等,正多边形既是等边多边形又是等角多边形。

六、相似与全等相似是指两个图形的形状相似,但大小不同。

相似的图形具有对应角度相等和对应边成比例的特点。

全等是指两个图形的形状和大小完全相同。

全等的图形具有对应边相等和对应角度相等的特点。

七、平面镜与对称平面镜是一种可以反射光线的镜子。

平面镜的特点是光线入射角等于反射角,入射光线、反射光线和法线三者在同一平面上。

对称是指图形通过某个中心轴线或中心点对折后,两边或两部分完全重合。

八年级下册数学几何模型大全

八年级下册数学几何模型大全

八年级下册数学几何模型大全
1. 三角形
- 基本概念:三边、三角形分类(等边、等腰、普通)、角度
分类(锐角、直角、钝角)
- 定理:直角三角形定理、勾股定理、正弦定理、余弦定理、
海龙公式、费马点定理
- 运用:解决三角形面积、周长、角度等问题,证明一些定理
和命题
2. 直线和角
- 基本概念:直线、线段、射线、角度、角的度量单位制
- 定理:同位角定理、平行线与角的性质、垂直线与角的性质、三角形内角和定理、外角和定理
- 运用:求解角度大小,证明一些定理和命题
3. 圆
- 基本概念:圆心、半径、圆弧、圆周、圆心角、弧度制
- 定理:圆心角定理、圆周角定理、相交弦定理、切线和切点、弦切角定理
- 运用:求解圆的周长、面积、角度大小,证明一些定理和命

4. 多边形
- 基本概念:多边形、多边形分类、对边、对角线、外接圆、
内切圆
- 定理:正多边形性质、凸多边形性质、不等式关系、欧拉公

- 运用:解决多边形面积、周长、角度等问题,证明一些定理
和命题
5. 空间几何体
- 基本概念:点、线、面、空间几何体分类、棱、顶点、底面、侧面、高、体积
- 定理:正方体、正四面体、正六面体、勾股锥体特点和性质、旋转体与内锥体特点和性质
- 运用:求解空间几何体的体积、表面积、证明一些定理和命
题。

初中数学三角形全等常用几何模型及构造方法大全初二

初中数学三角形全等常用几何模型及构造方法大全初二

初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。

B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2:对称半角模型说明:上图依次是45°、30°、 45+ °、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学几何模型大全
全等变换
平移:平行等线段(平行四边形)
对称:角平分线或垂直或半角
旋转:相邻等线段绕公共顶点旋转
对称全等模型
说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型
说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型
半角:有一个角含1/2角及相邻线段
自旋转:有一对相邻等线段,需要构造旋转全等
共旋转:有两对相邻等线段,直接寻找旋转全等
中点旋转:倍长中点相关线段转换成旋转全等问题
旋转半角模型
说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型
构造方法:
遇60度旋60度,造等边三角形
遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称
共旋转模型
说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形
说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:
说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋
转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

几何最值模型
对称最值(两点间线段最短)
对称最值(点到直线垂线段最短)
说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。

旋转最值(共线有最值)
说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。

剪拼模型
三角形→四边形
四边形→四边形
说明:剪拼主要是通过中点的180度旋转及平移改变图形的形状。

矩形→正方形
说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改变
正方形+等腰直角三角形→正方形
面积等分
旋转相似模型
说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似。

推广:两个任意相似三角形旋转成一定角度,成旋转相似。

第三边所成夹角符合旋转“8”字的规律。

相似模型
说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来构造相似三角形的作用。

说明:(1)三垂直到一线三等角的演变,三等角以30度、45度、60度形式出现的居多。

(2)内外角平分线定理到射影定理的演变,注意之间的相同与不同之处。

另外,相似、射影定理、相交
弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换,进行证明得到需要的结论。

说明:相似证明中最常用的辅助线是做平行,根据题目的条件或者结论的比值来做相应的平行线。

相关文档
最新文档