《直线与角》全章复习与巩固(基础)知识讲解

合集下载

七年级数学上册 第4章 直线与角本章小结与复习课件沪科沪科级上册数学课件

七年级数学上册 第4章 直线与角本章小结与复习课件沪科沪科级上册数学课件

【分析】每条射线都能与其它4条射线组成4 个角,共能组成4×5=20个角,其中有 1 是重复
2
的,所以这5条射线能组成10个角.
随堂练习
1.两条直线最多有1个交点,三条直线最多有3
个交点,四条直线最多有6个交点,…,那么六条
直线最多有( C )交点
A.21个
B.18个
C.15个
D.10个
2.已知∠A=65°,则∠A的补角等
【分析】A项错在误将两点间的距离看成是线 段本身,距离是指线段的长度而不是线段本身, 所以是画不出来的;D项忽略线段的中点必须首先 在线段上这一条件.如图所示,当AC=BC时,C 却不是线段AB的中点. 【答案】C
例2 如图所示,以O点为端点的5条射线 OA,OB,OC,OD,OE一共组成_1_0___个 角.
本章小结与复习
空间图形
内容整理
平面图形
直线
线段 射线

线段的比较 线段的中点
角的表示与度量 角的大小比较 角的平分线
知识回顾
1.线段是直线的一部分,它有两个端点.
(1)线段的基本事实:两点之间的所有连线中,
线段最短;
(2)线段的中点:如图,C为AB中点,则
AC=CB=
1 2
AB,或AB=2AC=2BC.
B
α
OALeabharlann (2)角平分线:如图,若OB平分∠AOC,
则∠COB=∠BOA= 1 ∠AOC.
2
C
B
(3)同角(或等角)的补角相等,
同角(或等角)的余角相等;
O
A
(4)1°=60′,1′=60″
6.用直尺与圆规作一条线段等于已知线段;作一个 角等于已知角.

(课件)第4章 直线与角复习

(课件)第4章 直线与角复习
(2)互为余角指的是两个角的关系。
湖北鸿鹄志文化传媒有限公司——助您成功
余角的性质: 1、如果两个角是同一个角的余角,那么 这两个角就相等。(简称:同角的余角 相等。) 2、如果两个角相等,那么它们的余角也 相等。(简称:等角的余角相等。)
湖北鸿鹄志文化传媒有限公司——助您成功
6.补角 如果两个角的和是一个平角,那么这两个
②或∠O(O为顶点字母)
O
③靠近顶点加弧线,注上阿拉
B 伯数字(如∠1…)
④ 靠近顶点加弧线,用希腊
字母表示(如∠α或∠β…)
(2)当一个公共端点有多条射线时,则不能 只用顶点字母表示
湖北鸿鹄志文化传媒有限公司——助您成功
角的基本度量单位: 1. 度、分、秒是角的基本度量单位。 2. 若∠α的度数是48度56分37秒,则记作 ∠α=48°56′37″。
直接在教科书上完成A组复习题3.4.5题
湖北鸿鹄志文化传媒有限公司——助您成功
经常不断地学习,你就什么都知道; 你知道得越多,你就越有力量。 —— 高尔基
湖北鸿鹄志文化传媒有限公司——助您成功
3. 度分秒之间的互化:
角的度分秒是60进制的,以度、分、秒为单 位的角的度量制,叫做角度制。
把一个周角360等份,每一等份是1度的角,1 度记为1°;把1°的角60等份,每一等份是1分的 角,1分记为′;把一1′的角60等份,每一等份 是1秒的角,1秒记为1″。即:
1°= 60′, 1′= 60″
湖北鸿鹄志文化传媒有限公司——助您成功
4.角的描述性定义: 有公共端点的两条射线组成的图形叫做角
角的顶点
角的两条边
湖北鸿鹄志文化传媒有限公司——助您成功
角的形成性定义: 由一条射线绕着它的端点旋转而形成的图形。 试着叙述“平角与周角 ”的形成过程

线与角知识的复习PPT_图文

线与角知识的复习PPT_图文

线与角知识的复习PPT_图文.ppt
一、直线、射线和线段
分别画一条直线、射线和线段,并 说说它 们的相同点和不同点。
直线、射线、线段有什么相同点和不同点?
图形
相同点
不同点
直线 射线 线段
都是直的, 线段是直线 或者射线的
一部分
没有端点, 无限长
1个端点, 无限长
2个端点, 有限长
过点A可以画几条直线
用一幅三角板拼出下列度数的角。
75° 120° 105° 135° 150°
用一幅三角板拼出下列度数的角。
75° 120° 105° 135° 150°
30° 90°
60°
30° 90°
60°
角的分类
我们学过的角分为几类?
名称
特征
锐角 直角 钝角 平角 周角
小于90°
等于90° 大于90°而小于180° 等于180° 等于360°
a
A楼 M
一、判断正误
1、一条直线长5厘米
( X)
2、线段是直线的一部分
(√ )
X
3、直线比射线长
()
4、角的两边延长3倍,这个角就扩大3倍 ( X )
5、一个25°的角,在10倍的放大镜下就变成了250°
( X)
6、在同一平面内,不相交的两条直线一定平行 (√ )
二、走进生活填一填。
1、时针走一圈是(360)度。 钟面上一大格是( 30)度。 360°÷12=30°

三、平行和垂直
说说生活中的物体哪些部分可以看做互相平行或垂直的 ?
下列两条直线是平行、垂直还是相交。
(相交)
(垂直 ) (相交)
(平行)
画一画

沪科版七年级数学上册 第4章 直线与角 本章小结与复习【名校课件】

沪科版七年级数学上册  第4章 直线与角 本章小结与复习【名校课件】
通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体 验到数学知识来源于生活并服务于生活.通过本章知识的学习,进一步发展 学生的几何直观能力和合情推理的能力. 【教学重点】 回顾本章知识,构建知识体系. 【教学难点】
利用性质求线段与角.
空间图形
平面图形
直线
线段 射线

线段的比较 线段的中点
【分析】A项错在误将两点间的距离看成是线 段本身,距离是指线段的长度而不是线段本身, 所以是画不出来的;D项忽略线段的中点必须首先 在线段上这一条件.如图所示,当AC=BC时,C 却不是线段AB的中点. 【答案】C
例2 如图所示,以O点为端点的5条射线 OA,OB,OC,OD,OE一共组成__1_0__个角.
【分析】每条射线都能与其它4条射线组成4 个角,共能组成4×5=20个角,其中有 是重复 的,所以这5条射线能组成10个角.
1.两条直线最多有1个交点,三条直线最多有3
个交点,四条直线最多有6个交点,…,那么六条
直线最多有( C )交点
A.21个
B.18个
C.15个
D.10个
2.已知∠A=65°,则∠A的补角等 于( C )
O
A
(4)1°=60′,1′=60″
6.用直尺与圆规作一条线段等于已知线段;作一个 角等于已知角.
例1 下列说法中,正确的是( C )
A.画出A、B两点间的距离 B.连接两点之间的直线的长度叫 做这两点之间的距离 C.线段的大小关系与它们的长度 的大小关系是一致的 D.若AC=BC,则点C必定是线段AB的中点
角的表示与度量 角的大小比较 角的平分线
1.线段是直线的一部分,它有两个端点.
(1)线段的基本事实:两点之间的所有连线中,

沪科版七年级上册数学第4章-直线与角复习课件.ppt

沪科版七年级上册数学第4章-直线与角复习课件.ppt

第四章:直线与角复习(1课时)教学目标【知识与技能】1、使学生理解本章的知识结构,并通过本章的知识结构掌握本章知识;2、对线段、射线、直线、角的概念及它们之间的进一步的认识;3、掌握本章的全部定理和公理;4、理解本章中数学中数形结合的思想方法;5、了解本章的题目类型,进行简单的知识计算;【过程与方法】回顾线和角的有关概念,采用自学与小组学习相结合的方法,培养学生主动参与、勇于探究的精神。

【情感、态度与价值观】通过让学生回顾线段、直线、射线和角的简单的图形,引导学生把数学知识与现实生活想联系。

教学重难点【重点】重点是理解本章的知识结构,掌握线段和角的有关知识计算;【难点】理解本章数学中的数形结合的思想方法.教学过程一、知识回顾知识回顾1:(1)几何图形有关概念,几何图形由、、、组成;(2)线段、射线、直线。

1、直线的性质;2、线段的性质;知识回顾2:(1)指出线段、射线、直线三者的相同点和不同点知识回顾3:(1)角的基本知识(2)余角和补角的性质二、基础知识过关1、下列图形中哪些是角?2、判断正误3、角的个数4、线段、射线、直线的个数三、共同提升练习1、如图4-2,D是AB的中点, E是BC的中点,BE=15AC=2 cm,求线段DE的长四、合作交流1、如图4-6,已知OE是∠BOC的平分线,OD是∠AOC的平分线,且∠AOB=150°,则∠DOE的度数是________.2、若一个角的补角等于它的余角的4倍,求这个角的度数?五、总结:今天我们学习了什么知识?你有那些收获?还有什么问题吗?六、作业:1、A组复习题 2,32、B组复习题 1, 2。

沪科版初中数学初一上册《直线与角》全章复习与巩固(基础)知识讲解

沪科版初中数学初一上册《直线与角》全章复习与巩固(基础)知识讲解

《直线与角》全章复习与巩固(基础)知识讲解【学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何图形的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1.直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线. (2)线段:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②两条直线相交只有一个交点.③两点之间线段的长度,叫做这两点之间的距离. 3.线段的长短比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PNMBA要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.5.余角、补角 (1)定义:如果两个角的和等于一个平角,那么我们就称这两个角互为补角,简称互补. 如果两个角的和等于一个直角,那么我们就称这两个角互为余角,简称互余. (2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等. 要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的. ③只考虑数量关系,与位置无关. ④“等角是相等的几个角”,而“同角是同一个角”. 6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角. 要点诠释: (1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小. (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛. 要点四、用尺规作线段与角 1.尺规作图几何中,通常用没有刻度的直尺和圆规来画圆,这种画圆的方法叫做尺规作图. 2.用尺规作线段(1)用尺规作一条线段等于已知线段.要点诠释:画一条线段等于已知线段①度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. ②用尺规作图法:用圆规在射线AC 上截取AB =a,如下图:(2)用尺规作一条线段等于已知线段的倍数. (3)用尺规作一条线段等于已知线段的和. (4)用尺规作一条线段等于已知线段的差. 3.用尺规作角(1)用尺规作一个角等于已知角.(2)用尺规作一个角等于已知角的倍数. (3)用尺规作一个角等于已知角的和. (4)用尺规作一个角等于已知角的差. 【典型例题】类型一、几何图形1. 观察图中的立体图形,分别写出它们的名称.【答案】从左向右依次是:球、六棱柱、圆锥、正方体、三棱柱、圆柱、四棱锥、长方体. 【解析】针对立体图形的特征,直接填写它们的名称即可.【总结升华】熟记常见立体图形的特征是解决此类问题的关键.类型二、线段和角的概念或性质2.下列说法正确的是( )A.射线AB与射线BA表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3. 【答案】D【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角和直线是两种不同的概念,不能混淆.【总结升华】理解概念,掌握概念与概念的本质区别,并进行“比较”性分析和记忆.举一反三:【变式】下列结论中,不正确的是().A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B3.如图所示,要把水渠中的水引到水池C,在渠岸AB的什么地方开沟,才能使沟最短? 画出图来,并说明原因.【答案与解析】解:如图,过点C作CD⊥AB,垂足为D.所以在点D沿CD开沟,才能使沟最短,原因是从直线外一点到直线上所有各点的连线中,垂线段最短.【总结升华】“如何开沟、使沟最短”,实质上是如何过C点向AB引线段,使线段最短,这就是最熟悉的垂线的性质的应用.4. (广西钦州)钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【思路点拨】画出图形,利用钟表表盘的特征解答.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.举一反三:【变式】100°-60°52′10″=【答案】39°7′50″类型三、线段或角的计算1.方程的思想方法5. 如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的和、差.【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴2x+3x+4x=90,x=10,∴AB=20 cm,BC=30 cm,CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD -∠BOC=100°-60°=40°.2.分类的思想方法6.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x 得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x ∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1)如图(1),AC=AB-BC=8-3=5(cm);(2)如图(2),AC=AB+BC=8+3=11(cm).所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有( ).①已知A、B、C三点,过其中两点画直线一共可画三条.②过已知任意三点的直线有1条.③三条直线两两相交,有三个交点.A.0个B.1个C.2个D.3个【答案】A3.类比的思想方法7.(1)如图,线段AD上有两点B、C,图中共有______条线段.(2)如图,在∠AOD的内部有两条射线OB、OC,则图中共有个角.【答案】(1)6;(2)6.【解析】(1)以A为端点的线段有3条,同样以B,C,D为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:3462⨯=(条).(2)以射线OA为一边的角有3个,同样以OB,OC,OD为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:3462⨯=(个).【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容.类型四、线段或角的作图8.在如图中,补充作图:在AD的右侧作∠DCP=∠DAB(尺规作图,不写作法,保留作图痕迹).【答案与解析】解:(1)作图如下:【总结升华】本题考查了基本作图:作一个角等于已知角,正确掌握基本作图是解决本题的关键.举一反三:【变式】下列作图属于尺规作图的是().A.画线段MN=3cm. B.用量角器画出∠AOB的平分线.C.用三角尺作过点A垂直于直线L的直线.D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α.【答案】D。

直线与角知识点总结

直线与角知识点总结

直线与角知识点总结直线与角是几何学中的重要概念,它们在解决几何问题和计算几何关系时起着关键作用。

本文将系统总结直线与角的基本概念、性质和应用,以帮助读者更好地理解和运用这些知识。

一、直线的基本概念1. 直线的定义在几何学中,直线是由无数个点按一定方向无限延伸而成的。

它是一种没有宽度和厚度,只有长度的几何图形。

2. 直线的表示在几何绘图中,直线通常用两个端点,也可以用一个小写字母或者任意两个点的名字(如AB或BA)表示。

3. 直线的分类直线可分为水平线、垂直线、平行线和斜线等。

水平线是指与水平面垂直的直线,垂直线是指与地面平行的直线,平行线是指方向相同但不相交的直线,斜线则是方向不同的直线。

二、角的基本概念1. 角的定义在几何学中,角是由两条射线共同端点所围成的图形,通常用A、B、C表示,其中B是角的顶点,A和C分别是角的两边。

2. 角的度量角的度量通常用度(°)来表示,1度等于圆周的1/360。

此外,我们还可以用分、秒来表示更小的角度。

3. 角的分类根据角的大小和旋转方向,我们可以将角分为锐角、直角、钝角、周角、复角和对顶角。

三、直线与角的性质1. 直线的性质(1)直线上任意两点之间的距离是固定的。

(2)两条相交直线之间的角的和等于180°。

(3)两条平行直线之间的角是对应角,对应角相等。

2. 角的性质(1)锐角的度数小于90°,直角的角度为90°,钝角的角度大于90°。

(2)相邻角的度数相加等于180°。

(3)对顶角相等,即相对角等于180°减去其补角的度数。

四、直线与角的应用1. 直线与角的计算在解决几何问题和证明几何定理时,直线与角的计算是非常重要的。

通过计算直线的长度和角的度数,我们可以判断直线的位置关系、角的大小以及其他相关信息。

2. 直线与角的绘制在几何绘图中,我们经常需要根据给定的条件画出直线和角。

掌握绘制直线和角的方法,可以让我们更准确地解决问题和展示几何关系。

七年级直线与角知识点

七年级直线与角知识点

七年级直线与角知识点作为初中数学的基础知识之一,直线与角在七年级数学教学中占有重要地位。

那么,在这里就对七年级直线与角的知识点进行梳理和总结,以期能更好地帮助同学们进行数学的学习。

一、角的概念角是指由两条相交的线段(即边)所夹的平面图形部分。

其中,相交的两条线段称为角的边,而它们的交点称为角的顶点。

角的大小用角度来表示,记作∠ABC(A、B、C分别为角的顶点、起始点和终止点),单位是度(°)。

二、角的分类按照角的大小,角可分为以下几类:1.锐角:其度数小于90度(即0°<∠ABC<90°)。

2.直角:其度数等于90度(即∠ABC=90°)。

3.钝角:其度数大于90度但小于180度(即90°<∠ABC<180°)。

4.平角:其度数等于180度(即∠ABC=180°)。

三、直线及其性质直线是指连续的、无限的点构成的线段。

根据直线的不同特征和性质,可以分为以下几类:1.水平线:在平面直角坐标系中,与x轴平行的直线称为水平线。

2.竖直线:在平面直角坐标系中,与y轴平行的直线称为竖直线。

3.斜线:在平面直角坐标系中,既不与x也不与y轴平行,且倾斜程度不为0或90度的直线称为斜线。

4.平行线:在平面直角坐标系中,如果两条直线永远也不相交,则它们被称为平行线。

5.垂直线:在平面直角坐标系中,如果两条直线相交,并且相交的角度为90度,则它们被称为垂直线。

四、角度计算1.角的度数:在平面直角坐标系中,可以通过直线边界所组成的角来进行度数计算。

若两条过顶点的线段在平面直角坐标系中确定的角是α,那么α的度数=∠MNP(即角度为α的相应弧)所对应的弧长l/R(其中,R为圆的半径)×360度,即α=l/R×360°。

2.补角和余角:互为补角的两个角,其度数之和为90度(即∠ABC和∠CBD是互为补角,那么∠ABC+∠CBD=90°),而互为余角的两个角,其度数之和为180度(即∠ABC和∠CBD是互为余角,那么∠ABC+∠CBD=180°)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与角》全章复习与巩固(基础)知识讲解撰稿:孙景艳审稿:吴婷婷学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题【知识网络】【要点梳理】要点一、几何图形1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果2. 几何图形的构成元素几何体是由点、线、面构成的. 点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线2. 基本事实(1)直线: 两点确定一条直线.(2)线段: 两点之间线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②两条直线相交只有一个交点. ③两点之间线段的长度,叫做这两点之间的距离.3.线段的长短比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC=AC,或AC=a+b;AD=AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:1AM MB AB.2要点诠释:1①线段中点的等价表述:如上图,点M在线段上,且有AM AB,则点M为线段AB 的2中点. ②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.1如下图,点M,N,P 均为线段AB的四等分点,则有AM MN NP PB AB .4A M N P B要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示. 例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示2. 角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β <180°∠β=180°∠β=360 °3. 角的度量1 周角=360°,1 平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60 进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60 进一,减一成60.4. 角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角1的平分线,例如:如下图,因为OC是∠ AOB的平分线,所以∠ 1=∠ 2= ∠ AOB,或∠ AOB=2 2∠1=2∠ 2. 类似地,还有角的三等分线等.5. 余角、补角(1)定义:如果两个角的和等于一个平角,那么我们就称这两个角互为补角,简称互补如果两个角的和等于一个直角,那么我们就称这两个角互为余角,简称互余(2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等. 要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的. ③只考虑数量关系,与位置无关.④“等角是相等的几个角” ,而“同角是同一个角” .6. 方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(或补角).(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的 . 所以在应用中一要确定其始边是正北还是正南 . 二要确定其旋转方向是向东还是向西, 三要确定旋转角度的大小 . (2)北偏东45 °通常叫做东北方向,北偏西 45 °通常叫做西北方向,南偏东 45 °通常 叫做东南方向,南偏西 45 °通常叫做西南方向 .(3)方位角在航行、测绘等实际生活中的应用十分广泛 .要点四、用尺规作线段与角1. 尺规作图 几何中,通常用没有刻度的直尺和圆规来画圆,这种画圆的方法叫做尺规作图 .2. 用尺规作线段(1)用尺规作一条线段等于已知线段要点诠释: 画一条线段等于已知线段2)用尺规作一条线段等于已知线段的倍数 3)用尺规作一条线段等于已知线段的和 4)用尺规作一条线段等于已知线段的差 3. 用尺规作角(1)用尺规作一个角等于已知角 . (2)用尺规作一个角等于已知角的倍数 (3)用尺规作一个角等于已知角的和(4)用尺规作一个角等于已知角的差【典型例题】 类型一、几何图形②用尺规作图法: 用圆规在射线 AC 上截取 AB =a,如下图:1. 观察图中的立体图形,分别写出它们的名称.【答案】从左向右依次是:球、六棱柱、圆锥、正方体、三棱柱、圆柱、四棱锥、长方体.【解析】针对立体图形的特征,直接填写它们的名称即可.【总结升华】熟记常见立体图形的特征是解决此类问题的关键.类型二、线段和角的概念或性质2. 下列说法正确的是( )A. 射线AB与射线BA表示同一条射线.B. 连结两点的线段叫做两点之间的距离.C.平角是一条直线.D. 若∠1+∠2=900,∠1+∠3=900, 则∠ 2=∠ 3.答案】D【解析】选项A 中端点和延伸方向不同,所以是两条射线;选项B 中两点之间的距离是指线段的长度,是一个数值,而不是图形;C 中角和直线是两种不同的概念,不能混淆. 【总结升华】理解概念,掌握概念与概念的本质区别,并进行“比较”性分析和记忆.举一反三:【变式】下列结论中,不正确的是().A .两点确定一条直线B .两点之间,直线最短C.等角的余角相等D.等角的补角相等答案】B3. 如图所示,要把水渠中的水引到水池 C ,在渠岸AB 的什么地方开沟,才能使沟最短? 画出图来,并说明原因.【答案与解析】解:如图,过点C作CD⊥ AB ,垂足为D.所以在点D 沿CD 开沟,才能使沟最短,原因是从直线外一点到直线上所有各点的连线中,垂线段最短.【总结升华】“如何开沟、使沟最短” ,实质上是如何过C 点向AB 引线段,使线段最短,这就是最熟悉的垂线的性质的应用.4. (广西钦州)钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15 分钟旋转了 __________________ 度.【思路点拨】画出图形,利用钟表表盘的特征解答.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5 分钟旋转30°,所以经过15 分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5 °;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.举一反三:【变式】100°-60° 52′ 10″=【答案】39° 7′ 50″ 类型三、线段或角的计算1. 方程的思想方法5. 如图所示,在射线OF 上,顺次取A 、B、C、D 四点,使AB:BC:CD=2:3: 4,又M、N 分别是AB、CD 的中点,已知AD =90cm,求 MN 的长.【思路点拨】 有关比例问题,可设每一份为 x ,列方程求解,再利用中点定义,找出线段的和、差. 【答案与解析】 解:设线段 AB ,BC ,CD 的长分别是 2x cm ,3x cm ,4x cm , ∵AB+BC+CD = AD =90 cm ,∴ 2x+3x+4x =90,x =10, ∴AB = 20 cm , BC = 30 cm , CD = 40 cm ,11= AB+BC+ CD = 10+30+20= 60( cm) .22总结升华】 当已知某线段被分成的几条线段的长度比时,可根据比设未知数 子表示相关的线段的长度,列方程求出 x 的值,进而求出线段的长. 举一反三:变式】如图所示,已知∠ AOC =∠ BOD =100°,且∠ AOB : ∠AOD =2: 7,求∠ BOC 和 ∠COD 的度数.【答案】解:设∠ AOB 的度数为 2x ,则∠ AOD 的度数为 7x .由∠ AOD =∠ AOB+ ∠BOD 及∠ BOD =100°, 可得 7x =2x+100 °.解得 x = 20 °,所以∠ AOB =2x =40°.所以∠ BOC =∠ AOC - ∠ AOB =100°-40°=60°, ∠ COD =∠ BOD - ∠BOC = 100°- 60°= 40°2. 分类的思想方法6. 以∠ AOB 的顶点 O 为端点的射线 OC , 使∠AOC: ∠BOC =5:4.(1) 若∠ AOB = 18°,求∠ AOC 与∠ BOC 的度数;(2) 若∠ AOB = m ,求∠ AOC 与∠ BOC 的度数. 【答案与解析】∴MN = MB+BC+CNx ,用 x 的式解:( 1)分两种情况:①OC 在∠ AOB 的外部,可设∠ AOC =5x,则∠ BOC =4x 得∠ AOB =x,即x=18°所以∠ AOC =90°,∠ BOC =72°②OC 在∠ AOB 的内部,可设∠ AOC =5x,则∠ BOC =4x ∠AOB =∠ AOC+ ∠BOC =9x所以9x=18°,则x=2°所以∠ AOC =10°,∠ BOC =8°54(2)仿照( 1),可得:若∠ AOB =m,则∠ AOC=m,∠ BOC=m,或∠ AOC =5m,99∠BOC =4m.【总结升华】本题中的已知条件没有明确地说明OC 在∠ AOB 的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB =8cm,在直线AB 上画线段BC=3cm,求线段AC 的长.【答案】解:分两种情况:(1)如图(1),AC=AB -BC=8-3=5(cm);(2)如图(2),AC=AB+BC =8+3=11( cm) .所以线段AC 的长为5cm 或11cm.【变式2】下列判断正确的个数有( ) .①已知A、B、C 三点,过其中两点画直线一共可画三条.②过已知任意三点的直线有1 条.③三条直线两两相交,有三个交点.A.0个B.1个C.2 个D.3个【答案】A3. 类比的思想方法【高清课堂:图形认识初步章节复习399079 类比思想例5】7.(1)如图,线段AD上有两点B、C,图中共有______ 条线段.OC,则图中共有个角.【答案】(1)6;(2)6.【解析】(1)以A 为端点的线段有3条,同样以B,C,D 为一个端点的线段也各有因为所有线段均重复了一次,所以共有线段条数: 3 4 6 (条).2(2)以射线OA 为一边的角有3 个,同样以OB,OC,OD 为一边的角也各有34为所有角均重复一次,所以共有角的个数: 3 4 6(个).2【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容类型四、线段或角的作图3 条,又3 个,又因OB、举一反三:【变式】下列作图属于尺规作图的是( ).A .画线段 MN=3cm .B .用量角器画出∠ AOB 的平分线.C .用三角尺作过点 A 垂直于直线 L 的直线 .D .已知∠α,用没有刻度的直尺和圆规作∠AOB ,使∠ AOB=2∠α. 【答案】 DDCP=∠DAB (尺规作图,不写作法,保留作图痕迹)8. 在如图中,补充作图:在 AD 的右侧作∠正确掌握基本作图是解决本题的 【答案与解析】 解:(1)作图如下:关键.作一个角等于已知角,。

相关文档
最新文档