一次函数的图像和性质

合集下载

一次函数的图象及性质

一次函数的图象及性质
极小值点
在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程

一次函数的图像和性质

一次函数的图像和性质

课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。

一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。

一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。

(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。

2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。

反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。

(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。

(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。

即该函数为减函数。

3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。

4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。

一次函数的图象与性质课件

一次函数的图象与性质课件


知识要点
③自变量x的取值范围: 一般情况下,一次函数的自变量取值 范围为是全体实数. 强调: 正比例函数也是一次函数,但一次函 数不一定是正比例函数.

①图象特征:
知识要点
一次函数 y kx bk 0 的图象是经过点
2.一次函数的图象和性质:
b 0,b 、 0 , k 的一条直线.
票得种类
单价(元/张)
夜票(A) 60
平日普通票 (B) 100
指定日普通票 (C) 150
某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票得 张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y (1)写出Y与X 之间的函数关系式 (2)设购票总费用为W元,求出W(元)与X(张)之间的函数关系式 (3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票 方案?并求出购票总费用最少时,购买A,B,C三种票的张数。
正比例函数 y kxk 0 的图象是经过 原点( 0 ,0) 的一条直线. 画一次函数的图象,只要先描出两点, 再连成直线.

②位பைடு நூலகம்特征
知识要点
从表中可 以看出: 由一次函 数经过的 象限可以 判断k、b 的符号, 反过来, 由k、b的 符号也可 以判断图 象经过的 象限.

知识要点


掌握一次函数的图像和性质; 注意从图像中获取解题信息; 要注意学会建立函数模型,会用 函数观点处理和解决问题。
学如逆水行舟, 不进则退。
2012年3月
一.课标链接
一次函数的图象与性质
一次函数中学数学中的一类基本 函数,是数形结合的典型之一,它与 一元一次方程和一元一次不等式联系 紧密,掌握一次函数的基本概念和图 象性质,能够解决相关问题是中考的 测试要点之一.

一次函数的图像和性质

一次函数的图像和性质

图象关系 图象平移得到,b>0,向上平移 b 个单位;b<0,向
下平移b个单位
图象确定
因为一次函数的图象是一条直线,由两点确定一条直 线可知画一次函数图象时,只要取两个点即可
第14讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限
k>0
_一__、__三__象__限_
一次函数图象的
解即两函数图象的交点坐标
交点坐标
一条直线与坐标 轴围成的三角形
的面积
直线y=kx+b与x轴交点坐标为-bk,0,与y轴交
点为(0,b),三角形面积为S△=12-kb
×

|b|
第14讲┃ 考点聚焦 考点5 由待定系数法求一次函数的表达式
因在一次函数y=kx+b(k≠0)中有两个未知系数k和b,所 以要确定其关系式,一般需要两个条件,常见的是已知两点
图 11-1
B.m<1
C.m<0
D.m>0
[解析] 根据函数的图象可知m-1<0,求出m的取 值范围为m<1.故选B.
第14讲┃ 归类示例
► 类型之二 一次函数的图象的平移 命题角度: 1.一次函数的图象的平移规律; 2.求一次函数的图象平移后对应的关系式. [2012·衡阳] 如图11-2,一次函数y=kx+b的图
y随x增 大而增大
_一__、__二__、__四__象__限__ _二__、__三__、__四__象__限__
y随x增 大而减小
第14相交
__k_1_≠__k_2_⇔l1 和 l2 相交
+b1 和 l2:y=k2x 平行 +b2 的位置关系
y=kx (k≠0)
k<0

《一次函数的图像和性质》课件

《一次函数的图像和性质》课件

四、巩固提高,达标测试
1. 直线y=2x-3与x轴交点坐标为______;与y轴 的交点坐标为______;图象经过________象 限,y随x的增大而___.
2.若此直线平行于直线y=-3x-5,则k=
.
3. 直线y=2x-3的图象经过点 (0, )与点 ( ,0),图像经过___象限,y 随x的增大 而。
比一比:正比例函数y=x与一次函数y=x+2 、 y=x-2图象有什么异同点.
y 6
5
4y=x+2
y=x
3
2
y=x-2
1
-6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 x -1 -2
-3
-4
-5 -6
巩固练习(一):
1.将直线y=-2x向 上 平移 3 单位,可
得直线 y=-2x +3的图象;将直线y=-2x向
在直线y=kx+b上

3k b5 4k b9
解得
k 2 b1
∴ 一次函数解析式为y=2x-1
5、已知直线y= -2x+4,它与x轴的交点为A, 与y轴的交点为B.
(1).求A, B两点的坐标.
(2).求∆AOB的面积. (O为坐标原点)
6、已知某一次函数的图象经过(3, 4), (-2, 0)两点,试求这个一次函数的解析式.
b>a
(4)直线y=2x-3与x轴交点坐标为(
3 2
,0

与y轴交点坐标为( 0,-3 ),图象经过
一三四 象限,y随x的增大而 增大,图
象与坐标轴所围成的三角形的面积是
9 4
(4)已知一次函数y=kx+b(k≠0)的 图象经过点(0,1),且y随x的增大 而增大,请你写出一个符合上述条件 的函数关系式_y_=_x_+_1_.

一次函数图像及性质

一次函数图像及性质

一次函数图像及性质
一次函数是一种基本函数,其形式为y=kx+b,其中k是斜率,b是截距。

一次函数的图像呈现为一条直线,具有一定的性质。

首先,一次函数的图象可以通过将直线y=kx平移Ib1个单位长度得到,具体地,当b>0时,图象向上平移;当b<0时,图象向下平移。

其次,一次函数具有以下主要性质:
-一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠O)°
-一次函数与y轴交点的坐标总是(0,b),与X轴总是交于(-b∕k,0)o
-正比例函数的图像都是过原点。

-当k>0时,直线必通过一、三象限,y随X的增大而增大;当k<0时,直线必通过二、四象限,y随X的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点;当bVO时,直线必通过三、四象限。

这些性质有助于我们更好地理解和应用一次函数。

一次函数图像性质总结

一次函数图像性质总结

一次函数图像性质总结一次函数图像性质总结3、一次函数的图象及性质(1)形状:一次函数y=kx+b的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.(2)画法:由于一次函数y=kx+b的图象是一条直线,因此作一次函数图象时,只要确定两个点,再过这两个点作直线就可以了.一般地,一次函数y=kx+b的图象是经过点(0,b)和b(-,0)的一条直线,当b=0时,即为正比例函数,其图象k是经过原点(0,0)和点(1,k)的一条直线.(3)性质:一次函数y=kx+b(k、b是常数,且k≠0)的图像是一条直线,它的性质如下:性质一:(增减性)一次函数中k的取值决定了图像的倾斜方向。

①k>0直线必然经过一、三象限,y的值随着x的增大而增大。

②k<0直线必然经过二、四象限,y的值随着x的增大而减小。

性质二:一次函数中b的取值确定直线与y轴交点的位置,反之亦然。

①b>0直线与y的交点在x轴的上方。

②b=0直线过原点。

③b<0直线与y的交点在x轴的下方。

性质三:当k确定b变化时,图像为无数条平行线;即两直线平行K的值相等。

当b确定k变化时,图像为一束都经过点(0,b)的直线。

即当b相等时两直线相交于Y轴一点。

性质四:一般的,一次函数的k、b都未确定,他的图像分为四种情况:注意:一般的画一次函数y=kx+b(k、b是常数,且k≠0)图像时,选取(0,b)、(-,0)两点,即选取直线与两坐标轴的交点。

bk扩展阅读:一次函数图像性质小结与配套练习一次函数的图像性质总结(阅读+理解)一、一次函数的图像姓名1.正比例函数y=kx(k≠0,k是常数)的图像是经过O(0,0)和M(1,k)两点的一条直线(如图13-17).(1)当k>0时,图像经过原点和第一、三像限;(2)k<0时,图像经过原点和第二、四像限.2.一次函数y=kx+b(k是常数,k≠0)的图像是经过A(0,b)和B(-直线,当kb≠0时,图像(即直线)的位置分4种不同情况:(1)k>0,b>0时,直线经过第一、二、三像限,如图13-18A(2)k>0,b<0时,直线经过第一、三、四像限,如图13-18B(3)k<0,b>0时,直线经过第一、二、四像限,如图13-18C(4)k<0,b<0时,直线经过第二、三、四像限,如图13-18Db,0)两点的一条k3.一次函数的图像的两个特征(1)对于直线y=kx+b(k≠0),当x=0时,y=b即直线与y轴的交点为A(0,b),因此b叫直线在y轴上的截距.(2)直线y=kx+b(k≠0)与两直角标系中两坐标轴的交点分别为A(0,b)和B(-4.一次函数的图像与直线方程(1)一次函数y=kx+b(k≠0)的图像是一条直线,因此y=kx+b(k≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x轴平行的直线方程形如:y=a(a是常数).a>0时,直线在x轴上方;a=0时,直线与x轴重合;a<0时,直线在x轴下方.(如图13-19)b,0).k②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20).二、两条直线的关系1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b,若l1与l2相交,则k1≠k2,其交点是联立这两条直线的方程,求得的公共解;若l1与l2平行,则k1=k2.三、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.用待定系数法求一次函数的解析式:若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b①y2=kx2+b②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.一次函数的图像和性质练习题题组一:1.正比例函数ykx(k0)一定经过点,经过(1一次函数ykxb(k0)经,),过(0,)点,(,0)点.2.直线y2x6与x轴的交点坐标是,与y轴的交点坐标是。

一次函数的图像和性质

一次函数的图像和性质

3.2 一次函数一、知识汇总: 1、 函数的概念:在某变化的过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有 的值与它对应,那么称y 是x 的函数,其中 x 是 ,y 是 2、 一次函数与正比例函数:若两个变量x ,y 之间的关系可以表示成 的形式,则称y 是x 的一次函数,特别地当 时,称y 是x 的正比例函数,显然正比例函数是一次函数的特殊情况. 3、 一次函数的图象:正比例函数y =kx (0≠k )的图象经过点(0, )(1, )的一条直线,一次函数y =kx 十b (k ,b 为常数,0≠k )的图象经过点(0, )( ,0)的一条直线,具体的见下表:正比例函数和一次函数有相同的性质即当k >0时,y 随x 的 ,当k <0时,y 随x 的 . 二、典型例题与易错题:例1、已知函数133255y x y x y y y x =-=-=+==,,,,其中一次函数的个数是( )A.2 B.3C.4D.5例2、 当k 满足什么条件时函数23(2)2k y k x -=++是一次函数?例3、一次函数(1)5y m x =++中,y 的值随x 的减小而减小,则m 的取值范围是( )A.1m >- B.1m <- C.1m =- D.1m < 例4、关于一次函数y =-x+1的图像,下列所画正确的是()【答案】C两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )例5、某一次函数的图像经过A (0,3),B (-1,1),求该一次函数的解析式。

例8、如图,直线y=kx+b 与x y 21=图象交于点A (2,1), 则不等式b kx x +>21的解集为 三、基础知识练习: 1、函数y =122++-x x x 的自变量x 的取值范围是2、在函数2y x b =-中,函数y 随着x 的增大而 ,此函数的图象经过点(21)-,,则b = .3、已知直线35y x =+与直线6y ax =-是两条互相平等的直线,则a = .4、一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b = .5、已知一次函数y kx b =+的图象不经过第三象限,也不经过原点,那么k b 、的取值范围是( )A.0k >且0b <B.0k >且0b < C.0k <且0b > D.0k <且0b <已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A .x<-1B .x> -1C . x>1D .x<1 6、已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为 7、如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)1 x x 1 x D. C. B . A .图象的是( )如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、如图,已知函数b ax y +=与kx y =得图象交于点P ,则关于x 、y 的二元一次方程组⎩⎨⎧=+=kxy bax y 的解是9、如图,已知函数b x y +=3和3-=ax y 的图象交于点P (-2,-5),则不等式33->+ax b x 的解集是12、如图,已知直线1l 经过点A (-1,0)与点B (2,3),另一条直线2l 经过点B,且与x 轴相交于点P (m ,0) (1)求直线1l 的解析式(2)若△APB 的面积为3,求m 的值四、拓展提高:1、如图,直线33+-=x y 与x 轴、y 轴分别交于A 、B 两点,若把 △AOB 沿直线AB 翻折,点O 落在点C 处,则点C 的坐标是2、如图,已知直线1l :3832+=x y 与直线2l :162+-=x y 相交于点C ,1l 、2l 分别交x 轴与A 、B 两点,矩形DEFG 的顶点D 、E 分别在直线1l 、2l 上,顶点F 、G 都在x 轴上,且点G 与点B 重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列表,画出六种所有函数的图象所过的象限
k>0b>0
k>0b<0
k>0b=0
k<0b>0
k<0b<0
对已讨论出的kb的性质进行归纳总结.
活动4:巩固学生对表格的掌握
以游戏形式,给出k,b画图像
检测本节课主要内容k b对一次函数图像的影响,理解kb的作用
板书设计
14.2一次函数的图象和性质
一图象:
一次函数y=kx+b(kb是常数,b≠0)是条直线,也叫做直线y=kx+b
二性质:
1.k b对直线的作用.
k>0 y随x的增大而增大b>0交于y轴正半轴
K<0 y随x的增大而减小b>0交于y轴正半轴
K相同b不同时直线互相平行b=0交于原点
2.平移
直线y=kx+b可以看成由直线y=kx平移得到
b>0向上平移b<0向下平移
2.归纳kb的作用
活动2:谁能以最快的速度画出y=x+3的图像
让学生画图,根据学生作图情况给出y=x的图像.利用k相同倾斜程度相同画一次函数图象.
1.两点画直线
2适当引申平移直线就是平移点,关键是找到参照点.
活动3:总结一次函数解析式y=kx+b(k, b是常数,k≠0)中,k、b的正负对函数图象有什ห้องสมุดไป่ตู้影响?
第一组y=2x, y=2x+2,的图象。
第二组y=-3x,
y=-x+1,
y=-3x-4的图象
一、展示优秀作业,订正作业中出现问题。
二、复习正比例函数图象性质.
三、观察所画图象类比说出一次函数图象的形状和性质.
四、拖动图象中的正比例函数的直线让学生观察直线上点的变化体会b的作用
1利用五点画图法得到一次函数的图像是条直线,回家完成节省课上时间
《一次函数的图像和性质》教学设计
课程名称
《一次函数y=kx+b的图象和性质》
教学目标
一、知识技能:掌握一次函数的图象和画法,借助函数的图象来研究函数的性质及其性质的应用。
二、过程与方法:学生画出y=2x和y=2x+2的图象,让学生观察两个函数的图象之间有什么位置关系,总结出画一次函数的步骤。进一步去研究y=2x和y=2x+2的性质,在归纳和探究中总结出y=kx+b的性质,体会函数的思想和数形结合的思想,进一步培养学生的抽象思维的能力。
三、情感态度价值观:通过画函数图象去探究和发现函数图象的性质,在探究的活动中,学生分组讨论,从而培养学生的合作意识,从而提高学生学习的积极性。
教学重点
一次函数的图象和性质
教学难点
结合图象理解y=kx和y=kx+b图象之间的关系,并归纳总结出各自函数的特点。
问题与情景
师生行为
设计意图
活动1:拿出作业画好的两组函数图像:
相关文档
最新文档