工程结构抗震设计-桥梁结构抗震能力验算

合集下载

桥梁抗震设计理念及抗震验算

桥梁抗震设计理念及抗震验算

地震引起的破坏
Lateral Restraint 横向的约束
We learn from failures 我们从失败中学习!
上世纪60年代和70年代对地震的观察完全改变了地震设计的理念。
从如何去抵抗一个地震力 改变成 如何去适应地表的位移
如何去适应地表的位移 基本对策: 隔震 减震 延性
如何去适应地表的位移 基本对策: 隔震 使地震的波动尽量不传到结构上; 减震 消耗地震输入的能量,减低结构的反应; 延性 使结构可以承受地震的变形。
时间 2010.04.14 2010.03.04 2008.10.06 2008.05.12 1999.09.21 1996.02.03 1988.11.06 1985.08.23 1976.08.16 1976.07.28 1976.05.29 1975.02.04 1974.05.11 1973.02.06 1970.01.05 1966.03.08 1955.04.15 1955.04.14 1950.08.15
要预防地震产生的灾害, 首先就是要研究地震的特性!
地震
地震按其成因可分为构造地震、火山地震、陷落地震和诱发地震等。
构造地震是现代地壳运动所产生、分布最广、数量最多(>90% )、 危害最重的地震。它产生于板块边缘和板块内部的活动构造带。
岩石圈在地球内力作用下,应变能不断积累,一旦达到岩体强度极限 ,就会发生突然的剪切破裂(脆性破坏)或沿已有破裂面产生突然错动(粘滑 ),积蓄的应变能就会以弹性波的形式突然释放使地壳震动而发生地震。
上世纪60年代和70年代对地震的观察完全改变了地震设计的理念。
地震后结构物的损坏情况:
地震引起的破坏
Bearing Restraint 支座位移的约束

公路桥梁抗震设计要点及计算分析(详细)

公路桥梁抗震设计要点及计算分析(详细)

11 抗震分析
截面特性取值
◇E1地震作用下,常规桥梁的所有构件抗弯刚度均按毛截面计算. ◇E2地震作用下,延性构件的有效截面抗弯刚度应按下式计算,但其
他构件抗弯刚度仍按毛截面计算.
11 抗震分析
11.2 梁桥延性抗震设计
11 抗震分析
11 抗震分析
11.3 建模原则
单元质量可采用集中质量代 表;墩柱和梁体的单元划分应 反映结构的实际动力特性; 支座单元应反映支座的力学
47括号内的值
要点
通过抗震重要性系数调整设计地震动参数,不同 抗震分类桥梁对应的E1、E2地震作用的重现 期不同
两水平设防、两阶段设计
桥梁分类 A类
E1 不应发生损伤
B类
同上
C类
同上
D类
同上
E2 有限损伤
不倒塌或产生严重损伤,临时加 固后可满足应急交通
10 地震作用
10.3 地震动时程
➢做过地震安全性评价的桥址,设计地震动时程要根据专门的工程场地地 震安全性评价的结果确定.
➢未作地震安全性评价的桥址,可根据本细则设计加速度反应谱,合成与其 兼容的设计加速度时程;也可选用与设计地震震级、距离大体相近的实 际地震动加速度记录,通过时域方法调整,使其反应谱与本细则设计加速
10 地震作用
当采用时程分析法时,应同时输入三个方向分量的一组地震动时
程计算地震作用效应. 进行直线桥梁地震反应分析时,可分别考虑沿顺桥向和横桥向两
个水平方向地震输入. 进行曲线桥梁地震反应分析时,可分别沿相邻两桥墩连线方向和 垂直于连线水平方向多方向地震输入,以确定最不利地震水平输入
方向.
➢ 地震作用可以用设计加速度反应谱、设计地震动 时程和设计地震动功谱表达.

土木工程中的桥梁抗震设计

土木工程中的桥梁抗震设计

土木工程中的桥梁抗震设计随着现代城市建设的迅猛发展,桥梁作为城市交通的重要组成部分,其安全性和可靠性越来越受到关注。

在地震频发的地区,桥梁抗震设计成为不可忽视的问题。

本文将介绍土木工程中桥梁抗震设计的原则和方法。

一、地震力的计算桥梁的抗震设计首先需要计算地震力。

地震力的计算一般采用地震反应谱分析方法,该方法可以将地震作用的时间历程转换为最大加速度、加速度峰值、速度和位移的变化曲线。

根据地震反应谱,可以估计桥梁在地震作用下的响应。

二、结构设计在桥梁结构设计中,应根据地震力计算结果考虑以下几个因素:1. 强度:桥梁的各构件和节点必须具有足够的强度,能够承受地震作用下的荷载,并保证不发生破坏。

2. 刚度:桥梁的刚度对于减小地震响应有重要影响。

通过增加桥梁刚度,可以减小桥梁的变形和振动。

3. 韧性:桥梁的韧性是指结构在地震作用下出现破坏时的变形能力。

增加桥梁的韧性可以减小破坏的可能性,并降低地震造成的损失。

4. 阻尼:桥梁的阻尼对于减小地震响应同样很重要。

通过增加桥梁的阻尼,可以减小结构的振动幅度。

三、土壤-结构相互作用土壤-结构相互作用是桥梁抗震设计中需要考虑的另一个重要因素。

土壤对于桥梁的刚度、阻尼和能量耗散等性能有着重要影响。

为了准确评估桥梁的地震响应,需要考虑土壤的动态反应。

常用的土壤-结构相互作用分析方法包括:弹性地基理论、半空间理论和数值模拟等。

四、桥梁抗震措施在桥梁抗震设计中,可以采取以下几种措施:1. 采用适宜的结构形式:合理的结构形式对于提高桥梁的抗震能力很重要。

例如,钢筋混凝土桥梁比砖石桥梁具有更好的抗震性能。

2. 设置防护装置:在桥梁结构中设置防护装置,如减震器、阻尼器等,能够有效减小地震响应。

3. 加固改造:对于现有桥梁,可以通过加固改造提高其抗震能力。

常用的加固措施包括:加固柱、增加剪切墙、加固梁、加固桩等。

4. 高质量工艺:在桥梁施工过程中,严格控制质量,确保结构的强度和韧性。

桥梁工程中桥梁抗震设计

桥梁工程中桥梁抗震设计

路桥科技169 桥梁工程中桥梁抗震设计鲍 伟(安徽省公路桥梁工程有限公司,安徽 合肥 230031)摘要:近年来,我国社会经济快速发展,桥梁工程的建设速度也不断加快。

桥梁的抗震设计也成为一个重要的话题,尤其是处于地震带的区域,更要在桥梁工程的设计时考虑好抗震设计,确保桥梁在使用过程中的安全性与可靠性,满足我国社会经济的发展需求。

基于此,本文将对桥梁工程中桥梁抗震设计进行分析。

关键词:桥梁工程;桥梁抗震设计;桥梁设计1 桥梁震害分析 在城市现代化发展进程中,城市人口形成了聚集状态,加快了区域内经济发展进程。

交通网络应用在城市命脉主体中,旨在全面提升城市抗震性能,加强桥梁抗震效果设计。

依据最近几十年实际发生的地震灾害事件,桥梁工程在地震灾害中极易遭受破坏,作为抗震防灾的关键环节。

桥梁工程在发生破坏时,将会阻断受灾区的交通线路,提升灾区救援困难,使地震引起的关联灾害持续深化,增加了救灾、灾后建设等工作的难度。

与此同时,桥梁在社会组织作为交通性基础设施,在建设时投入大量资金,极具公共性,灾后运维管理存在多重阻碍。

为此,加强桥梁抗震设计,尽可能地减少桥梁在地震中产生的损失问题,保障公共区域的基本安全。

结合往期地震中桥梁震害的具体情况,大致分为四种破坏类型:第一种桥梁工程震害为上部结构破坏,第二种为支座破坏,第三种为下部结构破坏,第四种基础结构破坏。

具体表现为:(1)会对地基产生破坏。

当地震发生后,地基是最先遭受冲击的部分,如果桥梁工程的地基土质松软,对地基的破坏力会更大。

(2)会对桥墩产生破坏。

在发生地震后,桥墩会在地震波的影响下出现偏移,这时就会剪断支座锚栓,极有可能造成桥段断裂或者桥梁坍塌。

(3)会对桥梁支座产生破坏。

当地震发生时,地震的破坏力会得到支座的阻挡与消除,虽然支座能对桥梁主体进行保护,但支座被破坏后,也会发生落梁的问题。

所以,需要做好抗震设计,降低地震产生的破坏。

2 桥梁工程中桥梁抗震设计 地震灾害所导致的桥梁垮塌、墩柱破坏、支座位移过大等震害将直接影响路网畅通甚至造成严重生命和财产损失,这引发了建设行业对抗震设计理念和设计方法的重视。

桥梁结构的抗震性能评估与改进研究

桥梁结构的抗震性能评估与改进研究

桥梁结构的抗震性能评估与改进研究摘要:桥梁作为人类文明的重要标志之一,承载着人们的出行和物资流动。

然而,地震作为一种自然灾害,给桥梁结构带来了巨大的破坏和威胁。

因此,评估和改进桥梁结构的抗震性能显得尤为重要。

本文旨在探讨桥梁结构的抗震性能评估方法,并分析现有抗震性能存在的问题。

通过本文的研究,希望能够为提升桥梁结构的抗震能力、保障人们的生命财产安全,提供有益的参考和指导。

关键词:桥梁结构;抗震性能;评估;改进;技术推广一、桥梁结构的抗震性能的重要性抗震技术是在地震灾害频发的背景下逐渐发展起来的一项重要技术。

随着科学技术的不断进步和人们对地震灾害的深入认识,抗震技术得到了广泛的关注和应用。

在过去的几十年里,抗震技术经历了从初级阶段到成熟阶段的发展过程。

在抗震技术的发展过程中,人们逐渐认识到地震对建筑物和结构的破坏是由地震波的传播和结构的动力响应引起的。

因此,抗震技术的发展主要集中在两个方面:一是地震波的预测和分析,二是结构的抗震设计和改进。

桥梁结构抗震性能的改进是保障桥梁结构安全可靠的重要措施。

地震是一种破坏性极强的自然灾害,对桥梁结构的影响尤为严重。

因此,提高桥梁的抗震性能具有重要的意义。

抗震性能改进可以有效减少地震对桥梁结构的破坏。

地震作用下,桥梁结构会受到地震波的冲击和地震引起的地面变形等影响,容易发生破坏甚至倒塌。

通过改进桥梁的抗震性能,可以增加结构的抗震能力和韧性,减少破坏发生的可能性,从而保障桥梁的安全运行。

抗震性能改进可以提高桥梁的使用寿命。

地震破坏不仅会导致桥梁结构的修复和重建,还会对桥梁的使用寿命造成严重影响。

通过改进抗震性能,可以增加桥梁结构的抗震能力和耐久性,延长桥梁的使用寿命,减少维修和更换的频率,降低维护成本。

抗震性能改进还可以提高桥梁结构的可靠性和安全性。

地震是一种突发性的自然灾害,对桥梁结构的要求非常高。

因此,通过改进抗震性能,可以增加桥梁结构的稳定性和可靠性,提高桥梁在地震中的抵抗能力,保障人员和交通的安全。

工程结构抗震习题答案

工程结构抗震习题答案

掌握地震动的基本特性,结构地震响应特性,反应谱,钢筋混凝土结构、钢结构、砌体结构和桥梁结构的抗震验算和构造措施,隔震减震的基本原理等。

掌握排架结构简化为单质点体系时,多遇地震水平地震作用标准值的计算(例题3.1)钢筋混凝土框架简化成多质点体系时,用振型分解反应谱法计算该框架在多遇地震下的层间地震剪力,以及内力图。

(例题3.3)多层钢筋混凝土框架结构,用底部剪力法计算其在多遇地震作用下各质点上的水平地震作用。

(例题3.7)一、填空题1、构造地震为由于地壳构造运动造成地下岩层断裂或错动引起的地面振动。

2、建筑的场地类别,可根据土层等效剪切波速和场地覆盖层厚度划分为四类。

3、《抗震规范》将50年内超越概率为 10% 的烈度值称为基本地震烈度,超越概率为 63.2% 的烈度值称为多遇地震烈度。

4、丙类建筑房屋应根据抗震设防烈度,结构类型和房屋高度采用不同的抗震等级。

5、柱的轴压比n定义为 n=N/fc Ac(柱组合后的轴压力设计值与柱的全截面面积和混凝土抗压强度设计值乘积之比)6、震源在地表的投影位置称为震中,震源到地面的垂直距离称为震源深度。

7、表征地震动特性的要素有三,分别为振幅、频谱和持时。

8、某二层钢筋混凝土框架结构,集中于楼盖和屋盖处的重力荷载代表值相等G 1=G2=1200kN,第一振型φ12/φ11=1.618/1;第二振型φ22/φ21=-0.618/1。

则第一振型的振型参与系数j= 0、724 。

9、多层砌体房屋楼层地震剪力在同一层各墙体间的分配主要取决于楼盖的水平刚度(楼盖类型)和各墙体的侧移刚度及负荷面积。

10、建筑平面形状复杂将加重建筑物震害的原因为扭转效应、应力集中。

11、在多层砌体房屋计算简图中,当基础埋置较深且无地下室时,结构底层层高一般取至 室外地面以下500mm 处 。

12、某一场地土的覆盖层厚度为80米,场地土的等效剪切波速为200m/s,则该场地的场地土类别为 Ⅲ类场地 (中软土) 。

桥梁结构抗震设计PPT120页

桥梁结构抗震设计PPT120页

图中的横坐标为结构自振周期T(以秒为单位)
根据设计反应谱计算的单质点地震作用为:
FE CiCzkhG CiCz1G(5 3)
kh | xg |max / g
G mg
| xg x* |max / | xg |max (5 4)
1 kh
式中,水平地震系数Kh和动力放大系数β的乘积即为 水平地震作用影响系数α1 (无量纲);
i 1
i 1
第i个质点的地震作用Fi为
Fi CiCzkH 11Gi Hi / H (5 10)
5.2
桥桥梁梁按按反反应应谱谱理理论论的的计计算算方方法法
四. 桥梁构件截面抗震验算--按反应谱方法
1、抗震荷载效应组合下截面验算设计表示式:
Sd b Rd
Sd Sd g Gk ; q Qdk ;
H≤12米时 整个结构采用 1 H>12米时 随结构高度而变,底面
1,墩台顶面及顶面以上 2 ;中间任一点处的 I 1 Hi / H0
式中H对于桥墩为墩顶面至基底(即基础底面)的高 度(以米计),对于桥台则自桥台道碴槽顶面至基底 的高度。
Hi为验算截面以上任一质量的重心至墩台底(即基础 底面)的高度(以米计)。
桥梁按反应谱理论的计算方法
表5—2 综合影响系数Cz
桥梁和墩、台类型
桥墩计算高度H (米)
H 10≤H< 20≤H<
<10 20
30
柔性 柱式桥墩、排架桩墩、薄 墩 壁桥墩

实体 墩
天然基础和沉井基础上实 体桥墩

多排桩基础上的桥墩
0.3 0
0.2 0
0.2 5
0.33 0.25 0.30
0.35 0.30 0.35

桥梁结构抗震计算-1

桥梁结构抗震计算-1

1桥梁结构抗震Seismic Design for Bridge Structures土木工程学院2010.8第三章地震作用计算Seismic Action Calculation3. 1 概述3.2 静力法3.3 单自由度体系的地震反应3.4 单自由度体系的水平地震作用-反应谱法3.5 多自由度体系的地震反应3.6 多自由度体系的水平地震作用-振型分解反应谱法3.7 竖向地震作用计算3.8 地震反应时程分析法的概念3.9 结构自振频率的近似计算3.1 概述一、地震作用二、结构地震反应结构地震反应:三、结构动力计算简图及体系自由度a、水塔建筑d、多、高层建筑3.2 静力法静力法明显的优点是简单,其缺点是完全没有反映地基和结构的动力特征。

静力法只对刚度较大,且较低矮的结构才是合适的。

一般认为对于自振周期小于0.5秒的结构按静力法计算地震作用时,误差不会很大。

日本从20世纪20年代起始用静力法以来,为了表示场地、结构动力特性等众多因素的影响,对静力法作过多次修正,乘以多个系数,称之为震度法,并沿用至今。

我国鉴于当前路基和挡土墙、坝体等土木工程结构的动力观测资料和自振特性的试验研究尚少,故对它们的抗震验算,仍采用静力法计算地震作用。

3.3 单自由度体系的地震反应-----------------------单自由度体系的振动f cv cx=−=− f =−I f ma mx=−=−单自由度体系无阻尼自由振动:mxA:振幅单自由度体系无阻尼自由振动:2ξωωξ特征方程:(3)若一、运动方程二、运动方程的解初始条件:初始位移例题3-12.方程的特解II——冲击强迫振动图地面冲击运动地面冲击运动:⎩⎨⎧>≤≤=dtdt x xg g τττ00)(对质点冲击力:⎩⎨⎧>≤≤−=dtdtx m P g ττ0质点加速度(0~dt):自由振动初速度为t x)(图体系自由振动3.方程的特解III ——动⎪⎩⎪⎨⎧≥−−<=−−ττωωττττξωt t d x e t t dx D D g t )(sin )(0)()( 地面运动脉冲引起的反应tdte xt x D Dtg ωωξωsin )(−−=叠加:体系在t 时刻的地震反应为:⎪⎨≥−−=−−ττωωτξωt t e t dx Dt )(sin )()(单自由度体系的水平地震作用一、水平地震作用的定义二、地震反应谱地震(加速度)反应谱可理解为一个确定的地面运动,通过一组相同但自振周期t地震动的影响频谱:地面运动各种频率(周期)成分与加速度幅值的对应关系不同场地条件下的平均反应谱不同震中距条件下的平均反应谱地震反应谱峰值对应的周期也越长场地越软震中距越大地震动主要频率成份越小(或主要周期成份越长)G —体系的重量;—地震系数;—动力系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为此,要计算出墩柱可能发生的最大塑性转角和最大 容许塑性转角进行比较。
5.2.1 钢筋混凝土墩柱截面的强度和曲率延性计算
(1) 约束混凝土的应力—应变曲线
当混凝土中的应力较大时,横向应变变得很大,由于 螺旋筋或箍筋的作用,混凝土受到约束。
横向钢筋的约束作用能显著改善混凝土在大应变时的 应力—应变关系,从而大大提高墩柱截面的延性,而 且强度也有所提高。
图5.1给出了得到广泛认可的约束混凝土的应力—应变 曲线,其表达式为:
fc
fcc x r r 1 xr
(x c / cc)
(5 1)
式中:fcc 是约束混凝土的峰值纵压应力,εC为混凝土 的纵向压应变,εCC为相应于 fcc 的纵向压应变。
f c 、εCO分别为无约束混凝土的圆柱体抗压强度
(d) 按钢筋和混凝土的应力—应变关系求对应于ε的应力; (e) 求出各条带内力总和,看是否满足截面平衡条件式 (5.5); (f) 若不满足,修改ε0,重复(c)~(e),直到满足平衡条件; (g) 将所得到的ε0代入(5.6)式,求得对应于φ的内力矩M; (h) 重复(a)~(g)。
要求出曲率延性,需要确定截面的屈服状态和极限状态。
第二部分 大跨度桥梁抗震设计
第5章 桥梁结构抗震能力验算
5.1 概 述
桥梁结构地震反应分析的最终目的是正确地估计地震 可能对结构造成的破坏,以便通过结构构造和其他抗 震措施,使损失尽可能小。
因此,抗震能力验算是桥梁结构抗震设计的一个重要 组成部分。
地震惯性力主要集中在上部结构,惯性力通过支座传递 给墩柱,再由墩柱传递给基础,进而传递给地基承受。
前述方法可求出截面在该轴力作用下的弯矩—曲率关 系,得到极限曲率和屈服曲率,则该截面的最大容许 塑性转角为
其中,Lp 为塑性铰等效长度。
塑性铰等效长度 Lp同塑性变形的发展和极限压应变有 很大关系,由于实验结果离散性很大,目前主要用经 验公式来确定。
新西兰规范规定:
其中,L为悬臂墩的高度,或塑性铰截面到反弯点的距 离,H为截面的高度。 欧洲规范公式:
上部结构设计:主要由恒载、活载、温度作用等控制。
墩柱设计:在地震作用下将会受到较大剪力和弯矩作 用,由地震反应控制。
另一方面,在强震作用下,通常希望在墩柱中(而不是 在上部结构)形成塑性铰耗散能量,以降低对结构强度 的要求。
墩柱的剪切破坏:脆性破坏,伴随着强度和刚度的急 剧下降。 墩柱的弯曲破坏:延性破坏,多表现为开裂、混凝土剥 落、压溃、钢筋裸露和弯曲等,产生很大的塑性变形。
其保守估计值为:
其中,εsu为约束箍筋在最大拉应力时的应变;ρS是
约束箍筋的体积含筋率,对于矩形箍筋,ρS=ρf cxc+ρy;
是约束混凝土的峰值压应力f yh; 是约束箍筋的最大拉 应力。
(2) 钢筋的应力一应变关系
(3) 钢筋混凝土截面的抗弯强度与延性计算
钢筋混凝上截面抗弯强度的有效表示方法是轴力—弯 矩(Np—M)曲线,截面的延性主要为截面的弯矩—曲 率(M—φ)关系。
延性可分为材料、截面、构件和整体延性等。 延性—般可用以下的无量纲比值μ来表示,其定义为:
式中,Δy和Δmax分 别表示结构首次屈 服和所经历过的最 大变形。延性系数 通常表示成与变形 有关的各种参数的 函数,如挠度、转 角和曲率等。
5.2.2 墩柱容许的最大塑性转角
通过桥梁结构的非线性地震反应时程分析,可得到结 构在强震作用下危险应的纵向压应变(一般取0.002)
为了定义保护层混凝土的应力—应变关系,假定 2co 时 fc 0 ,应变达到碎裂应变εSP。 约束混凝土的峰值纵压应力 fcc 的计算可分两种情况: (a) 圆形截面
式中,fl 为有效横向约束应力。
其中,Ke为截面的有效约束系数,是有效约束核芯混凝土 面积与核芯混凝土总面积之比,对于圆形截面,一般可取 0.95;f yh、Asp 分别为圆形或螺旋钢筋的屈服强度和截面积; D’、s分别是圆形或螺旋箍筋环的直径和纵向间距。
屈服条件:
极限状态:
其中, st和fsy 分别为受拉钢筋的应力和屈服强度; c max
为受压区混凝土的最大压应变;c0和cu 分别为应力—应
变曲线上应力最大点和失效点所对应的应变。
这里,“延性”表示结构发生较大的非弹性变形而强 度基本没有减少的能力。或者说,延性表示结构从屈 服到破坏的后期变形能力。
矮粗的桥墩,多为剪切破坏; 高柔的桥墩,多为弯曲破坏。
支座的破坏:主要为支座锚固螺栓拔出、剪断,活动 支座脱落,支座本身构造上的破坏等。 墩柱抗震验算,主要有强度破坏准则和延性破坏准则。
5.2 钢筋混凝土墩柱的抗弯能力验算
钢筋混凝土墩柱的弯曲破坏是延性破坏,根据延性破 坏准则,结构是否破坏取决于塑性变形的大小。
采用条带法求(Np—M)和(M—φ)关系。
假设: ● 平截面假定; ● 剪切应变的影响忽略不计; ● 钢筋和混凝土之间无滑移现象; ● 采用前述的钢筋和混凝土的应力—应变关系
(图5-1 和5-3)。
设构件截面形状如图5.4所示:
φ表示截面曲率,形心轴的应变为ε0。荷载产生的应变 沿截面高度线性变化,即
应力—应变关系为: 由平衡条件得:
求和下标j表示截面的第j种材料,Aj为相应面积,积分 号中不是两项相乘,而是函数关系。
由(5.5)和(5.6)可得M—φ关系,一般如下图所示,求解 通常采用数值解法。
对确定的轴向力Np,计算M—φ关系的步骤为:
(b) 选择参考轴,一般选截面形心轴,假定其应变为ε0; (c) 由式(5.4)求出各条带(窄条)的应变ε;
(b) 矩形截面 矩形截面在两个主轴方向的有效约束应力分别为:
峰值纵压应力 fcc 可利用如图5.2所示的约束应力与约 束强度的关系曲线计算。根据约束应力比就可以查出约 束强度比。
约束混凝土的极限压应变εcu定义为横向约束钢筋开始 发生断裂时的混凝土压应变,可由横向约束钢筋达到 最大应力时所释放的总应变能与混凝土由于横向钢筋 的约束作用而吸收的能量(图5.1中阴影部分面积)相等 的条件进行推导。
为保守起见,在进行抗震验算时,以上三个公式中采用 最小者,代入式(5-9)计算截面的最大容许塑性转角。
相关文档
最新文档